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1. Bevezet®

A név �Sudoku� a Japán rövidítése egy hosszabb frázisnak �Suuji wa dokushin
single�, ami azt jelenti, hogy �a számjegyeknek egyedülállóaknak kell lenni�. Ez
egy levédett rejtvény, kiadója Nikoli Co. Ltd Japánban[1].

A Sudoku feladványok rendkívül népszer¶vé váltak Nagy �Britanniában 2004
után. Az ötlet nagyon egyszer¶; egy 9 × 9-es rács, felbontva 9 3 × 3-as blokkra.

Néhány rekeszben el®re megadva elhelyeznek számokat 1 − 9-ig[2]. A meg-
fejt® célja, hogy kiegészítse a rácsot, minden rekeszt feltöltsön számjegyekkel oly
módon, hogy minden sor, minden oszlop és minden 3 × 3-as rekesz tartalmazzon
minden számot 1 − 9-ig pontosan egyszer.

A kényelem kedvéért használnak számokat a Sudoku-ban; a számok közötti
aritmetikai összefüggések lényegtelenek. Különböz® más szimbólumok is használ-
hatóak (bet¶k, minták, vagy színek) a szabályok megváltoztatása nélkül. Amióta
el®ször megjelent újságcikkben a Dell Magazinban 1979 - ben, azóta számokat
használnak minden ilyen cikkben. Ezen fejtör® varázsa abban rejlik, hogy a sza-
bályok egyszer¶ek, de a megoldás eléréséhez a gondolatmenet bonyolult lehet.

1.1. Története

A rejtvényt Howard Grans tervezte, aki egy 74 éves nyugdíjas építész és sza-
badúszó rejtvény tervez®, el®ször 1979-ben publikálta. Bár valószín¶leg inspirálta
Leonhard Euler Latin kocka találmánya, Garns hozzátett egy harmadik kiterjedést
(a területi megszorítás) a matematikai felépítéshez, és bemutatta az alkotását, úgy
mint egy feladványt; egy részlegesen kitöltött rács, és a megfejt®nek a maradék
hely kitöltése a feladata. A rejtvény el®ször New York-ban jelent meg, a speciális
feladványokat megjelentet® Dell Magazine - ban, annak a Dell Pencil Puuzzles
and Word Games rovatában, a Number Place cím alatt (melyet feltevések szerint
Garns adott).

A rejtvényt bemutatták Japánban Nikoli-ban, Monthly Nikolist újságban 1984
áprilisában, úgy mint Suuji wa dokushin ni kagiru, melyet fordíthatunk úgy, hogy
�a számoknak egyedülállónak kell lenni�, vagy �a számok csak egyszer bukkanhat-
nak fel�, (szó szerinti fordításban �egyedülálló�, �n®tlen�). A fejtör®t Maki Kaji
nevezte el, aki Nikoli elnöke. Kés®bb a nevet Sudoku-ra rövidítették. 1986-ban
Nikoli bemutatott két újítást, hogy biztosítsa a fejtör® népszer¶ségét: a megadott
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FEJEZET 1. BEVEZET� 3

számok mennyiségét korlátozták, 32-nél nem lehetett több, és a rejtvény szim-
metrikussá vált. Ez most a kiadók irányvonala a Japán területeken, úgy mint
Asahi Shimbum. Nikoli még fenntartja a védjegyet a Sudoku névre, más kiadók
alternatív neveket használnak Japánban.

1989, Loadstar/Softdisk Publishing megjelentette a DigitHunt-ot Commodore
64-re, mely kétségkívül a Sudoku els® személyi számítógépes verziója volt.

Yoshimitsu Kanai kiadta a saját számítógépes fejtör® generátorát Single Num-
ber néven az Apple Macintosh számára 1995-ben Japánban és Angliában, a Palm
részére 1996-ban, és a Mac OS �X-nek 2005-ben.

A folyamat teljes kört tett, Dell Magazines, mely megjelentette az eredeti
Number Place fejtör®t, most is kiad két Sudoku magazint: Original Sudoku és
Extreme Sudoku. Továbbá, Kappa újranyomtatta Nikoli Sudoku-t a GAMES Ma-
gazine-ban Sqared Away néven; a New York Post, USA Today, The Boston Globe,
Washington Post, The Examiner, és San Francisco Chronicle most is megjelenteti
a fejtör®t. A fejtör® gy¶jtemények is gyakran tartalmazzák, mint amilyen a The
Giant 1001 Puzzle Book (Kilenc Szám címen).

1.2. Játékszabály

A feladvány leggyakrabban 9×9-es rács, 3×3-as részrácsokból összeállítva, melye-
ket régióknak hívnak (más szavakat is használhatunk, mint �rekeszek�, �tömbök�
és még hasonló variációk; néha az egyenl® �negyedek� kifejezést is használják, an-
nak ellenére, hogy ez pontatlan kifejezés a 9 × 9-es rácsra). Néhány cella már
tartalmaz számokat, ezek ismertek mint más rejtvényekben a kulcsok. A cél fel-
tölteni a cellákat, mindegyikbe egy számot helyezni, úgy hogy minden sor, oszlop
és régió pontosan egyszer tartalmazzon minden számot 1 − 9-ig.

1.3. Nehézségi beosztás

A megjelent feladványokat gyakran nehézségek szerint kifejezve besorolják. Meg-
lep®en, a megadott számok kicsit, vagy nem fontosak a nehézség szempontjából.
A feladvány minimálisan megadott számmal lehet nagyon könny¶ a megfejt®
számára, és több, mint az általában megadott számokkal lehet rendkívül nehéz.
A rejtvény nehézsége inkább támaszkodik a megadott számok fontosságára és
poziciójára, mint a mennyiségére.

A számitógépes megoldó programok meg tudják becsülni a nehézséget az em-
berek számára, (hogy megtalálják a megoldást), a megoldáshoz szükséges techni-
kák bonyolultságára támaszkodva. Ez a becslés lehet®vé teszi a kiadók számára,
hogy a közönség sokféle megoldási tapasztalatainak megfelel®en alakitsák a saját
Sodoku feladványaikat. Van néhány online verzió különböz® nehézségi pályával.
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A legtöbb kiadó a Sudoku feladvány 4 fokát különbözteti meg: �könny¶�, �közép-
haladó�, �nehéz� és �kihívó�.

1.4. Variációk

Habár a 9×9 - es rács 3×3 - as régiókkal messze a leghétköznapibb, variációkban
b®velkedik a játék: minta fejtör®k lehetnek a 4×4 - es rácsok 2×2 - es régiókkal;
5 × 5 - ös rács pentominó régiókkal Logi � 5 név alatt. A World Puzzle Champi-
onship korábban f® helyen szerepeltetett egy 6× 6 - os rácsot 2× 3 - as régiókkal
és egy 7 × 7 - es rácsot hat heptomino régióval és egy elválasztott régióval; Daily
Sudoku f® helyen szerepelteti új 4× 4, 6× 6 és egyszer¶ 9× 9 - es rácsait minden
nap úgy, mint Daily Sudoku Gyerekeknek. Nagyobb rácsok is lehetségesek, ilyen
például a Daily Sudoku 12 × 12 - es rácsa a Monster Sudoku. A Times hason-
lóképpen kínál 12× 12 - es rácsot, Dodeka Sudoku, 12 régióval, mindegyik 4× 3 -
as. Dell 16 × 16 játéka Number Place Challenger néven, és Nikoli kínál 25 × 25 -
t Sudoku the Giant néven.

Korlátozásokat adtak ki a további hétköznapi variációkra, hogy kikényszerítsék
a számok elhelyezésén kívül a szokásos sor, oszlop, és régió követelményeket.
Gyakran ezek a korlátozások teszik extra dimenzióba a formát, ilyen leggyakrab-
ban amikor a számoknak a rács f®átlóiban is egyedülállónak kell lenni.

Az említett Number Place Challenger fejtör®k ezen variációk mindegyike, így
vannak a Sudoku X feladványok a Daily Mail -ben, melyek 6×6 - os rácsot használ-
nak, valamint f®helyen szerepelteti a Super Sudoku X - et a hétvégi magazinjában:
egy 8 × 8 - as rács, melyben a sorok, oszlopok, f® átlók, 2 × 4 - es és 4 × 2 - es
blokkok tartalmaznak minden számot egyszer.

Más dimenziók is használatosak; a számok viszonylag ugyanolyan elhelye-
zésével a régiókban, az ilyen feladványokat általában színesen nyomtatják, lehet
kocka, ekkor a fél felszínen dolgozunk, és minden �sor/oszlop� átfog két oldalt.

Más fajtája a korlátozásoknak lehet számtani, ilyen például amikor azt is
megkövetelik, hogy legyenek speciális összegek vagy szorzatok a régiókban.
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1.5. Egy egyszer¶ példa

1.5.1. Jelölés

Ez egy teljesen szabványos Sudoku rejtvény.

9 7 5
1 3 6 8
4 9 6 1
2 4 9 5

9 3 1 5 4
5 6 1

8 9

Ez pedig a megoldása ennek a rejtvénynek.

2 6 9 1 7 8 5 3 4
7 1 3 2 5 4 6 8 9
8 4 5 9 3 6 2 1 7
3 2 1 4 8 9 7 5 6
5 8 4 6 2 7 3 9 1
6 9 7 3 1 5 8 4 2
9 3 2 5 6 1 4 7 8
1 5 8 7 4 2 9 6 3
4 7 6 8 9 3 1 2 5

Meg�gyelve a sorokat, az oszlopokat és a 3×3-as blokkokat, láthatjuk, hogy vala-
mennyi tartalmazza egyt®l kilencig az összes számot.
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Ezen az egyszer¶ példán szeretném bemutatni, hogyan lehet megoldani egy
ilyen feladványt.
Ahhoz, hogy az olvasó követni tudja a Sudoku megoldásának menetét, pontosan
kell tudnia, hogy épp a rejtvény melyik részér®l szól a magyarázat.
A nyolcvanegy négyzetb®l álló rejtvény egészének neve: rács.
A rács 9 blokkból tev®dik össze, a következ® módon:

A B C

D E F

G H I

Valamennyi blokk kilenc négyzetet, vagy cellát tartalmaz, amelyekre számokkal
hivatkozok a blokkon belül. Pl. az A blokk esetében:

1 2 3
4 5 6 B C
7 8 9

D E F

G H I

Ezután tehát, ha az A1 celláról lesz szó, akkor az olvasó is tudni fogja, hogy a
feladvány els® sorában szerepl® els® négyzetr®l beszélek. Így mostmár nekikezd-
hetünk a rejtvény megfejtésének.
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1.5.2. Egy Sudoku megoldása

1. lépés

9 7 5
1 3 6 8
4 9 6 1
2 4 X 9 5

9 3 1 5 4
5 6 1

8 9

El®ször is próbáljuk meg kitölteni a középs®, vagyis az E-vel jelölt blokkot.
Természetesen nem muszáj itt kezdeni, mindenki tetsz®legesen megválaszthatja
azt a pontot, ahonnan el szeretne indulni.
Én az E blokk fels® sorának középs® négyzetéb®l indulok ki, melynek azonosító
jele: E2, és az ábrán X-el jelöltem a keresend® értéket.
Mindenekel®tt nézzük meg, mely számok szerepelnek abban a sorban, oszlopban,
illetve blokkban, amelyben az E2 található.
Ez a m¶velet azért fontos, mert az E2 négyzetben nem szerepelhet egyetlen olyan
szám sem, amely a sorában, oszlopában, vagy abban a blokkban már szerepel. Ez
a Sudoku alapszabálya.
Az oszlopában szerepel a 7, az 1 és a 6, a sorában pedig a 2, a 4, a 9, és az 5.
Az E blokkban található a 4, a 9, a 3, az 1 és az 5. Mivel ezek közül egyik sem
lehet az általunk keresett szám, ki kell derítenünk, mely számok jöhetnek még
számításba. Az egyetlen olyan szám, amely nem szerepel sem a sorában, sem az
oszlopában, sem a blokkban, a 8. Az E2 négyzetbe tehát csakis a 8 kerülhet.

2. lépés

9 7 5
1 3 6 8
4 9 6 1
2 4 8 9 5

X
9 3 1 5 4

5 6 1
8 9
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Most lépjünk az E5 négyzetre, az ábrán ismét X jelöli. Végezzük el ugyanazt a
m¶veletet, amit az 1. lépésben, vagyis nézzük meg, milyen számok szerepelnek
az E5 sorában, oszlopában, valamint az E blokkban.
Az oszlopában a 7, 8, 1, 6, a blokkban a 4, 8, 9, 3, 1, 5 számok találhatóak, a
sorában pedig nincsenek el®re beírt számok. Az egyetlen szám ami kimaradt a 2,
tehát ez kerül az E5 cellába.

3. lépés

9 7 5
1 3 6 8
4 9 6 1
2 4 8 9 5

X 2
9 3 1 5 4

5 6 1
8 9

Lépjünk az E4 cellára. Ismét nézzük meg, milyen számok szerepelnek abban a
sorban, oszlopan, illetve blokkban, amelyben az E4 szerepel.

Az oszlopban található számok: 9, 4, 3, 5. A sorban szerepel az imént beírt
kettes szám. A blokkban pedig a következ® számok: 4, 8, 9, 2, 3, 1, 5. Ebben az
esetben két olyan szám van egy és kilenc között, amely számításba jöhet: a 7 és a
6. Nem tudjuk, hogy melyiket kell beírni, ezért egyenl®re nézzük meg az E blokk
utolsó, még nem vizsgált celláját, vagyis az E6-ot.

4. lépés

9 7 5
1 3 6 8
4 9 6 1
2 4 8 9 5

2 X
9 3 1 5 4

5 6 1
8 9

Ha megnézzük az oszlopát, a sorát, és a blokkot, kiderül, hogy az egyetlen hiányzó
szám a 7. Mivel ebbe a cellába egyértelm¶en a hetes szám kerül, ezért a D4-be
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egyedül a hatos írható.

5. lépés

9 7 5
1 3 6 8
4 9 6 1
2 4 8 9 5

6 2 7
9 3 1 5 4

5 6 1
8 9

Most már az E blokk valamennyi cellája ismert.
Nézzünk meg egy újabb blokkot. Mint korábban említettem, tetszés szerint bár-
melyikkel folytathatjuk. Én most a B-t választom.
Látható, hogy ezen blokk 1. vagy 3. oszlopával érdemes folytatni, hiszen ha az
egész feladványt nézzük, ebben a két oszlopban már elég sok szám ismert.

6. lépés

Vegyük például a B4 cellát, és kövessük az E blokk esetében meg�gyelt el-
járást. Nézzük meg milyen számok szerepelnek egyt®l kilencig a B4 oszlopában,
sorában, cellájában. Miután megnéztük, kiderül, hogy egyedül a 2 nem szerepel
egyikben sem. Ebbe a négyzetbe tehát beírhatjuk a kettes számot.

7. lépés

Nézzük meg most a B6 cellát. Követve a már jól ismert eljárást, kiderül, hogy
az egyetlen hiányzó szám a 4.

9 7 5
1 3 2 4 6 8
4 9 6 1
2 4 8 9 5

6 2 7
9 3 1 5 4

5 6 1
8 9
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8. lépés

Folytassuk például a B5 négyzettel. Megvizsgálva a sorát, oszlopát, és a blok-
kot, látható, hogy egyedül az 5 írható a cellába.

9. lépés

Legyen a következ® a B8. Követve az eddigi eljárást, ebbe a cellába is egy
szám írható be, mégpedig a 3.

9 7 5
1 3 2 5 4 6 8
4 9 3 6 1
2 4 8 9 5

6 2 7
9 3 1 5 4

5 6 1
8 9

A B blokkban még két megfejtend® cella maradt, a B1 és a B3. Kövessük a
szokásos eljárást, nézzük meg azokat az oszlopokat, sorokat és blokkot, amelyek
tartalmazzák a B1 és a B3 cellákat. Már csak két olyan szám maradt egy és kilenc
között, amely nem szerepel a blokkban. Ez a két szám az 1 és a 8. A B1-b®l az
1, a B3-ból a 8 hiányzik.

9 1 7 8 5
1 3 2 5 4 6 8
4 9 3 6 1
2 4 8 9 5

6 2 7
9 3 1 5 4

5 6 1
8 9

10. lépés

A B és E blokkokban tehát minden szám a helyére került, haladjunk tovább!

Majdnem teljesen kitöltöttük a feladvány középs® három oszlopát. Folytassuk
tehát a H blokkal, így teljesen megoldhatjuk a rejtvény központi részét.
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Kezdjük a középs® cellával, vagyis a H5-el. Ha végignézzük ezen cella sorát,
oszlopát, és a blokkot, látható, hogy az egyetlen hiányzó szám a 4. A H5 cellába
tehát a 4 kerül.

11. lépés

Haladjunk tovább a H4 négyzetbe, végezzük el a szokásos vizsgálatot, így
láthatjuk, hogy az egyetlen kimaradt szám a 7. A H4 cellába tehát beírjuk a 7-et.

12. lépés

Következzen most a H6 cella. Innen két lehetséges szám hiányzik: a 2 és a
3. Nem tudjuk megmondani, hogy pontosan melyik, ezért erre a cellára majd
visszatérünk.

Ha ezek után megviszgáljuk a H9 cellát, láthatjuk, hogy innen is a 2 és a 3
hiányzik. Így majd erre is kés®bb térünk vissza.

Haladjunk tovább a H8 cellába. Ott egyetlen szám jöhet szóba, mégpedig a
9. Ez pedig azt jelenti, hogy a H7 cellába már csak a 8 kerülhet.

9 1 7 8 5
1 3 2 5 4 6 8
4 9 3 6 1
2 4 8 9 5

6 2 7
9 3 1 5 4

5 6 1
8 7 4 9

8 9

13. lépés

Ahogy már korábban említettem, bármely blokkot, s azon belül bármely cellát
választhatjuk. Nincs különösebb jelent®sége, melyik mellett döntünk.

Most vegyük az A blokkot, azon belül az 1-es cellát. Ha alkalmazzuk a szo-
kásos eljárást, észrevehetjük, hogy az A1 cella esetében két szám jöhet szóba: a 2
és a 6. Egyenl®re így még nem írunk be semmit.

Ha most megvizsgáljuk az A2 cellát, és szintén elvégezzük a szokásos eljárást,
arra az eredményre jutunk, hogy az egyetlen szám egy és kilenc között, amely nem



FEJEZET 1. BEVEZET� 12

szerepel A2-nek sem a sorában, sem az oszlopában, sem pedig az A cellában, a 6.
Így viszont, mivel az A2-be a 6 kerül, az A1 négyzetbe már csak a 2-t írhatjuk.

2 6 9 1 7 8 5
1 3 2 5 4 6 8
4 9 3 6 1
2 4 8 9 5

6 2 7
9 3 1 5 4

5 6 1
8 7 4 9

8 9

14. lépés

Lépjünk most az A4 cellára. Itt már kizárólag a hetes szám hiányzik egy és
kilenc között.

Ezek után nézzük meg az A7 cellát. Két szám jöhet szóba: az 5 és a 8.
Egyenl®re tehát nem írunk be semmit, hanem továbbhaladunk az A9 négyzethez.
Ott egyetlen szám jöhet számításba, mégpedig az 5. Ebb®l viszont az következik,
hogy az A7 cellában a 8 szerepel. Ezzel az A blokk minden celláját kitöltöttük.

2 6 9 1 7 8 5
7 1 3 2 5 4 6 8
8 4 5 9 3 6 1

2 4 8 9 5
6 2 7

9 3 1 5 4
5 6 1

8 7 4 9
8 9

15. lépés

Foglalkozzunk most a C blokkal és próbáljuk meg kiegészíteni a legfels® sort.
Vegyük most a C2 négyzetet. Vizsgáljuk meg a hozzá tartozó sort, oszlopot, és
blokkot. Láthatjuk, hogy a C2 cellába egyetlen szám kerülhet, méghozzá a 3.

Ezek után a C3 cellát megnézve, mivel ebben a sorban már az összes többi
szám be van írva, nem szükséges megvizsgálnunk sem az oszlopot, sem a blokkot,
mert biztosan az a szám kerül oda, amelyik ebb®l a sorból hiányzik, ez pedig a 4.
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Most ellen®rzés céljából érdemes megvizsgálni a C3-hoz tartozó oszlopot, és a
C blokkot. Ha valamelyikben esetleg még egyszer el®fordul a 4, akkor bizonyos,
hogy megoldás közben valamilyen hibát követtünk el.

16. lépés

Ezután vizsgáljuk meg a C blokk többi számait is. Vegyük el®ször a C6 cellát,
és használjuk a szokásos módszert. Ennek alapján kideríthetjük, hogy a hiányzó
szám a 9.

Az eredményünket úgy is ellen®rizhetjük, ha megnézzük a már teljesen kitöl-
tött sort, és meggy®z®dünk róla, hogy nincs több 9 benne.

Ha ezután megnézzük a C7 cellát, láthatjuk, hogy ott két szám jöhet szóba:
a 2 és a 7. C9 cellára szintén ez teljesül, ezért még ezt a két négyzetet szabadon
hagyjuk.

2 6 9 1 7 8 5 3 4
7 1 3 2 5 4 6 8 9
8 4 5 9 3 6 1

2 4 8 9 5
6 2 7

9 3 1 5 4
5 6 1

8 7 4 9
8 9

17. lépés

Nézzük meg most a D blokkot. A szokásos módszer használata révén kiderül,
hogy a D1 cellába három szám is szóba jöhet: az 1, a 3 és a 6. Tehát egyenl®re
nem írunk be semmit.
Megnézve a D3 cellát, látható, hogy elméletileg ott is három szám szerepelhet:
az 1, a 6 és a 7.
Következzen a D6 cella, amelyben két szám jöhet szóba: az 1 és a 4.
Ezek után nézzük a D5 cellát, amelybe három számot írhatnánk: ezek a 3, az 5
és a 8.
Most nézzük meg a D4 négyzetet, amelyben elvileg négy szám is szerepelhet: az
1, a 3, a 4 és az 5.

Viszont a D7-et vizsgálva láthatjuk, hogy ott egyetlen szám jöhet szóba, a 6.



FEJEZET 1. BEVEZET� 14

18. lépés

Most pedig lássuk a D9 cellát. Az egyetlen szám, amely ebbe a cellába kerül-
het, a 7. Újra megvizsgálva a sorát, oszlopát, blokkját, észrevesszük, hogy a D3
cellába már csak az 1-et írhatjuk.
Mivel most már bizonyos, hogy a D3 cellába az 1 kerül, így a D1-ben már csak
egy szám, a 3 marad.
Így már az 1-nek a helyét is megtaláltuk, tehát a D6 cellába egyedül a 4 kerülhet,
de akkor már azt is meg tudjuk állapítani, hogy a D4-be az 5 kerül.
Ebben a blokkban már csak egy üres cella maradt, amibe már csak a 8-at tudjuk
beírni.

Így kitöltöttük a D blokkot.

2 6 9 1 7 8 5 3 4
7 1 3 2 5 4 6 8 9
8 4 5 9 3 6 1
3 2 1 4 8 9 5
5 8 4 6 2 7
6 9 7 3 1 5 4

5 6 1
8 7 4 9

8 9

19. lépés

Következhet az F blokk.
Az F1 cellába már csak a 7, az F3-ba pedig egyedül a 6 kerülhet.

Az F4 cellába két szám szerepelhetne: az 1 és a 3. Nem tudjuk pontosan
melyik kerül majd bele. Menjünk tovább.
Az F5 négyzetbe csak egy számot írhatunk: a 9-et.
Az F6 cella az F4-hez hasonlóan az 1-et és a 3-at tartalmazhatja, de még nem
tudjuk pontosan melyiket.

Ellen®rzésképpen vizsgáljuk meg az F blokk, valamint a feladvány 4., és 5.

sorainak számait. Nézzük meg, nem követtünk-e el valamilyen hibát.

Most nézzük meg az F blokk utolsó sorát. Az F7 cellába csak a 8 kerülhet,
az F9-be pedig kizárólag a 2.
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2 6 9 1 7 8 5 3 4
7 1 3 2 5 4 6 8 9
8 4 5 9 3 6 1
3 2 1 4 8 9 7 5 6
5 8 4 6 2 7 9
6 9 7 3 1 5 8 4 2

5 6 1
8 7 4 9

8 9

20. lépés

Nézzük meg a G blokkot! A G1 cellába két szám lehetséges: a 4 és a 9. A
G2-re szintén két lehet®ség van: a 3 és a 7. A G3-ban ugyanakkor egyetlen szám
lehetséges: a 2.

Haladjunk lejjebb az oszlopban. A G4 cellában egyetlen szám szerepelhet, az
1, a G5-ben viszont két lehetséges szám jöhet szóba: a 3 és az 5.

Az utolsó sorban a G7 négyzetben a 4 az egyetlen szóba jöhet® szám, a G8
cellába viszont három: a 3, az 5 és a 7. A G9-be kizárólag a 6 kerülhet.

2 6 9 1 7 8 5 3 4
7 1 3 2 5 4 6 8 9
8 4 5 9 3 6 1
3 2 1 4 8 9 7 5 6
5 8 4 6 2 7 9
6 9 7 3 1 5 8 4 2

2 5 6 1
1 8 7 4 9
4 6 8 9

21. lépés

Végezetül nézzük az utolsó, I blokkot.

Az I1-be jelenleg két szám jöhet szóba: a 3 és a 4.
Az I2 cellába csak a 7 kerülhet.
Az I blokk többi cellájába nem tudjuk még pontosan mely számok kerülnek.
Vizsgáljuk meg az I2 sorát. Üres hely még a G2, ahová mostmár csak a 3 írható
be.
Ezután az I1 cellába kizárólag a 4 marad, a G1-be tehát a 9-et írjuk, ekkor vi-
szont már egyértelm¶en beírható az I3 négyzetbe a 8.
A G blokkban így még két üres hely maradt. A G5-be mostmár egyértelm¶en
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csak az 5 kerülhet, s emiatt a G8-ba is beírhatjuk a kimaradt 7-es számot.

Amikor kiderítettük, hogy az I2 cellába a 7 kerül, m¶ködésbe lépett a számos
négyzetre kiható dominóelv. Ez gyakran történik így, amikor egy Sudoku rejtvény
végére érünk.

2 6 9 1 7 8 5 3 4
7 1 3 2 5 4 6 8 9
8 4 5 9 3 6 1
3 2 1 4 8 9 7 5 6
5 8 4 6 2 7 9
6 9 7 3 1 5 8 4 2
9 3 2 5 6 1 4 7 8
1 5 8 7 4 9
4 7 6 8 9

22. lépés

Az I5 cellában potenciálisan két szám szerepelhet: a 2 és a 6. Ugyanebben a
sorban, az I6 négyzetben csakis a 3 szerepelhet.
Ha végignézünk ezen az oszlopon, láthatjuk, hogy az F6 cellában az 1 szerepel.
Ekkor viszont már azt is meg tudjuk állapítani, hogy az F4-be a 3 kerül.
Ha az I6 cella sorát megnézzük, látható, hogy a H6 cellába a 2 kerül, s így a H9
cellában a 3-as szám a megoldás.

Most nézzük meg a Sudoku utolsó sorát. Az I7 cellába az 1, az I8-ba a 2, az
I9-be pedig az 5 kerül.

2 6 9 1 7 8 5 3 4
7 1 3 2 5 4 6 8 9
8 4 5 9 3 6 2 1 7
3 2 1 4 8 9 7 5 6
5 8 4 6 2 7 3 9 1
6 9 7 3 1 5 8 4 2
9 3 2 5 6 1 4 7 8
1 5 8 7 4 2 9 6 3
4 7 6 8 9 3 1 2 5

Elkészültünk a rejtvény megfejtésével. Most ellen®riznünk kell, hogy vala-
mennyi sor, oszlop és blokk tartalmazza-e az összes számot egyt®l kilencig. Bizony
el®fordulhat, hogy valamelyik sorban, oszlopban, vagy blokkban egy szám kétszer
is el®fordul. Ekkor kezdhetjük el®lr®l.



2. Eredmények

A továbbiakban 4×4 - es rácsokkal fogok dolgozni, mert azokat könnyebb követni,
áttekinteni. El®ször is azzal a kérdéssel foglalkozom, hogy hány különböz® 4 × 4
-es Sudoku rács létezik.

2.1. Lehetséges kitöltések

Sokakat foglalkoztatott az a kérdés, hogy a 4×4 - es Sudoku rácsnak hány különbö-
z® lehetséges kitöltése van. A következ® gondolatmenettel szeretném bemutatni,
hogy összesen 288 féle kitöltése létezik.
A feladat elhelyezni 4 adott számot 16 lehetséges cellába, a Sudoku szabályainak
�gyelembevételével.

Az adott négy szám: 1, 2, 3, 4 elhelyezése az els® blokkba ismétlés nélküli per-
mutáció.

2.1.1. De�níció. Egy adott n elem¶ halmaz elemeinek egy ismétlés nélküli per-
mutációján az n különböz® elem egy sorbarendezését értjük.

2.1.1. Tétel. Egy adott n elem¶ halmaz permutációinak száma n!.

Így az els® blokknak 4! = 24 féle kitöltése lehet. Tegyük fel, hogy most a
következ®képpen vannak elhelyezve a számok:

1 2
3 4

Akkor a rácsot így kell kitölteni:

17



FEJEZET 2. EREDMÉNYEK 18

1 2 [3 4]
3 4 [1 2]
[2] [1]
[4] [3]

Ahol [1 2] - vel jelölöm azt, hogy 1 és 2 valamilyen sorrendben szerepelhet. 16
- féleképpen helyezhetjük el a [3 4] - et és [1 2] - t, valamint a függ®leges [2 4] -
et és [1 3] - t, viszont amikor a jobb fels® blokk oszlopaiban és a bal alsó blokk
soraiban ugyanaz a két szám szerepel, akkor a Sudokunak nincs megoldása.
Például:

1 2 3 4
3 4 2 1
2 3
4 1

Így a 16 esetb®l 4 esetben nincs megoldás, vagyis az esetek egynegyedében, 12
esetben pedig van. Ezért összesen 24 · 16− (1

4 · (24 · 16)) = 288 kitöltése létezik a
4 × 4 - es Sudoku rácsnak.

Vannak akik úgy gondolják, hogy valójában, csak a következ® két egyedi kitöl-
tése van a rácsnak:

1 2 3 4
3 4 1 2
2 1 4 3
4 3 2 1

és

1 2 3 4
3 4 2 1
2 1 4 3
4 3 2 1

Az egyedi azt jelenti, hogy nem lehet egyikb®l a másikat el®állítani egyszer¶ m¶-
veletekkel. A többi ezekb®l a következ® m¶veletekkel el®állítható:

1. A négy számjegy permutációja

2. A sorok és oszlopok permutálása egy blokkon belül

3. A blokkok két sorának vagy oszlopának permutálása

4. A mátrix transzponálása
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Nézzük meg, hogy valóban csak ez a kett® létezik:
Az 1. miatt feltételezhetjük, hogy az A blokk �x, és a következ®képpen van kitölt-
ve:

1 2
3 4

A B blokk els® sora lehet a 3 4 vagy a 4 3 egyike. Viszont 2. miatt fel-
tételezhetjük, hogy az els® sor elemei sorrendben: 3 és 4.
A C blokk els® oszlopának kitöltése a 2 4 vagy a 4 2 egyike, de szintén 2. miatt
feltételezhetjük, hogy a 2 van felül.

1 2 3 4
3 4
2
4

Ekkor azonnal beírhatjuk a hiányzó 4-est.

1 2 3 4
3 4
2 4
4

Nézzük meg most a D4 -es cellát: Itt szerepelhet az 1, a 2 és a 3 is. Viszont,
ha a 3-at írjuk be, akkor az 1. - t alkalmazhatjuk, és megcserélhetjük a 2-t a
3-mal, kapva ezt a rácsot:

1 3 2 4
2 4
3 4
4 2
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De a 4. - et alkalmazva kapjuk a következ®t:

1 2 3 4
3 4
2 4
4 2

Ezért feltételezhetjük a D4 celláról, hogy ott az 1 vagy a 2 szerepel. Ha az
1-et írjuk be, akkor a rács így tölthet® ki:

1 2 3 4
3 4 1 2
2 1 4 3
4 3 2 1

Ha pedig a 2-t, akkor így:

1 2 3 4
3 4 2 1
2 1 4 3
4 3 1 2

Tehát lényegében tényleg csak ez a két kitöltés létezik, de ez tulajdonképpen
csak matematikailag érdekes, mert egy rejtvényfejt® szempontjából a számok per-
mutációjával kapott Sudoku ugyanolyan kihívás.

2.2. Minimumprobléma

A minimumprobléma azzal a kérdéssel foglalkozik, hogy minimum hány számot
kell el®re beírni a rácsba, hogy az egyértelm¶en megoldható legyen. Megoldás:

• 2 kitöltött mez®s rejtvény nincs, mert a másik két szám cserélhet®sége miatt
páros sok megoldása van.

• 3 kitöltött mez® esetén a három számnak különböz®nek kell lennie ugyani-
lyen okból. Ez viszont (a szimmetriákkal sem tör®dve), az 1, 2, 3 számok-
nak 16 · 15 · 14 = 3360 különböz® elhelyezése, mely programmal gyorsan
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generálható, és ellen®rizhet®. Egyik sem rejtvény, vannak köztük olyanok,
amelyeknek nincs is megoldása. Ilyen például a következ®:

1 2
3

Ennek a rácsnak nincs megoldása, mert az 1 2 alá a 3 4 - et kellene írni
valamilyen sorrendben, de a 3 már szerepel a sorban.

• 4 kitöltött mez®s rejtvény sok van, közülük néhány itt látható:

1 3
1 4

3
1

3
2

1 2

4 1

2.3. Megoldási módszerek

Ebben a részben olyan megoldási módszereket mutatok be, amelyekkel egyértel-
m¶en megfejthet® minden olyan Sudoku rejtvény, melynek egyértelm¶ megoldása
van.

2.3.1. DLX

A számítógépes tudományokban a Dancing Links[3], közismertebb nevén a DLX
a Donald E. Knuth által javasolt technika arra, hogy hatékonyan implementáljuk
az � X algoritmusát. Az X algoritmus egy rekurzív, nemdeterminisztikus algo-
ritmus, mely megtalálja a 'precíz elhelyezés' problémák összes megoldását. Ilyen
probléma például az N-királyn®, és a Sudoku.
A Dancing Links név abból adódik, hogy az algoritmus a m¶ködése folyamán
felépített gráfot úgy járja be, hogy az egy �kit¶n®en koreografált táncra� emlékez-
tet.

Néhány szó Donald E. Knuth -ról

1938. január 10 -én született Milwaukee -ban, Wisconsin államban. Egyete-
mi tanulmányait a Case Institute of Technology -n végezte 1956 és 1960 között.
Matematikából szerezte Ph.D. fokozatát 1963 -ban a California Institute of Tech-
nology -n. Doktori disszertációjának címe: �Véges ferde testek és projektív síkok�.
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1960 -tól 1968 -ig a kaliforniai Burroughs Corporation-nél dolgozik, eközben 1963
és 1968 között tanársegéd, majd tudományos munkatárs a California Institute of
Technology -n. 1968 óta a Stanford Egyetem professzora. 1968 és 1969 között
a Védelmi Analitikai Intézetben (Institute for Defense Analyses) dolgozott ma-
tematikusként a Kommunikációs Kutató Részlegen (Communications Research
Division). Egy évet vendégprofesszorként töltött el az Osloi Egyetemen 1972 -
1973-ban. 1977 óta a Stanford Egyetemen az Elektromérnöki Kar tiszteletbeli
professzora is. 1977 -t®l 1989 -ig a Fletcher Jones - díj birtokosa, 1990 óta a
�számítógépprogramozás m¶vészetének professzora�. Az Amerikai Matematikai
Társaság (American Mathematical Society, AMS) 1961 óta élvezi tagságát (1978
és 1981 között Knuth maga is elnökségi tag). Az ACM-nek (Association for
Computing Machinery) 1959 óta tagja, 1963 - 64 -ben vezet®je is. 1959 óta a Ma-
thematical Association of America, 1965 óta az Ipari és Alkalmazott Matematikai
Társaság (Society for Industrial and Applied Mathematics) tagja.
Több, mint 50 díjat, emlékérmet kapott a világ sok országában. Idén a Duke és
a skóciai St. Andrews Egyetem �A tudomány doktora� címet adományozta neki.
Legismertebb könyve A számítógép - programozás m¶vészete el®ször 1969-ben je-
lent meg. Az els® három kötet címe: Alapvet® algoritmusok, Szeminumerikus
algoritmusok, Keresés és rendezés.
1979-ben jelent meg a TEX and METAFONT: New Directions in Typesetting cím¶
munkája. Ezzel párhuzamosan készítette el a TEX szövegkészít® programnyelv
els® verzióját, mellyel eredetileg az volt a célja, hogy A számítógép-programozás
m¶vészete c. könyv fárasztó tárgymutató - és tartalomjegyzék-összeállítását le-
rövidítse. 1984 -ben kib®vítette a TEX -r®l írt könyvet The TEXbook címmel. A
TEX azóta a tudományos élet els® számú szövegkészít® programja lett.

Mi is az a DLX algoritmus?

Egy olyan algoritmus, melyet a 'pontos elhelyezés' problémák megoldására hasz-
nálunk. Ezek olyan problémák, melyekr®l jól tudjuk, hogy NP-teljes. Alapvet®en
a problémát könny¶ megérteni, de nem annyira könny¶ megoldani, f®leg a na-
gyobb méret¶ problémákat.
Tegyük fel például, hogy van egy mátrixunk 0-kal és 1-esekkel, és tudni akarjuk,
hogy van-e egy olyan sorokból álló részhalmaza, ahol minden oszlopban csak egy
1-es van. Erre egy kicsi példa:

Sor1: 0 1 0 0
Sor2: 1 0 0 0
Sor3: 1 1 1 0
Sor4: 0 0 1 1

Az X algoritmus az A mátrixon:
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1. Ha A üres, akkor a probléma meg van oldva, és vége

2. Különben válassz egy oszlopot, jelöljük ezt c-vel

3. Válassz egy sort, r -et, úgy hogy A[r, c] = 1

4. Belevesszük r-et a részleges megoldásba
Minden olyan j esetén, melyre A[r, j] = 1 töröld a j oszlopot az A mátrixból
Minden olyan i esetén, melyre A[i, j] = 1 töröld az i sort az A mátrixból

5. Ismételd az algoritmust rekurzívan a redukált A mátrixra

Más szavakkal leírva:
Kiszemelünk egy oszlopot, választunk egy sort, ahol az oszlopnak megfelel®en van
egyes, és töröljük azt a sort (de belevesszük a részleges megoldásba), aztán tör-
lünk minden olyan oszlopot, mely egyest tartalmaz abban a sorban, amit törlünk.
Majd törlünk minden más sort is, mely egyest tartalmaz a kiválasztott oszlopnak
megfelel®en. Ezek után marad egy redukált mátrix, melyen újra és újra végrehajt-
juk rekurzívan ezt az algoritmust, amíg végül marad egy nullmátrix, vagy kapunk
egy megoldást.

Az X algoritmus az el®z® példára:

Sor1: 0 1 0 0
Sor2: 1 0 0 0
Sor3: 1 1 1 0
Sor4: 0 0 1 1

Ha kiválasztom a 4. oszlopot, (mert ebben csak egy egyes van) ez maga után
vonja a 3. oszlop és a 3. sor törlését, így marad a következ® redukált mátrix (els®
két sor, els® két oszlop):

Sor1: 0 1
Sor2: 1 0

Ezután kiválasztva az els® oszlopot, végrehajtva az algoritmust marad egy
1 × 1-es mátrix. Ekkor már csak azt tudom választani, és ezzel kapok egy meg-
oldást: a Sor4, Sor2 és az Sor1, vagy rendezve: az Sor1, Sor2, Sor4, mivel a
sorrend nem lényeges.

De mit csinálhatnánk abban az esetben, ha a mátrix mérete 1000 × 1000?
Ennek a problémának a számítási ideje és mérete már nem elhanyagolható. (Meg-
jegyzem a mátrix nem feltétlenül négyzetes.) Ilyen esetekben alkalmazhatjuk a
DLX algoritmust. Alapvet®en, a DLX a 'precíz elhelyezés' probléma mátrixának
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ábrázolása láncolt lista segítségével. Egy olyan kétdimenziós listával, ahol minden
elem láncolva van a szomszédaihoz, így a mátrix függ®legesen, és vízszintesen is
bejárható. Itt van például a következ® mátrix:

A B C D

E F G

H I

Vizsgáljuk meg az F elemet! A fels® szomszédja a B, az alsó az I, G a jobb, és
E a bal. Ez eddig egyértelm¶. Viszont nézzük meg a B -t! Mivel az alkalmazott
lista körbejárható, így B -nek a fels® szomszédja I, továbbá A a bal, C a jobb és
F az alsó szomszédok.
Végül vizsgáljuk meg I -t! F a fels® szomszédja, B az alsó, H pedig a bal és jobb
szomszédja is egyben.
Tehát építünk egy ilyen listát úgy, hogy a mátrixban szerepl® minden 1-es számára
létrehozunk egy csomópontot. Vagyis létre szeretnénk hozni egy ritka mátrixot
csomópontokból felépítve, úgy hogy a nullák ne legyenek reprezentálva. Így csök-
ken a probléma mérete, hiszen kevesebb adatot tartunk meg.
A DLX valójában tehát a mutatókat használó verziója az X algoritmusnak.

A DLX és a Sudoku

Ha a Sudoku megoldásához szeretnénk használni a DLX-et, akkor ki kell dolgoz-
nunk a Sudoku problémát 'pontos elhelyezés' problémaként.
Nézzük meg mit jelentenek majd az általunk kidolgozni kívánt mátrix sorai és
oszlopai!
Minden sor kifejez egy állást. Például beírva a (3, 4) cellába egy 2-est kapunk egy
állást. Ennek a döntésnek van néhány következménye a játék szabályai alapján,
hiszen ezután a 3. sorba, a 4. oszlopba és a D blokkba nem írható újabb 2-es,
továbbá a (3, 4) cellába nem szerepelhet másik szám.
Ezek azok a dolgok, amiket fontolóra kell venni, így kapunk 4 feltételt:

• Sor - Oszlop feltétel: Egyik cellába sem írható egynél több szám

• Sor - Szám feltétel: Minden sornak tartalmaznia kell minden számot pon-
tosan egyszer

• Oszlop - Szám feltétel: Minden oszlopnak tartalmaznia kell minden számot
pontosan egyszer

• Blokk - Szám feltétel: Minden blokknak tartalmaznia kell minden számot
pontosan egyszer
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A mátrix oszlopai fogják kifejezni ezt a négy feltételt, a sorai pedig minden le-
hetséges állást, amit készíthetünk a 4 × 4-es rács esetén.
Mivel 4 ·4 = 16 cella van a rácsban, és van 4 különböz® szám amit elhelyezhetünk
a cellákban, az el®allítható állások száma: 16 · 4 = 43 = 64.
Ellen®rizzük le az oszlopokra a feltételeket:
Sor - Oszlop feltétel: Van 4 · 4 = 16 lehetséges cella amibe számot írhatunk,
így az els® feltétel 16 darab (r, c) típusú (mátrix)oszlopot ad. r lesz a f® indexe
ennek a feltételnek. Így 1 − 4-ig a (mátrix)oszlopai reprezentálják az elhelyezett
számokat az 1. sorban az 1−4 oszlopokban. A (mátrix)oszlopai 5−8-ig ábrázolják
a 2. sor 1 − 4 oszlopaiban elhelyezett számokat, és így tovább.
Valójában, ha elhelyezünk egy számot az r sor c oszlopában, akkor elhelyezünk
egy 1-est az (r − 1) · 4 + c oszlopban.
Sor - Szám feltétel: Van 4 sor, és 4 lehetséges szám, amit minden sorban el-
helyezhetünk, így ismét 4 · 4 = 16 (mátrix)oszlopunk lesz a 2. feltételre. Ezúttal
is r lesz a f®index, így ha beírjuk a d számjegyet az r sorba, akkor elhelyezünk
egy 1-est az (r − 1) · 4 + d + 16 (mátrix)oszlopban, ahol a 16 az els® feltételb®l
származó oszlopok miatt szerepel.
Oszlop - Szám feltétel: Ugyanúgy, mint a soroknál, van 4 oszlop 4 különböz®
lehetséges számjeggyel, amelyek elhelyezhet®ek. Ezért egy a c oszlopba elhelyezett
d számjegy esetén elhelyezünk egy 1-est a (c−1) ·4+d+16+16 (mátrix)oszlopba,
ahol 16 + 16 az els® és második feltétellel függ össze.
Blokk - Szám feltétel: Blokk esetén is ugyanúgy m¶ködik, mint a soroknál és
oszlopoknál. Van 4 blokk és 4 számjegy, vagyis lesz 16-tal több (mátrix)oszlop.
Elhelyezve egy d számjegyet a b blokkba írunk egy 1-est a (b−1)·4+d+16+16+16
(mátrix)oszlopba, és itt is a 16+16+16 az els®, második és harmadik feltételekb®l
adódnak.

Van tehát összesen 16 · 4 = 64 feltétel oszlopunk, ezért egy 64 × 64-es mátrix
szükséges ahhoz, hogy egy 4× 4-es Sudoku feladványt átvigyünk 'pontos elhelye-
zés' problémába.

Egy konkrét példán bemutatva:
Legyen a megfejtend® Sudoku rács a következ®:

3 2
4 1

Az el®z®ekben leírt feltételeknek megfelel®en létrehozott 64 × 64-es mátrix egy
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részlete, mely az els® feltétel által de�niált 16 oszlopot szemlélteti:

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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Ez a mátrix építhet® fel minden 4 × 4-es Sudoku feladvány esetén. A mátrix
sorai tehát a lehetséges állásokat fejezik ki. Például a mátrix 1. sora a Sudoku els®
sorának els® cellájába írt 1-es állást, a mátrix második sora a Sudoku els® sorának
els® cellájába írt 2-es állást, és így tovább. A mátrix utolsó sora pedig a Sudo-
ku negyedik sorának negyedik cellájába írt 4-est. Így végrehajtva az algoritmust
valóban elegend® a sorokat belevenni a részmegoldásba, hiszen az egyértelm¶en
azonosítja az adott állást.
Hajtsuk végre a DLX algoritmust a megfejtend® Sudokura.

Az els® lépésben ki kell választani egy oszlopot. Általában érdemes azt az
oszlopot választani, amelyikben a legkevesebb 1-es szerepel. Azonban az alap
mátrix minden oszlopában 4 darab 1-es szerepel. Így most ez a választási mód
nem lenne eredményes. Tudjuk viszont, hogy a második sor els® cellájában 3-as
szám szerepel, és azt is, hogy ehhez a cellához az 1. feltétel alapján tartozó oszlop
az 5., így ezt az oszlopot választom. A továbbiakban mindig a legels® alkalmas
oszlopot fogom választani.
A második lépésben választanunk kell egy sort, amely tartalmaz 1-est az osz-
lopnak megfelel®en. Ennek kiválasztása már egyértelm¶, a megadott 3-as szám
miatt. Választom tehát a 19. sort.

A 19. sor szerepel majd a megoldásban. Ezután törölni kell minden sort,
mely 1 -est tartalmaz a kiválasztott oszlopban, továbbá minden oszlopot, mely
1-est tartalmaz a 19. sorban, és ezen oszlopok azon sorait, melyek egyest tartal-
maznak. Így kapjuk a következ® redukált mátrixot:
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Ezt az eljárást ismételve a redukált mátrixra a következ® sorrendben kerülnek
a sorok a megoldásba:

• Els®ként került be a 19. (mátrix)sor, amely a Sudoku második sorának els®
cellájában elhelyezett 3-as számot jelöli. Hiszen a mátrix els® 16 sora a
Sudoku els® sorának lehetséges állásait tartalmazza, a következ® négy a
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második sor els® cellájának lehetséges kitöltéseit, a 19 hárommal nagyobb
mint a 16, tehát a 3-as számot képviseli.

• A következ® lépésben a második sor harmadik cellájához tartozó oszlopot
kiválasztva - hiszen ez szintén adott - a hozzá tartozó sor az eredeti mátrix
26. sora, tehát ez szerepel majd a megoldásban. Töröljük a megfelel® sorokat
és oszlopokat.

• Még most sem szerepel olyan oszlop, melyben egyetlen 1-es szerepel, de
tudjuk, hogy a harmadik sor második cellájában 4-es szám áll, így ennek
megfelel®en választjuk ki az oszlopot, és a 40. sort.

• Az utolsó megadott szám a feladványban a harmadik sor negyedik cellájában
álló 1-es. Ennek megfelel®en választva oszlopot és sort, a következ® bekerül®
sor az eredeti mátrix 45. sora.

• Mostmár a redukált mátrixnak van olyan oszlopa, amelyben egy 1-es sze-
repel. Tehát ezek közül választom az els®t, az ennek megfelel® sor pedig a
21..

• Az el®z®höz hasonlóan a következ® oszlopnak megfelel® sor a 32..

• A következ® a 15.,

• aztán a 6., a 4., a 9., a 43., a 34., az 55., a 49., a 60., és végül a 62..

Az így kapott sorok adják meg a Sudoku megoldását, már csak annyi a teend®,
hogy a megfelel® sorok által azonosított állások alapján kitöltjük a rácsot:

• Az els® négy bekerült sor az eredetileg megadott számokat azonosítja, hi-
szen: 19 = 16+3, vagyis a második sor els® cellájába írt hármas, 26 = 16+
4+4+2, azaz a második sor harmadik cellájába írt kettes, 40 = 16+16+4+4,
tehát a harmadik sor második cellájába írt négyes, 45 = 16+16+4+4+4+1,
a harmadik sor negyedik cellájába írt egyes.

• Az el®z®höz hasonló módon megadva a többi állást:

� 21 = 16 + 4 + 1, a második sor második cellájába írt egyes,

� 32 = 16 + 16, a második sor negyedik cellájába írt négyes,

� 15 = 4 + 4 + 4 + 3, az els® sor negyedik cellájába írt hármas,

� 6 = 4 + 2, az els® sor második cellájába írt kettes,

� 4 = 4, az els® sor els® cellájába írt négyes,

� 9 = 4 + 4 + 1, az els® sor harmadik cellájába írt egyes,

� 43 = 16+16+4+4+3, a harmadik sor harmadik cellájába írt hármas,
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� 34 = 16 + 16 + 2, a harmadik sor els® cellájába írt kettes,

� 55 = 16+16+16+4+3, a negyedik sor második cellájába írt hármas,

� 49 = 16 + 16 + 16 + 1, a negyedik sor els® cellájába írt egyes,

� 60 = 16 + 16 + 16 + 4 + 4 + 4, a negyedik sor harmadik cellájába írt
négyes,

� 62 = 16 + 16 + 16 + 4 + 4 + 4 + 2, a negyedik sor negyedik cellájába írt
kettes.

Hátra van még a rács kitöltése, és ellen®rzése. A kapott eredmények alapján
el®álló rács:

4 2 1 3
3 1 2 4
2 4 3 1
1 3 4 2

Leellen®rizve, valóban minden sorban, oszlopban és blokkban szerepel minden
szám egyt®l négyig, és tényleg csak egyszer.
Látható tehát, hogy követve az algoritmus lépéseit, viszonylag rövid id® alatt
megoldható a Sudoku, és logikázni sem kell hozzá.

2.3.2. Megoldás algebrai úton

Minden Sudoku rácsra felírható egy lineáris egyenletrendszer[4], melyet a követ-
kez®képpen nyerünk a 4 × 4-es esetben:
Jelöljük a cellákat az x1, x2, · · · , x16 ismeretlenekkel az alábbi módon:

x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12

x13 x14 x15 x16

Tudjuk, hogy az 1, 2, 3, 4 számokat kell elhelyezni úgy, hogy minden sorban,
oszlopban, és blokkban mindegyik szerepeljen, de csak egyszer. Ebb®l követke-
zik, hogy a kitöltött rács minden sorában, oszlopában, és blokkjában elhelyezett
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számok összege 10. Így felírható a következ® egyenletrendszer:

x1 + x2 + x3 + x4 = 10

x5 + x6 + x7 + x8 = 10

x9 + x10 + x11 + x12 = 10

x13 + x14 + x15 + x16 = 10

x1 + x5 + x9 + x13 = 10

x2 + x6 + x10 + x14 = 10

x3 + x7 + x11 + x15 = 10

x4 + x8 + x12 + x16 = 10

x1 + x2 + x5 + x6 = 10

x3 + x4 + x7 + x8 = 10

x9 + x10 + x13 + x14 = 10

x11 + x12 + x15 + x16 = 10.

Ez egy 12 egyenletb®l álló, 16 ismeretlent tartalmazó egyenletrendszer. Az els®
négy egyenlet a sorokra vonatkozik, a következ® négy az oszlopokra, az utolsó
négy pedig a blokkokra.
Egy adott Sudoku esetén azonban vannak rögzített helyek. Tekintsük ismét az
el®z® példát:

3 2
4 1

Ekkor az el®z® egyenletrendszerhez hozzávesszük a rögzített helyek egyenleteit:

x5 = 3

x7 = 2

x10 = 4

x12 = 1.
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A rögzített ismeretleneket behelyettesítve, majd rendezve az egyenleteket a
következ® egyenletrendszerhez jutunk:

x1 +x2 +x3 +x4 = 10
x6 +x8 = 5

x9 +x11 = 5
+x13 +x14 +x15 +x16 = 10

x1 +x9 +x13 = 7
x2 +x6 +x14 = 6

x3 +x11 +x15 = 8
x4 +x8 +x16 = 9

x1 +x2 +x6 = 7
x3 +x4 +x8 = 8

x9 +x13 +x14 = 6
x11 +x15 +x16 = 9

Ezt az egyenletrendszert mátrix alakban felírva kapjuk a következ®t:

R1 =



x1 x2 x3 x4 x6 x8 x9 x11 x13 x14 x15 x16 |
1 1 1 1 0 0 0 0 0 0 0 0 | 10
0 0 0 0 1 1 0 0 0 0 0 0 | 5
0 0 0 0 0 0 1 1 0 0 0 0 | 5
0 0 0 0 0 0 0 0 1 1 1 1 | 10
1 0 0 0 0 0 1 0 1 0 0 0 | 7
0 1 0 0 1 0 0 0 0 1 0 0 | 6
0 0 1 0 0 0 0 1 0 0 1 0 | 8
0 0 0 1 0 1 0 0 0 0 0 1 | 9
1 1 0 0 1 0 0 0 0 0 0 0 | 7
0 0 1 1 0 1 0 0 0 0 0 0 | 8
0 0 0 0 0 0 1 0 1 1 0 0 | 6
0 0 0 0 0 0 0 1 0 0 1 1 | 9


Alkalmazva a Gauss-eliminációt trapéz alakra hozzuk:

R1 =



x1 x2 x3 x4 x6 x8 x9 x11 x13 x14 x15 x16 |
1 1 1 1 0 0 0 0 0 0 0 0 | 10
0 1 0 0 1 0 0 0 0 1 0 0 | 6
0 0 1 0 0 0 0 1 0 0 1 0 | 8
0 0 0 1 0 1 0 0 0 0 0 1 | 9
0 0 0 0 1 1 0 0 0 0 0 0 | 5
0 0 0 0 0 0 1 1 0 0 0 0 | 5
0 0 0 0 0 0 0 1 0 0 1 1 | 9
0 0 0 0 0 0 0 0 1 1 1 1 | 10


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Ezzel nem sikerült újabb ismeretlent rögzíteni. Viszont a Sudoku szabályaiból
adódóan felírható minden ismeretlenre 7 újabb egyenlet. Minden xj cellára te-
kintsük az

F (xj) =
4∏

i=1

(xj − i)

polinomot. Minden cella 7 másik cellától függ, tekintsük például xj-t és xi - t
(0 < i < j < 17), melyekre teljesül a következ®:

F (xi) − F (xj) = (xi − xj)G(xi, xj) = 0.

Mivel
F (xi) = (xi − 1)(xi − 2)(xi − 3)(xi − 4)

és
F (xj) = (xj − 1)(xj − 2)(xj − 3)(xj − 4)

így

F (xi) − F (xj) = x4
i − 10x3

i + 35x2
i − 50xi − x4

j + 10x3
j − 35x2

j + 50xj .

F (xi) − F (xj) reducibilis, azaz

F (xi) − F (xj) = (xi − xj)(xi + xj − 5)(x2
i − 5xi + x2

j − 5xj + 10)

tehát osztható (xi − xj)-vel.
Így a G(xi, xj) polinom a (xi + xj − 5)(x2

i − 5xi + x2
j − 5xj + 10) polinommal

egyenl®. Az egyenletrendszer pedig a

G(xi, xj) = 0, ahol 0 < i < j < 17

és az
x5 − 3 = 0

x7 − 2 = 0

x10 − 4 = 0

x12 − 1 = 0

rendszer.
Például x1 esetén a felírható egyenletek a következ®k:

G(x1, x2) = 0

G(x1, x3) = 0

G(x1, x4) = 0

G(x1, x5) = 0

G(x1, x9) = 0

G(x1, x13) = 0

G(x1, x6) = 0.

1. Megjegyzés. A többi ismeretlenre az egyenletek hasonló módon írhatóak fel.
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Használata

Az ismeretlenek meghatározásához az eljárás a következ®képpen m¶ködik: min-
den ismeretlen hét másik ismeretlennel áll kapcsolatban, nevezzük ezeket szom-
szédosaknak. Azok közül az ismeretlenek közül választom a legels®t, amelyeknek
a legtöbb szomszédja ismert. A polinomok segítségével meghatározom ezt az is-
meretlent, majd ennek megfelel®en módosítom R1-et, majd újraeliminálom, és
amíg R1-el tudok újabb ismeretlent meghatározni, addig mindig újraeliminálom.
Azután ismét a polinomokkal dolgozok, majd újra eliminálok, mindaddig, amíg
minden ismeretlent nem rögzítek, vagy amíg ki nem derül, hogy nem jutok meg-
oldáshoz.

Az el®bbiekben leírt elv alapján els®ként az x6-ot határozom meg. Az x6 esetén
felírható egyenletek:

G(x1, x6) = 0

G(x2, x6) = 0

G(3, x6) = 0

G(2, x6) = 0

G(x8, x6) = 0

G(4, x6) = 0

G(x14, x6) = 0.

Viszont mivel tudjuk, hogy G(3, x6) = 0, G(2, x6) = 0 és G(4, x6) = 0, ahol

G(3, x6) = x3
6 − 7x2

6 + 14x6 − 8

G(2, x6) = x3
6 − 8x2

6 + 19x6 − 12

G(4, x6) = x3
6 − 6x2

6 + 11x6 − 6

olyan x6-ot keresünk, amely a három polinomnak közös gyöke. Ha két polinomnak
van közös gyöke, akkor az gyöke a legnagyobb közös osztójuknak is. Az Euklideszi-
algoritmus alapján

LNKO(G(3, x6), G(2, x6)) = x2
6 − 5x6 + 4.

Viszont gyöke a G(4, x6) polinomnak is, azaz gyöke

LNKO(G(4, x6), (x2
6 − 5x6 + 4)) = x6 − 1

polinomnak, amib®l
x6 = 1.
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R1-et átalakítva:

R1 =



x1 x2 x3 x4 x6 x8 x9 x11 x13 x14 x15 x16 |
1 1 1 1 0 0 0 0 0 0 0 0 | 10
0 1 0 0 0 0 0 0 0 1 0 0 | 5
0 0 1 0 0 0 0 1 0 0 1 0 | 8
0 0 0 1 0 1 0 0 0 0 0 1 | 9
0 0 0 0 0 1 0 0 0 0 0 0 | 4
0 0 0 0 0 0 1 1 0 0 0 0 | 5
0 0 0 0 0 0 0 1 0 0 1 1 | 9
0 0 0 0 0 0 0 0 1 1 1 1 | 10


.

R1-b®l azonnal leolvasható, hogy

x8 = 4.

Ennek megfelel®en ismét átalakítom R1-et:

R1 =



x1 x2 x3 x4 x9 x11 x13 x14 x15 x16 |
1 1 1 1 0 0 0 0 0 0 | 10
0 1 0 0 0 0 0 1 0 0 | 5
0 0 1 0 0 1 0 0 1 0 | 8
0 0 0 1 0 0 0 0 0 1 | 5
0 0 0 0 1 1 0 0 0 0 | 5
0 0 0 0 0 1 0 0 1 1 | 9
0 0 0 0 0 0 1 1 1 1 | 10


.

R1 alapján több ismeretlent még nem tudunk rögzíteni. A rács most így néz ki:

3 1 2 4
4 1

Követve a gondolatmenetet az x9-re felírható egyenletek alapján a G(3, x9), a
G(1, x9) és a G(4, x9) polinomok közös gyökeit keressük, ahol

G(3, x9) = x3
9 − 7x2

9 + 14x9 − 8

G(1, x9) = x3
9 − 9x2

9 + 26x9 − 24

G(4, x9) = x3
9 − 6x2

9 + 11x9 − 6.
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Az el®z®höz hasonlóan megkeresem a három polinom közös gyökét:

LNKO(G(3, x9), G(1, x9)) = x2
9 − 6x9 + 8

és
LNKO(G(4, x9), (x2

9 − 6x9 + 8)) = x9 − 2

vagyis
x9 = 2.

Ennek megfelel®en R1-et átalakítva:

R1 =



x1 x2 x3 x4 x9 x11 x13 x14 x15 x16 |
1 1 1 1 0 0 0 0 0 0 | 10
0 1 0 0 0 0 0 1 0 0 | 5
0 0 1 0 0 1 0 0 1 0 | 8
0 0 0 1 0 0 0 0 0 1 | 5
0 0 0 0 0 1 0 0 0 0 | 3
0 0 0 0 0 1 0 0 1 1 | 9
0 0 0 0 0 0 1 1 1 1 | 10


Ekkor R1 alapján

x11 = 3.

Ennek megfelel®en R1-et átalakítva:

R1 =



x1 x2 x3 x4 x13 x14 x15 x16 |
1 1 1 1 0 0 0 0 | 10
0 1 0 0 0 1 0 0 | 5
0 0 1 0 0 0 1 0 | 5
0 0 0 1 0 0 0 1 | 5
0 0 0 0 0 0 1 1 | 6
0 0 0 0 1 1 1 1 | 10


Beírva az eddig rögzített ismeretleneket a rácsba:

3 1 2 4
2 4 3 1

x1 meghatározása következik. A felírható egyenletek alapján a G(3, x1), a G(1, x1)
és a G(2, x1) polinomok közös gyökeit keressük, ahol

G(3, x1) = x3
1 − 7x2

1 + 14x1 − 8
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G(1, x1) = x3
1 − 9x2

1 + 26x1 − 24

G(2, x1) = x3
1 − 8x2

1 + 19x1 − 12.

A három polinom közös gyökének megkeresése:

LNKO(G(3, x1), G(1, x1)) = x2
1 − 6x1 + 8

LNKO(G(2, x1), (x2
1 − 6x1 + 8)) = −x1 + 4

tehát
x1 = 4.

Átalakítva R1-et:

R1 =



x2 x3 x4 x13 x14 x15 x16 |
1 1 1 0 0 0 0 | 6
1 0 0 0 1 0 0 | 5
0 1 0 0 0 1 0 | 5
0 0 1 0 0 0 1 | 5
0 0 0 0 0 1 1 | 6
0 0 0 1 1 1 1 | 10


Újraeliminálva:

R1 =



x2 x3 x4 x13 x14 x15 x16 |
1 1 1 0 0 0 0 | 6
0 1 0 0 0 1 0 | 5
0 0 1 0 0 0 1 | 5
0 0 0 1 1 1 1 | 10
0 0 0 0 1 1 1 | 9
0 0 0 0 0 1 1 | 6


x2 meghatározása a G(1, x2), a G(3, x2) és a G(4, x2) polinomok segítségével, ahol

G(1, x2) = x3
2 − 9x2

2 + 26x2 − 24

G(3, x2) = x3
2 − 7x2

2 + 14x2 − 8

G(4, x2) = x3
2 − 6x2

2 + 11x2 − 6.

A közös gyök meghatározása:

LNKO(G(1, x2), G(3, x2)) = x2
2 − 6x2 + 8

és
LNKO(G(4, x2), (x2

2 − 6x2 + 8)) = x2 − 2.

Így
x2 = 2.
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R1-et átalakítva és újraeliminálva:

R1 =



x3 x4 x13 x14 x15 x16 |
1 1 0 0 0 0 | 4
0 1 0 0 1 0 | 5
0 0 1 1 1 1 | 10
0 0 0 1 1 1 | 9
0 0 0 0 1 1 | 6


x3 meghatározása: A felírható egyenletek alapján a G(4, x3), a G(2, x3) és a

G(3, x3) polinomok közös gyökeit keressük, ahol

G(4, x3) = x3
3 − 6x2

3 + 11x3 − 6

G(2, x3) = x3
3 − 8x2

3 + 19x3 − 12

G(3, x3) = x3
3 − 7x2

3 + 14x3 − 8.

A három polinom közös gyökének megkeresése:

LNKO(G(4, x3), G(2, x3)) = x2
3 − 4x3 + 3

és
LNKO(G(3, x3), (x2

3 − 4x3 + 3)) = x3 − 1.

Ezért
x3 = 1.

R1-et átalakítva:

R1 =



x3 x4 x13 x14 x15 x16 |
0 1 0 0 0 0 | 3
0 1 0 0 1 0 | 5
0 0 1 1 1 1 | 10
0 0 0 1 1 1 | 9
0 0 0 0 1 1 | 6


R1-b®l kiolvasható, hogy

x4 = 3.

Ekkor R1-et ismét átalakítva:

R1 =


x4 x13 x14 x15 x16 |
0 1 1 1 1 | 10
0 0 1 1 1 | 9
0 0 0 1 1 | 6
0 0 0 0 1 | 2


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Látható, hogy
x16 = 2.

R1 átalakítása:

R1 =


x13 x14 x15 x16 |
1 1 1 0 | 8
0 1 1 0 | 7
0 0 1 0 | 4


Ebb®l

x15 = 4.

Ismét átalakítva R1-et:

R1 =

 x13 x14 x15 |
1 1 0 | 4
0 1 0 | 3


Akkor

x14 = 3

és
x13 = 1.

Ezzel minden ismeretlent rögzítettünk, melyeket beírva a rács megfelel® celláiba,
valóban a Sudoku megfejtését kaptuk, hisz minden sorban, oszlopban, és blokkban
szerepelnek a számok 1-t®l 4-ig, de pontosan egyszer.

4 2 1 3
3 1 2 4
2 4 3 1
1 3 4 2

2.3.3. Összegzés

Bár a Sudoku a világ egyik legkedveltebb logikai játéka, látható, hogy egyszer¶
eljárással, mechanikusan megoldható, nem feltétlenül szükséges a megfejtéséhez
logika, és egyéb trükk. Bár a játék ezen irányból történ® megközelítése való-
szín¶leg nem terjed el széles körben, de kedvet adhat azok számára, akik eddig
tartózkodtak t®le, mert úgy gondolták kizárólag logikai úton oldható meg.
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