Debreceni Egyetem
Természettudomanyi Kar
Matematikai Intézet

Szakdolgozat

Sudoku

készitette:

Varga Valéria

témavezetd: Tengely Szabolcs

Debrecen, 2007



TARTALOMJEGYZEK

Tartalomjegyzék

1.

Bevezetd

1.1.
1.2
1.3.
1.4.
1.5.

Torténete . . . . . .. .. ..
Jatékszabaly . . ... ...
Nehézségi beosztéds . . . . . .
Variaciok . .. ... .. ...
Egy egyszerd példa . . . . . .
1.5.1. Jelolés . . . . ... ..
1.5.2. Egy Sudoku megoldisa

Eredmények

2.1.
2.2.
2.3.

Lehetséges kitoltések . . . . .
Minimumprobléma . . . . . .
Megoldési modszerek . . . . .
23.1. DLX .. ... .....
2.3.2. Megoldas algebrai dton
2.3.3. Osszegzés . . .. ...

Irodalomjegyzék

17
17
20
21
21
30
39

40



KOSZONETNYILVANITAS

Koszonetem szeretném kifejezni Dr. Tengely Szabolcsnak, hogy lehet&séget nytj-
tott diplomamunkém elkészitéséhez, és hogy szakmai tanacsaival mind elméleti,
mind gyakorlati téren segitette el§rehaladasomat.

Valamint koszonetet mondok csaldadomnak, akik a kezdetektdl biztositottak a

csaladi és anyagi hatteret tanulmanyaim sikeres befejezéséhez.



1. BEVEZETO

A név "Sudoku” a Japan réviditése egy hosszabb frazisnak "Suuji wa dokushin
single”, ami azt jelenti, hogy ”a szamjegyeknek egyediiladlloaknak kell lenni”. Ez
egy levédett rejtvény, kiadoja Nikoli Co. Ltd Japéanban|1].

A Sudoku feladvanyok rendkiviil népszertivé valtak Nagy —Britannidban 2004
utdn. Az Otlet nagyon egyszeri; egy 9 x 9-es racs, felbontva 9 3 x 3-as blokkra.

Néhény rekeszben el6re megadva elhelyeznek szdamokat 1 — 9-ig[2]. A meg-
fejté célja, hogy kiegészitse a racsot, minden rekeszt feltoltson szamjegyekkel oly
modon, hogy minden sor, minden oszlop és minden 3 x 3-as rekesz tartalmazzon
minden szamot 1 — 9-ig pontosan egyszer.

A kényelem kedvéért hasznalnak szamokat a Sudoku-ban; a szamok kozotti
aritmetikai 6sszefiiggések 1ényegtelenek. Kiilénb6z6 més szimbolumok is hasznal-
hatoak (betiik, mintak, vagy szinek) a szabalyok megvéltoztatasa nélkiil. Amiota
el6szor megjelent djsagcikkben a Dell Magazinban 1979 - ben, azdéta szamokat
hasznalnak minden ilyen cikkben. Ezen fejtoré vardzsa abban rejlik, hogy a sza-
balyok egyszertiek, de a megoldas eléréséhez a gondolatmenet bonyolult lehet.

1.1. Torténete

A rejtvényt Howard Grans tervezte, aki egy 74 éves nyugdijas épitész és sza-
badiszo rejtvény tervezd, el6szor 1979-ben publikilta. Bar valdszintileg inspiralta
Leonhard Euler Latin kocka taldlmanya, Garns hozzatett egy harmadik kiterjedést
(a teriileti megszorités) a matematikai felépitéshez, és bemutatta az alkotasat, ugy
mint egy feladvanyt; egy részlegesen kitoltott racs, és a megfejtének a maradék
hely kitoltése a feladata. A rejtvény elGszor New York-ban jelent meg, a specialis
feladvanyokat megjelenteté Dell Magazine - ban, annak a Dell Pencil Puuzzles
and Word Games rovataban, a Number Place cim alatt (melyet feltevések szerint
Garns adott).

A rejtvényt bemutattédk Japanban Nikoli-ban, Monthly Nikolist njsagban 1984
aprilisdban, gy mint Suuji wa dokushin ni kagiru, melyet fordithatunk tgy, hogy
"a szdmoknak egyediilallonak kell lenni”, vagy ”a szdmok csak egyszer bukkanhat-
nak fel”, (sz6 szerinti forditasban "egyediilallo”, "nétlen”). A fejtorét Maki Kaji
nevezte el, aki Nikoli elndke. Kés6bb a nevet Sudoku-ra roviditették. 1986-ban
Nikoli bemutatott két ujitast, hogy biztositsa a fejtors népszertiségét: a megadott
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szamok mennyiségét korlatoztak, 32-nél nem lehetett tobb, és a rejtvény szim-
metrikussd valt. Ez most a kiadok irdnyvonala a Japan teriileteken, tigy mint
Asahi Shimbum. Nikoli még fenntartja a védjegyet a Sudoku névre, mas kiadok
alternativ neveket hasznalnak Japanban.

1989, Loadstar/Softdisk Publishing megjelentette a DigitHunt-ot Commodore
64-re, mely kétségkiviil a Sudoku els§ személyi szamitdogépes verzidja volt.

Yoshimitsu Kanai kiadta a sajat szamitogépes fejtors generatorat Single Num-
ber néven az Apple Macintosh szaméra 1995-ben Japanban és Anglidban, a Palm
részére 1996-ban, és a Mac OS —X-nek 2005-ben.

A folyamat teljes kort tett, Dell Magazines, mely megjelentette az eredeti
Number Place fejtérét, most is kiad két Sudoku magazint: Original Sudoku és
Extreme Sudoku. Tovabba, Kappa tjranyomtatta Nikoli Sudoku-t a GAMES Ma-
gazine-ban Sqared Away néven; a New York Post, USA Today, The Boston Globe,
Washington Post, The Examiner, és San Francisco Chronicle most is megjelenteti
a fejtorst. A fejtors gytjtemények is gyakran tartalmazzék, mint amilyen a The
Giant 1001 Puzzle Book (Kilenc Szdm cimen).

1.2, Jatékszabaly

A feladvany leggyakrabban 9 x 9-es racs, 3 x 3-as részracsokbol 6sszeéllitva, melye-
ket régioknak hivnak (més szavakat is hasznélhatunk, mint "rekeszek”, ’t6mbok”
és még hasonlo variaciok; néha az egyenls "negyedek” kifejezést is hasznéljak, an-
nak ellenére, hogy ez pontatlan kifejezés a 9 x 9-es racsra). Néhany cella mar
tartalmaz szamokat, ezek ismertek mint mas rejtvényekben a kulcsok. A cél fel-
tolteni a celldkat, mindegyikbe egy szamot helyezni, igy hogy minden sor, oszlop
és régi6 pontosan egyszer tartalmazzon minden szamot 1 — 9-ig.

1.3. Nehézségi beosztas

A megjelent feladvanyokat gyakran nehézségek szerint kifejezve besoroljak. Meg-
lepGen, a megadott szamok kicsit, vagy nem fontosak a nehézség szempontjabol.
A feladviany minimaélisan megadott szadmmal lehet nagyon kénnyd a megfejtd
szamaéra, és tobb, mint az altalaban megadott szdmokkal lehet rendkiviil nehéz.
A rejtvény nehézsége inkabb tamaszkodik a megadott szamok fontossagara és
pozicidjara, mint a mennyiségére.

A szamitogépes megoldd programok meg tudjak becsiilni a nehézséget az em-
berek szamara, (hogy megtalaljak a megoldast), a megoldashoz sziikséges techni-
kidk bonyolultsigara tdmaszkodva. Ez a becslés lehetévé teszi a kiadok szamara,
hogy a kozonség sokféle megoldasi tapasztalatainak megfelelGen alakitsdk a sajat
Sodoku feladvanyaikat. Van néhény online verzié kiilonb6z6 nehézségi palyaval.
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A legtobb kiad6 a Sudoku feladvany 4 fokat kiilonbozteti meg: "kénnyd”, "kézép-
halado”, "nehéz” és "kihivo”.

1.4. Variaciék

Habar a 9x 9 - es racs 3 X 3 - as régidkkal messze a leghétkéznapibb, variaciokban
bévelkedik a jaték: minta fejtordk lehetnek a 4 x 4 - es racsok 2 x 2 - es régiokkal;
5 X 5 - 0s racs pentominé régiokkal Logi—5 név alatt. A World Puzzle Champi-
onship kordbban f6 helyen szerepeltetett egy 6 x 6 - os racsot 2 x 3 - as régiokkal
és egy 7 X 7 - es racsot hat heptomino régioval és egy elvalasztott régidval; Daily
Sudoku {6 helyen szerepelteti 01j 4 x 4, 6 X 6 és egyszertd 9 X 9 - es racsait minden
nap ugy, mint Daily Sudoku Gyerekeknek. Nagyobb racsok is lehetségesek, ilyen
példaul a Daily Sudoku 12 x 12 - es racsa a Monster Sudoku. A Times hason-
loképpen kinal 12 x 12 - es récsot, Dodeka Sudoku, 12 régiéval, mindegyik 4 x 3 -
as. Dell 16 x 16 jatéka Number Place Challenger néven, és Nikoli kinédl 25 x 25 -
t Sudoku the Giant néven.

Korlatozasokat adtak ki a tovabbi hétkoznapi varidcidkra, hogy kikényszeritsék
a szadmok elhelyezésén kiviil a szokésos sor, oszlop, és régié kovetelményeket.
Gyakran ezek a korlatozasok teszik extra dimenziéba a format, ilyen leggyakrab-
ban amikor a szamoknak a racs f6atloiban is egyediilallonak kell lenni.

Az emlitett Number Place Challenger fejtorék ezen variaciok mindegyike, igy
vannak a Sudoku X feladvinyok a Daily Mail-ben, melyek 6 X 6 - os racsot hasznal-
nak, valamint f6helyen szerepelteti a Super Sudoku X - et a hétvégi magazinjaban:
egy 8 x 8 - as racs, melyben a sorok, oszlopok, f6 atlok, 2 x 4 - es és 4 X 2 - es
blokkok tartalmaznak minden szdmot egyszer.

Més dimenzidk is hasznélatosak; a szdmok viszonylag ugyanolyan elhelye-
zésével a régidkban, az ilyen feladvanyokat altaldban szinesen nyomtatjak, lehet
kocka, ekkor a fél felszinen dolgozunk, és minden "sor/oszlop” atfog két oldalt.

Mas fajtaja a korlatozésoknak lehet szamtani, ilyen példaul amikor azt is
megkovetelik, hogy legyenek specialis 0sszegek vagy szorzatok a régidkban.
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1.5. Egy egyszerii példa

1.5.1. Jelolés

Ez egy teljesen szabvanyos Sudoku rejtvény.

[a—y

DO H~|—
N =]
Nej [ep)

(@2 [OV)

Ez pedig a megoldasa ennek a rejtvénynek.

216/9[1|78[5]|3 |4
71113]1215(4[6/8]9
81415[913]16[2|1|7
312|1(4|8]9[7]|5]6
0|814[6]2]7[3]9]1
619|7[3]1]5[8]4]2
913|2(5|6]1[4|7]|8
115/8]|7(4]2]9]6]3
4(716]181913]11]2]5

Megfigyelve a sorokat, az oszlopokat és a 3 x 3-as blokkokat, lathatjuk, hogy vala-
mennyi tartalmazza egytdl kilencig az 6sszes szamot.
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Ezen az egyszeridi példan szeretném bemutatni, hogyan lehet megoldani egy
ilyen feladvanyt.
Ahhoz, hogy az olvas6 kovetni tudja a Sudoku megoldasénak menetét, pontosan
kell tudnia, hogy épp a rejtvény melyik részérsl szol a magyarazat.
A nyolcvanegy négyzetbdl allo rejtvény egészének neve: rdcs.
A racs 9 blokkbdl tevédik Gssze, a kivetkezd modon:

A B C

Valamennyi blokk kilenc négyzetet, vagy celldt tartalmaz, amelyekre szamokkal
hivatkozok a blokkon beliil. Pl. az A blokk esetében:

1{2](3
4/5/6] [B C
71819

Ezutan tehat, ha az A1 cellardl lesz sz0, akkor az olvasé is tudni fogja, hogy a
feladvany elsG soraban szerepls elsé négyzetrsl beszélek. Igy mostmar nekikezd-
hetiink a rejtvény megfejtésének.
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1.5.2. Egy Sudoku megoldasa

1. lépés

NeJ
-~
Ut

El6szor is probaljuk meg kitolteni a kozépsd, vagyis az E-vel jelolt blokkot.
Természetesen nem muszdj itt kezdeni, mindenki tetsz6legesen megvalaszthatja
azt a pontot, ahonnan el szeretne indulni.

En az E blokk felsé soranak kézépss négyzetébél indulok ki, melynek azonosito
jele: E2) és az abran X-el jeldltem a keresendd értéket.

Mindenekel6tt nézziik meg, mely szdmok szerepelnek abban a sorban, oszlopban,
illetve blokkban, amelyben az E2 talalhato.

Ez a mivelet azért fontos, mert az E2 négyzetben nem szerepelhet egyetlen olyan
szam sem, amely a sordban, oszlopaban, vagy abban a blokkban mér szerepel. Ez
a Sudoku alapszabélya.

Az oszlopaban szerepel a 7, az 1 és a 6, a sordban pedig a 2, a 4, a 9, és az 5.
Az E blokkban talalhato a 4, a 9, a 3, az 1 és az 5. Mivel ezek koziil egyik sem
lehet az altalunk keresett szam, ki kell deriteniink, mely szdmok johetnek még
szamitasba. Az egyetlen olyan szam, amely nem szerepel sem a sordban, sem az
oszlopaban, sem a blokkban, a 8. Az E2 négyzetbe tehat csakis a 8 keriilhet.

2. 1épés

9] 7] 15
113 68
41 19| 6] |1
2] 141819] |5

X
9] [3]115] |4
9161
8 9
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Most 1épjlink az Eb5 négyzetre, az abran ismét X jeloli. Végezziik el ugyanazt a
miveletet, amit az 1. 1épésben, vagyis nézziik meg, milyen szamok szerepelnek
az Eb sordban, oszlopaban, valamint az E blokkban.

Az oszlopaban a 7, 8, 1, 6, a blokkban a 4, 8, 9, 3, 1, 5 szamok talalhatoak, a
soraban pedig nincsenek eldre beirt szamok. Az egyetlen szdm ami kimaradt a 2,
tehét ez keriil az E5 cellaba.

3. lépés
9] 7] |5
13 68
41 19| 6] [1
2| 14]8|9] |5
X|2
9] [3[1]|5] |4
5|61
8 9

Lépjiink az E4 cellara. Ismét nézziik meg, milyen szdmok szerepelnek abban a
sorban, oszlopan, illetve blokkban, amelyben az E4 szerepel.

Az oszlopban talalhaté szamok: 9, 4, 3, 5. A sorban szerepel az imént beirt
kettes szam. A blokkban pedig a kidvetkezs szamok: 4, 8,9, 2, 3, 1, 5. Ebben az
esetben két olyan szdm van egy és kilenc kozott, amely szamitasba johet: a 7 és a
6. Nem tudjuk, hogy melyiket kell beirni, ezért egyenlére nézziik meg az E blokk
utols6, még nem vizsgalt cellajat, vagyis az E6-ot.

4. lépés
9] 7] |5
1(3 68
41 [9] |6] |1
2| |418|9] |5
21X
9] [3]1]5] |4
5|61
8 9

Ha megnézziik az oszlopat, a sorat, és a blokkot, kideriil, hogy az egyetlen hianyzo
szam a 7. Mivel ebbe a cellaba egyértelmmiien a hetes szam keriil, ezért a D4-be
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egyediil a hatos irhato.

5. 1épés
9] 7] |5
1(3 68
4] 9] |6] |1
2| 1418|9] |5
6|27
9] [3]1]5] |4
5|61
8 9

Most mar az E blokk valamennyi cellaja ismert.

Nézziink meg egy jabb blokkot. Mint kordbban emlitettemn, tetszés szerint bér-
melyikkel folytathatjuk. En most a B-t valasztom.

Lathato, hogy ezen blokk 1. vagy 3. oszlopaval érdemes folytatni, hiszen ha az
egész feladvanyt nézziik, ebben a két oszlopban mar elég sok szam ismert.

6. lépés

Vegyiik példaul a B4 cellat, és kivessiik az E blokk esetében megfigyelt el-
jarést. Nézziik meg milyen szamok szerepelnek egytél kilencig a B4 oszlopaban,
soraban, cellijaban. Miutan megnéztiik, kideriil, hogy egyediil a 2 nem szerepel
egyikben sem. Ebbe a négyzetbe tehat beirhatjuk a kettes szamot.

7. lépés

Nézziik meg most a B6 cellat. Kovetve a mar jol ismert eljarast, kideriil, hogy
az egyetlen hidnyz6 szam a 4.

9] 7] 15
113]2] [4]6]8
41 19 6] |1
2] 141819] |5

6|27
9] [3]1]5] |4

9161
8 9
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8. 1épés

Folytassuk példaul a B5 négyzettel. Megvizsgalva a sorat, oszlopat, és a blok-
kot, lathato, hogy egyediil az 5 irhat6 a cellaba.

9. lépés

Legyen a kovetkez§ a B8. Kovetve az eddigi eljarést, ebbe a celldba is egy
szam irhat6 be, mégpedig a 3.

9] 171 15
113]2]5]4]6]8
41 19(3]6] |1
2] 141819] |5

6|27
9] [3]1]5] |4

9161
8 9

A B blokkban még két megfejtendd cella maradt, a B1 és a B3. Kovessiik a
szokésos eljarast, nézziik meg azokat az oszlopokat, sorokat és blokkot, amelyek
tartalmazzak a Bl és a B3 celldkat. Mar csak két olyan szdm maradt egy és kilenc
kozott, amely nem szerepel a blokkban. Ez a két szdm az 1 és a 8. A B1-bdl az
1, a B3-bdl a 8 hianyzik.

9117815
113]2]5]4]6]8
4] 19(3]6] |1
2] 141819] |5
6|27
9] [3]1]5] |4
09161
8 9

10. lépés
A B és E blokkokban tehat minden szam a helyére keriilt, haladjunk tovabb!

Majdnem teljesen kitoltottiik a feladvany kozéps6 harom oszlopét. Folytassuk
tehat a H blokkal, igy teljesen megoldhatjuk a rejtvény kozponti részét.
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Kezdjiik a kozépso cellaval, vagyis a H5-el. Ha végignézziik ezen cella sorat,
oszlopéat, és a blokkot, lathato, hogy az egyetlen hianyzo szam a 4. A H5 cellaba
tehét a 4 keriil.

11. lépés

Haladjunk tovabb a H4 négyzetbe, végezziik el a szokdsos vizsgalatot, igy
lathatjuk, hogy az egyetlen kimaradt szdm a 7. A H4 celldba tehét beirjuk a 7-et.

12. lépés
Kovetkezzen most a H6 cella. Innen két lehetséges szam hidnyzik: a 2 és a
3. Nem tudjuk megmondani, hogy pontosan melyik, ezért erre a cellira majd

visszatériink.

Ha ezek utdn megviszgéaljuk a H9 cellat, lathatjuk, hogy innen is a 2 és a 3
hidnyzik. Igy majd erre is késobb tériink vissza.

Haladjunk tovabb a HS8 cellaba. Ott egyetlen szdm johet szdba, mégpedig a
9. Ez pedig azt jelenti, hogy a H7 celldba mér csak a 8 keriilhet.

9117815
113]12]5]4]6]8
41 19(3]6] |1
2] 1418|9] |5
6127
9| [3]1]5] |4
9161
817141 19
819

13. lépés

Ahogy mar kordbban emlitettem, barmely blokkot, s azon beliil barmely cellat
valaszthatjuk. Nincs kiilonosebb jelentGsége, melyik mellett dontiink.

Most vegyiik az A blokkot, azon beliil az 1-es cellat. Ha alkalmazzuk a szo-
késos eljarast, észrevehetjiik, hogy az Al cella esetében két szam johet szoba: a 2
és a 6. Egyenl6re igy még nem irunk be semmit.

Ha most megvizsgaljuk az A2 cellat, és szintén elvégezziik a szokdsos eljarast,
arra az eredményre jutunk, hogy az egyetlen szam egy és kilenc kozott, amely nem
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szerepel A2-nek sem a sordban, sem az oszlopdban, sem pedig az A celldban, a 6.
Igy viszont, mivel az A2-be a 6 keriil, az Al négyzetbe mar csak a 2-t irhatjuk.

216]9[1|7]8(5
113]2]5]4]6]8
41 19(3]6] [1
2] 141819] |5
6|27
9] [3]1]5] |4
09161
817141 19
819

14. 1épés

Lépjiink most az A4 cellara. Itt mér kizarélag a hetes szam hidnyzik egy és
kilenc kozott.

Ezek utdn nézziik meg az AT cellat. Két szam johet széba: az 5 és a 8.
Egyenlére tehat nem irunk be semmit, hanem tovabbhaladunk az A9 négyzethez.
Ott egyetlen szam johet szamitasba, mégpedig az 5. Ebbdl viszont az kovetkezik,
hogy az AT cellaban a 8 szerepel. Ezzel az A blokk minden cellajat kitoltottiik.

216|9[1|7)8(5
71113]12]5]4]6]8
81415[91316] |1
2] 141819] |5
6|27
9] [3]115] |4
5|61
81714 19
819

15. 1épés

Foglalkozzunk most a C blokkal és probéaljuk meg kiegésziteni a legfelsd sort.
Vegyiik most a C2 négyzetet. Vizsgaljuk meg a hozz4 tartoz6 sort, oszlopot, és
blokkot. Lathatjuk, hogy a C2 celldba egyetlen szam keriilhet, méghozza a 3.

Ezek utdn a C3 cellat megnézve, mivel ebben a sorban mar az Gsszes tobbi
szam be van irva, nem sziikséges megvizsgalnunk sem az oszlopot, sem a blokkot,
mert biztosan az a szam keriil oda, amelyik ebbdl a sorbol hianyzik, ez pedig a 4.
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Most ellendrzés céljabol érdemes megvizsgalni a C3-hoz tartozd oszlopot, és a
C blokkot. Ha valamelyikben esetleg még egyszer el6fordul a 4, akkor bizonyos,
hogy megoldas kézben valamilyen hibat kovettiink el.

16. 1épés
Ezutan vizsgaljuk meg a C blokk t&bbi szamait is. Vegyiik elszor a C6 cellat,
és hasznaljuk a szokdsos modszert. Ennek alapjan kiderithetjiik, hogy a hidnyz6

szadm a 9.

Az eredményiinket tgy is ellendrizhetjiik, ha megnézziik a mér teljesen kitol-
tott sort, és meggy6zddiink rola, hogy nincs tébb 9 benne.

Ha ezutdn megnézziik a C7 cellat, lathatjuk, hogy ott két szam johet szoba:
a2ésa’. C9 cellara szintén ez teljesiil, ezért még ezt a két négyzetet szabadon

hagyjuk.
21619[1|7|8[5|3]4
71113]2|5[4[6]/8]9
81415[913]6] |1
2| 1418|9] |5
6|27
9] [3]1]5] |4
5|61
817141 19
819
17. 1épés

Nézziik meg most a D blokkot. A szokésos modszer hasznalata révén kidertil,
hogy a D1 cellaba harom szam is szb6ba johet: az 1, a 3 és a 6. Tehat egyenlére
nem irunk be semmit.

Megnézve a D3 cellat, lathato, hogy elméletileg ott is harom szdm szerepelhet:
az 1l,ab6ésa .

Kovetkezzen a D6 cella, amelyben két szam johet széba: az 1 és a 4.

Ezek utan nézziik a D5 cellat, amelybe hérom szdmot irhatnank: ezek a 3, az 5
és a 8.

Most nézziik meg a D4 négyzetet, amelyben elvileg négy szam is szerepelhet: az
1,a3,a4ésazb.

Viszont a D7-et vizsgdlva lathatjuk, hogy ott egyetlen szam johet szoba, a 6.
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18. lépés

Most pedig lassuk a D9 cellat. Az egyetlen szam, amely ebbe a cellaba keriil-
het, a 7. Ujra megvizsgalva a sorat, oszlopat, blokkjat, észrevessziik, hogy a D3
cellaba méar csak az 1-et irhatjuk.

Mivel most mar bizonyos, hogy a D3 cellaba az 1 keriil, igy a D1-ben mar csak
egy szam, a 3 marad.

Igy mar az 1-nek a helyét is megtalaltuk, tehat a D6 cellaba egyediil a 4 keriilhet,
de akkor mér azt is meg tudjuk allapitani, hogy a D4-be az 5 keriil.

Ebben a blokkban mar csak egy iires cella maradt, amibe mar csak a 8-at tudjuk
beirni.

Igy kitoltottiik a D blokkot.

216]9[1|7]8[5]|3]4

71113]12]5(4[6/8]9

81415[913]6] |1

312|1(4|8]9[ |5

01814[6]2|7

619|7[3|1]5] |4
9161
817141 19
819

19. lépés

Kovetkezhet az F blokk.
Az F1 cellaba mar csak a 7, az F3-ba pedig egyediil a 6 keriilhet.

Az F4 cellaba két szam szerepelhetne: az 1 és a 3. Nem tudjuk pontosan
melyik keriil majd bele. Menjiink tovabb.
Az F5 négyzetbe csak egy szamot irhatunk: a 9-et.
Az F6 cella az F4-hez hasonléan az 1-et és a 3-at tartalmazhatja, de még nem
tudjuk pontosan melyiket.

Ellenérzésképpen vizsgaljuk meg az F blokk, valamint a feladvany 4., és 5.
sorainak szdmait. Nézziik meg, nem kovettiink-e el valamilyen hibat.

Most nézziik meg az F blokk utolsé sorat. Az F7 cellaba csak a 8 keriilhet,
az F9-be pedig kizardlag a 2.
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216/9(1|78[5]|3]4

71113]12|5(4[6/8]9

81415[913]16[ |1

312|1(4|8]9[7]|5]6

5/814[6/2|7[ |9

61917[31115[814]2
5|61
81714 19
819

20. lépés

Nézziik meg a G blokkot! A G1 cellaba két szam lehetséges: a 4 és a 9. A
G2-re szintén két lehetdség van: a 3 és a 7. A G3-ban ugyanakkor egyetlen szam
lehetséges: a 2.

Haladjunk lejjebb az oszlopban. A G4 cellaban egyetlen szam szerepelhet, az
1, a G5-ben viszont két lehetséges szam johet széba: a 3 és az 5.

Az utolso sorban a G7 négyzetben a 4 az egyetlen szoba johetd szam, a G8
cellaba viszont harom: a 3, az 5 és a 7. A G9-be kizarolag a 6 keriilhet.

21619(1|78[5|3 |4
71113]1215(4[6/8]9
81415[913]6] |1
312|1(4|8]9[7]|5]6
0/814[6|2]7[ |9
619|7[3]1]5[8]4]2
215161
1] [8]1714] 19
4] 161819

21. lépés
Végezetiil nézziik az utolso, I blokkot.

Az T1-be jelenleg két szam johet szoba: a 3 és a 4.
Az 12 cellaba csak a 7 keriilhet.
Az T blokk tobbi celldjdba nem tudjuk még pontosan mely szamok keriilnek.
Vizsgaljuk meg az I2 sorat. Ures hely még a G2, ahova mostmar csak a 3 irhaté
be.
Ezutan az I1 cellaba kizardlag a 4 marad, a G1-be tehét a 9-et irjuk, ekkor vi-
szont mar egyértelmten beirhaté az I3 négyzetbe a 8.
A G blokkban igy még két iires hely maradt. A G5-be mostmér egyértelmtien
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csak az 5 keriilhet, s emiatt a G8-ba is beirhatjuk a kimaradt 7-es szdmot.

Amikor kideritettiik, hogy az I2 cellaba a 7 keriil, mtikddésbe lépett a szamos
négyzetre kihat6 dominéelv. Ez gyakran torténik igy, amikor egy Sudoku rejtvény
végére ériink.

216/9(1|78[5|3 |4
71113]1215(4[6/8]9
81415[913]6] |1
312|1(4|8]9[7]|5]6
01814[6/2]7[ |9
619|7[3]1]5[8]4]2
913|2(5|6]1[4|7]|8
115(8]714] 19
47161819

22. lépés

Az TI5 cellaban potencialisan két szam szerepelhet: a 2 és a 6. Ugyanebben a
sorban, az 16 négyzetben csakis a 3 szerepelhet.
Ha végignéziink ezen az oszlopon, lathatjuk, hogy az F6 celliban az 1 szerepel.
Ekkor viszont mar azt is meg tudjuk allapitani, hogy az F4-be a 3 keriil.
Ha az 16 cella sorat megnézziik, lathato, hogy a H6 cellaba a 2 keriil, s igy a H9
cellaban a 3-as szam a megoldas.

Most nézziik meg a Sudoku utolso sorat. Az I7 cellaba az 1, az I8-ba a 2, az
I9-be pedig az 5 keriil.

216]9[1|7]8[5]|3]4
71113]12|5(4[6]/8]9
81415[913]16[2|1|7
312|1[4|8]9[7]5]6
5|814[6]2]7[3]9]1
619|7[3]1]5[8]4]2
91312(5|6]1[4|7]8
115/8]|7(4]2]19]6]3
4(716]18]913]1]2]|5

Elkésziiltiink a rejtvény megfejtésével. Most ellendrizniink kell, hogy vala-
mennyi sor, oszlop és blokk tartalmazza-e az 6sszes szdmot egytdl kilencig. Bizony
eléfordulhat, hogy valamelyik sorban, oszlopban, vagy blokkban egy szam kétszer
is el6fordul. Ekkor kezdhetjiik el6lrél.



2. EREDMENYEK

A tovabbiakban 4 x 4 - es racsokkal fogok dolgozni, mert azokat kénnyebb kévetni,
attekinteni. ElGszor is azzal a kérdéssel foglalkozom, hogy hany kiilonbozé 4 x 4
-es Sudoku racs létezik.

2.1. Lehetséges kitoltések

Sokakat foglalkoztatott az a kérdés, hogy a 4 x4 - es Sudoku racsnak hany kiilonbo-
76 lehetséges kitoltése van. A kovetkezs gondolatmenettel szeretném bemutatni,
hogy Gsszesen 288 féle kitoltése 1étezik.

A feladat elhelyezni 4 adott szamot 16 lehetséges cellaba, a Sudoku szabalyainak
figyelembevételével.

Az adott négy szam: 1,2, 3,4 elhelyezése az els6 blokkba ismétlés nélkiili per-
mutécio.

2.1.1. Definici6. Egy adott n elemii halmaz elemeinek egy ismétlés nélkili per-

..

2.1.1. Tétel. Egy adott n elemd halmaz permutdcidinak szama n!.

Igy az elsé blokknak 4! = 24 féle kitoltése lehet. Tegyiik fel, hogy most a
kovetkezSképpen vannak elhelyezve a szdmok:

Akkor a racsot igy kell kitolteni:

17
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1] 21374
30412
2] | [1]
[4] | 3]

Ahol [1 2] - vel jel6lom azt, hogy 1 és 2 valamilyen sorrendben szerepelhet. 16
- féleképpen helyezhetjiik el a [3 4] - et és |1 2| - t, valamint a fligg6leges |2 4] -
et és [1 3] - t, viszont amikor a jobb fels§ blokk oszlopaiban és a bal als6 blokk
soraiban ugyanaz a két szam szerepel, akkor a Sudokunak nincs megoldéasa.
Példaul:

>N | Qo =
=W &N
[\
—

Igy a 16 esetbsl 4 esetben nincs megoldas, vagyis az esetek egynegyedében, 12
esetben pedig van. Ezért 8sszesen 24 - 16 — (7 - (24 - 16)) = 288 kitdltése létezik a
4 x 4 - es Sudoku racsnak.

Vannak akik ugy gondoljik, hogy valdjaban, csak a kévetkezs két egyedi kitol-
tése van a racsnak:

112134 112134
s(al1]2|  [3[4]2]1
2143 @ [2]1]4]3
43201 4321

Az egyedi azt jelenti, hogy nem lehet egyikbdl a masikat elgallitani egyszerd mi-
veletekkel. A t6bbi ezekbdl a kovetkezs miveletekkel elgallithato:

1. A négy szamjegy permutacioja
2. A sorok és oszlopok permutélasa egy blokkon beliil
3. A blokkok két soranak vagy oszlopanak permutéldsa

4. A matrix transzponéalasa
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Nézziik meg, hogy valéban csak ez a ketts létezik:
Az 1. miatt feltételezhetjiik, hogy az A blokk fix, és a kovetkezSképpen van kitolt-

ve:

A B blokk els§ sora lehet a 3 4 vagy a 4 3 egyike. Viszont 2. miatt fel-
tételezhetjiik, hogy az els6 sor elemei sorrendben: 3 és 4.

A C blokk els6 oszlopanak kitoltése a 2 4 vagy a 4 2 egyike, de szintén 2. miatt
feltételezhetjiik, hogy a 2 van feliil.

=N | =

Ekkor azonnal beirhatjuk a hidnyz6 4-est.

=N o =
iy

Nézziik meg most a Dj-es cellat: Itt szerepelhet az 1, a 2 és a 3 is. Viszont,
ha a 3-at irjuk be, akkor az 1. - t alkalmazhatjuk, és megcserélhetjiik a 2-t a
3-mal, kapva ezt a racsot:

Q| N =
i~
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De a 4. - et alkalmazva kapjuk a kovetkez6t:

=N | =
~

Ezért feltételezhetjiikk a D4 cellardl, hogy ott az 1 vagy a 2 szerepel. Ha az
1-et irjuk be, akkor a racs igy tolthetd ki:

112314
314|112
211413
413121
Ha pedig a 2-t, akkor igy:
112314
314121
211413
413|112

Tehat lényegében tényleg csak ez a két kitoltés létezik, de ez tulajdonképpen
csak matematikailag érdekes, mert egy rejtvényfejté szempontjabol a szamok per-
mutécidjaval kapott Sudoku ugyanolyan kihivas.

2.2. Minimumprobléma

A minimumprobléma azzal a kérdéssel foglalkozik, hogy minimum hany szdmot
kell elére beirni a racsba, hogy az egyértelmien megoldhat6 legyen. Megoldés:

o 2 kitoltott mezds rejtvény nincs, mert a mésik két szadm cserélhetGsége miatt
péros sok megoldasa van.

o 3 kitoltott mezs esetén a harom szamnak kiilonbozének kell lennie ugyani-
lyen okbol. Ez viszont (a szimmetridkkal sem térddve), az 1, 2, 3 szamok-
nak 16 - 15 - 14 = 3360 kiilonb6zd6 elhelyezése, mely programmal gyorsan
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generdlhato, és ellendérizhets. Egyik sem rejtvény, vannak koztiik olyanok,
amelyeknek nincs is megoldasa. Ilyen példaul a kovetkezs:

Ennek a racsnak nincs megoldasa, mert az 1 2 ald a 3 4 - et kellene irni
valamilyen sorrendben, de a 3 méar szerepel a sorban.

e 4 kitoltott mezGs rejtvény sok van, koziililk néhany itt lathato:

3 1 2
113 1

2.3. Megoldasi médszerek

Ebben a részben olyan megoldasi modszereket mutatok be, amelyekkel egyértel-
miien megfejtheté minden olyan Sudoku rejtvény, melynek egyértelmi megoldasa

van.

2.3.1. DLX

A szamitogépes tudomanyokban a Dancing Links[3], kozismertebb nevén a DLX
a Donald E. Knuth altal javasolt technika arra, hogy hatékonyan implementaljuk
az O X algoritmusdt. Az X algoritmus egy rekurziv, nemdeterminisztikus algo-
ritmus, mely megtalalja a ’preciz elhelyezés’ problémak Gsszes megoldasat. Ilyen
probléma példaul az N-kirdlynd, és a Sudoku.

A Dancing Links név abbdl adodik, hogy az algoritmus a mitikddése folyaman
felépitett grafot gy jarja be, hogy az egy "kittinden koreografalt tancra” emlékez-
tet.

Néhany sz6 Donald E. Knuth -rél

1938. januar 10 -én sziiletett Milwaukee -ban, Wisconsin allamban. KEgyete-
mi tanulmanyait a Case Institute of Technology -n végezte 1956 és 1960 kozott.
Matematikabol szerezte Ph.D. fokozatat 1963 -ban a California Institute of Tech-
nology -n. Doktori disszertacidjanak cime: "Véges ferde testek és projektiv sikok”.
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1960 -t61 1968 -ig a kaliforniai Burroughs Corporation-nél dolgozik, ek6zben 1963
és 1968 kozott tanarsegéd, majd tudoményos munkatars a California Institute of
Technology -n. 1968 6ta a Stanford Egyetem professzora. 1968 és 1969 kozott
a Védelmi Analitikai Intézetben (Institute for Defense Analyses) dolgozott ma-
tematikusként a Kommunikacios Kutatéo Reészlegen (Communications Research
Division). Egy évet vendégprofesszorként toltott el az Osloi Egyetemen 1972 -
1973-ban. 1977 6ta a Stanford Egyetemen az Elektromérnoki Kar tiszteletbeli
professzora is. 1977 -t6l 1989 -ig a Fletcher Jones-dij birtokosa, 1990 6ta a
"szamitdégépprogramozis mivészetének professzora”. Az Amerikai Matematikai
Térsasag (American Mathematical Society, AMS) 1961 6ta élvezi tagsdgat (1978
és 1981 kozott Knuth maga is elndkségi tag). Az ACM-nek (Association for
Computing Machinery) 1959 ota tagja, 1963-64 -ben vezetdje is. 1959 6ta a Ma-
thematical Association of America, 1965 6ta az Ipari és Alkalmazott Matematikai
Térsasag (Society for Industrial and Applied Mathematics) tagja.

T6bb, mint 50 dijat, emlékérmet kapott a vildg sok orszagaban. Idén a Duke és
a skociai St. Andrews Egyetem "A tudomény doktora” cimet adomanyozta neki.
Legismertebb konyve A szamitdgép - programozas mivészete elGszér 1969-ben je-
lent meg. Az els§ harom kotet cime: Alapvetd algoritmusok, Szeminumerikus
algoritmusok, Keresés és rendezés.

1979-ben jelent meg a TEX and METAFONT: New Directions in Typesetting cimd
munkaja. Ezzel parhuzamosan készitette el a TEX szovegkészit§ programnyelv
els verzidjat, mellyel eredetileg az volt a célja, hogy A szamitdégép-programozas
miivészete c. konyv faraszté targymutato - és tartalomjegyzék-osszeallitasat le-
roviditse. 1984 -ben kibévitette a TEX-rél irt konyvet The TgXbook cimmel. A
TEX azéta a tudomanyos élet elsé szami szovegkészité programja lett.

Mi is az a DLX algoritmus?

Egy olyan algoritmus, melyet a "pontos elhelyezés’ probléméak megoldasara hasz-
nélunk. Ezek olyan problémék, melyekrdl jol tudjuk, hogy NP-teljes. AlapvetGen
a problémat konnyd megérteni, de nem annyira konnytd megoldani, f6leg a na-
gyobb méretd problémakat.

Tegyiik fel példaul, hogy van egy métrixunk 0-kal és 1-esekkel, és tudni akarjuk,
hogy van-e egy olyan sorokbdl all6 részhalmaza, ahol minden oszlopban csak egy
1-es van. Erre egy kicsi példa:

Sorl: 0 1 0 O
Sor2: 1 0 0 0
Sor3: 1 1 1 0
Sord: 0 0 1 1

Az X algoritmus az A matrixon:
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1. Ha A iires, akkor a probléma meg van oldva, és vége
2. Kiilonben vilassz egy oszlopot, jeldljiik ezt c-vel
3. Valassz egy sort, r-et, ugy hogy Afr,c] =1

4. Belevessziik r-et a részleges megoldasba
Minden olyan j esetén, melyre Afr, j| = 1 tordld a j oszlopot az A matrixbol
Minden olyan i esetén, melyre Afi, j] = 1 t6rold az i sort az A matrixbol

5. Ismételd az algoritmust rekurzivan a redukalt A matrixra

Maés szavakkal leirva:

Kiszemeliink egy oszlopot, valasztunk egy sort, ahol az oszlopnak megfelelGen van
egyes, és toroljiik azt a sort (de belevessziik a részleges megoldéasba), aztan tor-
liink minden olyan oszlopot, mely egyest tartalmaz abban a sorban, amit torliink.
Majd torliink minden més sort is, mely egyest tartalmaz a kivalasztott oszlopnak
megfelelen. Ezek utidn marad egy redukalt méatrix, melyen tjra és djra végrehajt-
juk rekurzivan ezt az algoritmust, amig végiil marad egy nullmétrix, vagy kapunk
egy megoldést.

Az X algoritmus az el6z6 példara:

Sorl: 0 1 0 O
Sor2: 1 0 0 O
Sor3: 1 1 1 0
Sord: 0 0 1 1

Ha kivéalasztom a 4. oszlopot, (mert ebben csak egy egyes van) ez maga utan
vonja a 3. oszlop és a 3. sor torlését, igy marad a kovetkezd redukalt matrix (elss
két sor, els6 két oszlop):

Sorl: 0 1
Sor2: 1 0

Ezutan kivalasztva az els6 oszlopot, végrehajtva az algoritmust marad egy
1 x 1-es méatrix. Ekkor mér csak azt tudom valasztani, és ezzel kapok egy meg-
oldast: a Sord, Sor2 és az Sorl, vagy rendezve: az Sorl, Sor2, Sord, mivel a
sorrend nem lényeges.

De mit csindlhatnank abban az esetben, ha a matrix meérete 1000 x 10007
Ennek a problémanak a szamitasi ideje és mérete mar nem elhanyagolhat6. (Meg-
jegyzem a métrix nem feltétleniil négyzetes.) Ilyen esetekben alkalmazhatjuk a
DLX algoritmust. Alapvetéen, a DLX a ’preciz elhelyezés’ probléma méatrixanak
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abrazolasa lancolt lista segitségével. Egy olyan kétdimenzids listaval, ahol minden
elem lancolva van a szomszédaihoz, igy a matrix fiigglegesen, és vizszintesen is
bejarhaté. Itt van példaul a kovetkezd matrix:

A B C D
E F G
H I

Vizsgéljuk meg az F' elemet! A fels6 szomszédja a B, az als6 az I, G a jobb, és
E a bal. Ez eddig egyértelmi. Viszont nézziik meg a B-t! Mivel az alkalmazott
lista kdrbejarhato, igy B-nek a fels6 szomszédja I, tovabba A a bal, C' a jobb és
F az als6 szomszédok.
Végiil vizsgaljuk meg I-t! F' a fels§ szomszédja, B az als6, H pedig a bal és jobb
szomszédja is egyben.
Tehat épitiink egy ilyen listat tgy, hogy a matrixban szereplé minden 1-es szdmara
létrehozunk egy csomépontot. Vagyis létre szeretnénk hozni egy ritka matrixot
csomo6pontokbol felépitve, tgy hogy a nulldk ne legyenek reprezentalva. Igy csok-
ken a probléma mérete, hiszen kevesebb adatot tartunk meg.
A DLX valdjaban tehat a mutatokat hasznédlé verzidja az X algoritmusnak.

A DLX és a Sudoku

Ha a Sudoku megoldasdhoz szeretnénk hasznalni a DLX-et, akkor ki kell dolgoz-
nunk a Sudoku problémat 'pontos elhelyezés’ problémaként.

Nézziik meg mit jelentenek majd az altalunk kidolgozni kivant métrix sorai és
oszlopai!

Minden sor kifejez egy allast. Példaul beirva a (3,4) cellaba egy 2-est kapunk egy
allast. Ennek a dontésnek van néhany kovetkezménye a jaték szabalyai alapjan,
hiszen ezutan a 3. sorba, a 4. oszlopba és a D blokkba nem irhaté tjabb 2-es,
tovabba a (3,4) celldba nem szerepelhet mésik szam.

Ezek azok a dolgok, amiket fontoléra kell venni, igy kapunk 4 feltételt:

e Sor - Oszlop feltétel: Egyik celldba sem irhat6 egynél tobb szam

e Sor - Szam feltétel: Minden sornak tartalmaznia kell minden szidmot pon-
tosan egyszer

e Oszlop - Szam feltétel: Minden oszlopnak tartalmaznia kell minden szamot
pontosan egyszer

e Blokk - Szam feltétel: Minden blokknak tartalmaznia kell minden szamot
pontosan egyszer
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A matrix oszlopai fogjak kifejezni ezt a négy feltételt, a sorai pedig minden le-
hetséges allast, amit készithetiink a 4 x 4-es racs esetén.

Mivel 4-4 = 16 cella van a racsban, és van 4 kiilonb6z6 szam amit elhelyezhetiink
a cellakban, az elgallithato allasok szama: 16 - 4 = 43 = 64.

Ellenérizziik le az oszlopokra a feltételeket:

Sor - Oszlop feltétel: Van 4 -4 = 16 lehetséges cella amibe szdmot irhatunk,
igy az elsg feltétel 16 darab (r, c) tipust (matrix)oszlopot ad. r lesz a {6 indexe
ennek a feltételnek. Igy 1 — 4-ig a (métrix)oszlopai reprezentaljak az elhelyezett
szdmokat az 1. sorban az 1 —4 oszlopokban. A (matrix)oszlopai 5—8-ig abréazoljak
a 2. sor 1 — 4 oszlopaiban elhelyezett szamokat, és igy tovabb.

Val6jaban, ha elhelyeziink egy szamot az r sor c oszlopaban, akkor elhelyeziink
egy l-est az (r — 1) - 4 + ¢ oszlopban.

Sor - Szam feltétel: Van 4 sor, és 4 lehetséges szam, amit minden sorban el-
helyezhetiink, igy ismét 4 - 4 = 16 (matrix)oszlopunk lesz a 2. feltételre. Ezuttal
is 7 lesz a f6index, igy ha beirjuk a d szdmjegyet az r sorba, akkor elhelyeziink
egy l-est az (r — 1) -4 + d + 16 (métrix)oszlopban, ahol a 16 az els6 feltételbdl
szarmazé oszlopok miatt szerepel.

Oszlop - Szam feltétel: Ugyanigy, mint a sorokndl, van 4 oszlop 4 kiilonb6z6
lehetséges szamjeggyel, amelyek elhelyezhetSek. Ezért egy a c oszlopba elhelyezett
d szémjegy esetén elhelyeziink egy l-est a (¢c—1)-4+d+ 16+ 16 (matrix)oszlopba,
ahol 16 + 16 az els6 és masodik feltétellel fiigg Gssze.

Blokk - Szam feltétel: Blokk esetén is ugyanigy miikodik, mint a sorokndl és
oszlopoknal. Van 4 blokk és 4 szamjegy, vagyis lesz 16-tal t6bb (méatrix)oszlop.
Elhelyezve egy d szamjegyet a b blokkba irunk egy 1-est a (b—1)-44+d+16+16+16
(matrix)oszlopba, ésitt is a 16+ 16+ 16 az els6, méasodik és harmadik feltételekbol
addédnak.

Van tehat Osszesen 16 - 4 = 64 feltétel oszlopunk, ezért egy 64 x 64-es matrix
sziikséges ahhoz, hogy egy 4 x 4-es Sudoku feladvanyt atvigyiink 'pontos elhelye-
zés’ problémaba.

Egy konkrét példan bemutatva:
Legyen a megfejtendé Sudoku racs a kovetkezd:

Az el6z6ekben leirt feltételeknek megfelelGen 1étrehozott 64 x 64-es métrix egy
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lete, mely az elss feltétel altal definidlt 16 oszlopot szemlélteti:

rész
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Ez a matrix épithetd fel minden 4 x 4-es Sudoku feladvany esetén. A métrix
sorai tehat a lehetséges allasokat fejezik ki. Példaul a matrix 1. sora a Sudoku elsé
soranak elsg cellajaba irt 1-es allast, a matrix masodik sora a Sudoku elsd soranak
elsé celldjaba irt 2-es allast, és igy tovabb. A maétrix utolsé sora pedig a Sudo-
ku negyedik sordnak negyedik celldjaba irt 4-est. Igy végrehajtva az algoritmust
valoban elegendd a sorokat belevenni a részmegoldasba, hiszen az egyértelmiien
azonositja az adott allast.

Hajtsuk végre a DLX algoritmust a megfejtendé Sudokura.

Az elsé lépésben ki kell vilasztani egy oszlopot. Altaldban érdemes azt az
oszlopot valasztani, amelyikben a legkevesebb 1-es szerepel. Azonban az alap
matrix minden oszlopaban 4 darab 1-es szerepel. Igy most ez a vilasztési mod
nem lenne eredményes. Tudjuk viszont, hogy a masodik sor elsé cellajaban 3-as
szam szerepel, és azt is, hogy ehhez a celldhoz az 1. feltétel alapjan tartozo6 oszlop
az b., igy ezt az oszlopot valasztom. A tovabbiakban mindig a legelss alkalmas
oszlopot fogom valasztani.

A masodik 1épésben valasztanunk kell egy sort, amely tartalmaz 1-est az osz-
lopnak megfelel6en. Ennek kivalasztasa mar egyértelmi, a megadott 3-as szam
miatt. Valasztom tehat a 19. sort.

A 19. sor szerepel majd a megoldasban. Ezutan tordlni kell minden sort,
mely 1 -est tartalmaz a kivalasztott oszlopban, tovabba minden oszlopot, mely
1-est tartalmaz a 19. sorban, és ezen oszlopok azon sorait, melyek egyest tartal-

maznak. Igy kapjuk a kovetkezd redukalt matrixot:
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Ezt az eljarast ismételve a redukilt matrixra a kovetkezd sorrendben keriilnek

a sorok a megoldésba:

o Elsgként keriilt be a 19. (méatrix)sor, amely a Sudoku mésodik soranak els

2

Hiszen a matrix elsé 16 sora a

cellajaban elhelyezett 3-as szamot jeloli.

2

6 négy a

allasait tartalmazza, a kovetkezd

.

éges

k lehets

4

O Sorana.

P

Sudoku els
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masodik sor elsé celldjanak lehetséges kitoltéseit, a 19 harommal nagyobb
mint a 16, tehat a 3-as szdmot képviseli.

A kovetkezd 1épésben a masodik sor harmadik celldjahoz tartozé oszlopot
kivalasztva - hiszen ez szintén adott - a hozza tartozo6 sor az eredeti matrix
26. sora, tehat ez szerepel majd a megoldasban. To6roljiik a megfelels sorokat
és oszlopokat.

Még most sem szerepel olyan oszlop, melyben egyetlen 1-es szerepel, de
tudjuk, hogy a harmadik sor masodik celldjaban 4-es szam &ll, igy ennek
megfelelgen valasztjuk ki az oszlopot, és a 40. sort.

Az utolsé megadott szam a feladvanyban a harmadik sor negyedik cellajaban
all6 1-es. Ennek megfelelGen valasztva oszlopot és sort, a kovetkezd bekeriils
sor az eredeti méatrix 45. sora.

Mostmér a redukalt matrixnak van olyan oszlopa, amelyben egy 1-es sze-
repel. Tehat ezek koziil valasztom az elsét, az ennek megfelel§ sor pedig a
21..

Az el6z6hoz hasonloan a kovetkezd oszlopnak megfelels sor a 32..
A kovetkezs a 15.,

aztdn a 6., a 4., a2 9., a 43., a 34., az 55., a 49., a 60., és végiil a 62..

Az igy kapott sorok adjak meg a Sudoku megoldasat, mar csak annyi a teendd,

hogy a megfelels sorok éltal azonositott allasok alapjan kitoltjiik a réacsot:

Az els6 négy bekeriilt sor az eredetileg megadott szdmokat azonositja, hi-
szen: 19 = 16+ 3, vagyis a mésodik sor elsg celldjaba irt hdrmas, 26 = 16 4
44-4+2, azaz a mésodik sor harmadik cellajéba irt kettes, 40 = 16+16+4+4,
tehat a harmadik sor méasodik celldjaba irt négyes, 45 = 164+16+4+4+44+1,
a harmadik sor negyedik cellajaba irt egyes.

Az el6z6h6z hasonlo modon megadva a tobbi 4llast:

— 21 =16+4+ 1, a masodik sor masodik celldjaba irt egyes,

— 32 =16 + 16, a masodik sor negyedik cellajaba irt négyes,

— 15=4+4+4+4 3, az els6 sor negyedik cellajiba irt harmas,

— 6 =4+ 2, az els6 sor mésodik cellajéba irt kettes,

— 4 =4, az els6 sor elsd cellajaba irt négyes,

— 9=4+44+41, az els6 sor harmadik cellajaba irt egyes,

— 43 =16+ 16+4+4+ 3, a harmadik sor harmadik celldjaba irt harmas,
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— 34 =16 4+ 16 + 2, a harmadik sor elsé cellijaba irt kettes,

55 =16+ 16+ 16 +4 4 3, a negyedik sor masodik cellajaba irt harmas,

— 49 =164 16 + 16 + 1, a negyedik sor elsg cellajaba irt egyes,

— 60 =16+ 16+ 16 + 4 + 4 + 4, a negyedik sor harmadik cellajaba irt

négyes,

—62=16+16+16+4+4+4+ 2, a negyedik sor negyedik celldjaba irt

kettes.

Hatra van még a racs kitoltése, és ellenérzése. A kapott eredmények alapjan

elGallod racs:

— DN | QO

||| N

=N =

N ||~ W

Leellendérizve, valoban minden sorban, oszlopban és blokkban szerepel minden

szam egyt6l négyig, és tényleg csak egyszer.
Lathaté tehat, hogy kovetve az algoritmus lépéseit, viszonylag rovid idé alatt
megoldhatd a Sudoku, és logikdzni sem kell hozz4.

2.3.2. Megoldas algebrai Gton

Minden Sudoku réacsra felirhato egy linearis egyenletrendszer|4|, melyet a kovet-
kez&képpen nyeriink a 4 x 4-es esetben:

Jeloljik a cellakat az x1,x9,- - , x16 ismeretlenekkel az alabbi modon:
I X9 I3 X4
Ts5 Te x7 xs
T9 | T10 | T11 | T12
T13 | T14 | T15 | T16

Tudjuk, hogy az 1, 2, 3, 4 szdmokat kell elhelyezni gy, hogy minden sorban,
oszlopban, és blokkban mindegyik szerepeljen, de csak egyszer. Ebbdl kovetke-
zik, hogy a kitoltott rdcs minden soraban, oszlopaban, és blokkjiban elhelyezett
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szamok Gsszege 10. Igy felirhaté a kovetkezd egyenletrendszer:

1+ x2 + 3+ x4 = 10
T5 +x¢ + a7+ x5 =10
T9 + w10 + 211 + 212 = 10
z13 + 214 + 215 + 216 = 10
1+ 25 +x9 + 213 = 10
T2 + 6 + w10 + 214 = 10
3+ r7 + 211 + 215 = 10
T4+ 18 + 212 + 216 = 10
1+ a9+ a5+ 26 =10
r3+ x4+ a7+ 28 =10
9 + 210 + 213 + 214 = 10
11 + 212 + 215 + 16 = 10.

Ez egy 12 egyenletbdl 4ll6, 16 ismeretlent tartalmazé egyenletrendszer. Az elsd
négy egyenlet a sorokra vonatkozik, a kovetkez6 négy az oszlopokra, az utolso

négy pedig a blokkokra.
Egy adott Sudoku esetén azonban vannak rogzitett helyek. Tekintsiik ismét az

el6z6 példat:

Ekkor az el6z6 egyenletrendszerhez hozzavessziik a rogzitett helyek egyenleteit:

LL’5:3
7 =2
T10 =4

Tr12 = 1.
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A rogzitett ismeretleneket behelyettesitve, majd rendezve az egyenleteket a
kovetkezs egyenletrendszerhez jutunk:

r1 +T2 +T3 +I4

T  +axg =

r9 +Tn =

+z13 +x14 +T15 +T16 =

I —|-ZL‘9 +x13 =
T2 +Z6 +x14 =

T3 +x11 +x15 =

T4 +x3 +T16 =

T Fx2 +x6 =
r3 +24 +xs =

) +213 +Z14 =

11 +r15 +2x16 =

Ezt az egyenletrendszert matrix alakban felirva kapjuk a kovetkezét:

1 Ty T3 T4 Te Ty T9 Ti1 T13 T4 Ti5 T |
1 1 1 1 0 0 0 0 o o0 0 0 | 10
0 0 0 01 1 0 O o 0 0 0 | 5
0o 0 0 0 0 o0 1 1 o 0 0 0 | 5
0 0 0 0 0 O 0 O 1 1 1 1 | 10
1 0 0 0 O O 1 O 1 o o0 o0 | 7
R; = o0 1.0 0 1 0 0 O 0 1 0 0 | 6
0 0 1. 0 0O O 0 1 0 O 1 0 | 8
0o 0 0 1 0 1 0 O 0O 0 0 1 ] 9
11 0 0 1 0 0 O o o o o | 7
0O 0 1 1 0 1 0 O o o0 o0 o | 8
0O 0 0 0 0 0 1 0 1 1 0 0 | 6
0 0 0 0 0 0o 0 1 0 O 1 1 | 9
Alkalmazva a Gauss-eliminaciot trapéz alakra hozzuk:
1 Ty T3 T4 Te Ty T9 Ti1 T13 T4 Ti5 T |
1 1 1 1 0 0 0 0 o o0 0 0 | 10
0o 1. 0 0 1 0 0 O 0 1 0O 0 | 6
0 0 1 0 0O O 0 1 0 O 1 0 | 8
Ry = o 0o 0 1 0 1 0 O 0O 0 0 1 | 9
0o 0 0 0 1 1 0 O o o o0 0 | 5
0O 0 0 0 0 0 1 1 o o o0 0 | 5
0O 0 0 0 0 0 0 1 0 O 1 1 ] 9
0 0 0 0 0 0O 0 O 1 1 1 1 | 10

—_
o O

© O 0 N © 0 O
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Ezzel nem sikeriilt Gjabb ismeretlent régziteni. Viszont a Sudoku szabélyaibol
adodoan felirhaté minden ismeretlenre 7 Gjabb egyenlet. Minden z; cellara te-

kintsiik az A

F(z;) = [[(=; =)
i=1
polinomot. Minden cella 7 masik cellatol fiigg, tekintsiik példaul z;-t és x; - t
(0 < i< j < 17), melyekre teljesiil a kovetkezd:

F(xi) = F(x;) = (v — 2j)G (@, 75) = 0.

Mivel
F(xi) = (z; — 1) (2 — 2)(zi — 3)(xi — 4)
F(zj) = (zj — 1)(z; — 2)(z; — 3)(zj — 4)
igy

F(x;) — F(x;) = o} — 102} + 3527 — 502; — a] + 1029 — 3527 + 50z;.
F(x;) — F(x;) reducibilis, azaz
F(CCZ) — F(I]) = (337, — 1,‘])(1‘2 + .’L’j — 5)(Iz2 — 5Il + CCjz — 5$Cj + 10)

tehéat oszthatod (x; — x;)-vel.
Igy a G(xi,7;) polinom a (z; + zj — 5)(z? — 5z; + a:? — 5z; + 10) polinommal
egyenls. Az egyenletrendszer pedig a

G(xi,xj) =0, ahol 0<i<j<I17

és az
x5 —3=0
zr—2=0
T10—4=0
T2 —1=0
rendszer.

Példaul xq esetén a felirhato egyenletek a kdvetkezsk:

G(z1,22) =0
G(r1,23) =0
G(z1,24) =0
G(r1,75) =0
G(z1,29) =0
G(xz1,213) =0
G(z1,26) =

1. Megjegyzés. A tobbi ismeretlenre az egyenletek hasonlé médon frhatoak fel.
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Hasznalata

Az ismeretlenek meghatarozasahoz az eljaras a kovetkezsképpen miikodik: min-
den ismeretlen hét masik ismeretlennel all kapcsolatban, nevezziik ezeket szom-
szédosaknak. Azok koziil az ismeretlenek koziil valasztom a legelsst, amelyeknek
a legtdbb szomszédja ismert. A polinomok segitségével meghatdrozom ezt az is-
meretlent, majd ennek megfelel6en médositom Ri-et, majd ujraelimindlom, és
amig Rj-el tudok tjabb ismeretlent meghatarozni, addig mindig djraelimindlom.
Azutan ismét a polinomokkal dolgozok, majd tjra eliminalok, mindaddig, amig
minden ismeretlent nem rogzitek, vagy amig ki nem deriil, hogy nem jutok meg-
oldashoz.

Az elébbiekben leirt elv alapjan elssként az xg-ot hatarozom meg. Az xg esetén
felirhat6 egyenletek:

G(x1,26) =0
G(z2,26) =0
G(3,z¢) =0
G(2,2¢) =0
G(zs,x6) =0
G(4,2¢) =0
G(x14,26) = 0.

Viszont mivel tudjuk, hogy G(3,x¢) =0, G(2,z6) = 0 és G(4, z) = 0, ahol
G(3,26) = xp — Tag + 14w — 8
G(2,26) = 23 — 822 + 1926 — 12
G(4,x¢) = 3 — 622 + 11a6 — 6

olyan xg-ot keresiink, amely a harom polinomnak k6zos gyoke. Ha két polinomnak
van kozos gyoke, akkor az gyoke a legnagyobb kozos osztojuknak is. Az Euklideszi-
algoritmus alapjan

LNKO(G(3,x¢), G(2,26)) = 2 — 5z + 4.
Viszont gyoke a G (4, x¢) polinomnak is, azaz gyoke
LNKO(G(4,x¢), (x2 — 5x6 +4)) = 26 — 1

polinomnak, amibél
zg = 1.
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Rj-et atalakitva:

Ty ¥y X3 T4 Te T T T T13 T4 T15 T |
11 1 1 0 O O O O O O 0 | 10
o 1 0 0 O O O 0 O 1 0 0 | 5
0o 0 1 0 O 0O 0 1 0 0 1 0 | 8
R; = o o o 1 0 1 0 0O 0 0 O 1 ] 9
o o o0 o 0 1 0 O 0 0 o0 0 | 4
0o 0o 0 0o 0 0o 1 1 0 0 0 0 | 5
o 0 0 0 0 0 0 1 0 0 1 1 | 9
0 0 0 0 0 0 0 O 1 1 1 1 | 10
R1-b6l azonnal leolvashato, hogy
rg = 4.
Ennek megfelelgen ismét atalakitom Rp-et:
Ty Ty T3 T4 T9 Tl T3 T4 Ti5 Tie |
11 1 1 0 0 0 O 0 0 | 10
o 1.0 0 0 0 O 1 0 0 | 5
0 0 1 0 0 1 0 O 1 0 | 8
R, =
0o 0o 0o 1.0 0O 0 O 0 1 ] 5
0O 0 0 0 1 1 0 O 0 0 | 5
0O 0 0 0 o0 1 0 O 1 1 | 9
o 0 0 0 0 0 1 1 1 1 | 10

R; alapjan tobb ismeretlent még nem tudunk rogziteni. A racs most igy néz ki:

Kovetve a gondolatmenetet az xg-re felirhato egyenletek alapjin a G(3,z9), a
G(1,x9) és a G(4,x9) polinomok kozos gyokeit keressiik, ahol

G(3,x9) = x5 — Tad + 14xg — 8

G(l,l‘g)

:cg — 9:63 + 269 — 24
G(4,x9) = g

— 623 + 1129 — 6.
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Az el6z6h6z hasonloan megkeresem a harom polinom k6zos gyokeét:

LNKO(G(3,z9), G(1,29)) = 3 — 6z9 + 8

és
LNKO(G(4,x9), (25 — 619 + 8)) = g — 2
vagyis
$9:2.
Ennek megfelelen Rp-et atalakitva:
T T2 T3 T4 T9 Tyl T3 T4 Tis Tie |
111 1 0 O O O O O | 10
o 1.0 0 O 0 O 1 0o 0 | 5
0 0 1 0 0 1 0 O 1 0 | 8
R, =
o 0o 01 0 0 0 0 O 1 | 5
0 0 0 0 0 1 o o o o0 | 3
0 0 0 0 0 1 0 O 1 1 ] 9
0 0 0 0 0 O 1 1 1 1 ] 10
Ekkor R; alapjan
:6'1123.

Ennek megfelelen R;-et atalakitva:

Ty X2 T3 T4 T13 T14 T15 16

|
1 11 1 0 0 0 0 | 10
o1 0 0 0 1 0 0 |5
Ri=| 0 0o 1 0 0 0 1 0 | 5
o0 0 1 0 0 0 1 |5
o0 0 0 0 0 1 1 | 6
o0 0 0 1 1 1 1 | 10

Beirva az eddig rogzitett ismeretleneket a racsba:

x1 meghatarozasa kovetkezik. A felirhato egyenletek alapjan a G(3, 1), a G(1,x1)
és a G(2,x1) polinomok kozos gyokeit keressiik, ahol

G(3,x1) = 23 — 722 + 14z, — 8
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G(1,21) = 23 — 922 + 262 — 24
G(2,z1) = 23 — 827 + 1921 — 12.
A héarom polinom kozos gyokének megkeresése:

LNKO(G(3,z1),G(1,21)) = 22 — 621 + 8

LNKO(G(2,z1), (22 — 6z, +8)) = —x1 + 4

tehat
T = 4.

Atalakitva R;-et:

T2 XT3 T4 T13 T14 T15 T16

\

1 1.1 0 0 0 0 | 6

1 0 O 0 1 0 0 | 5

R, = 0O 1 0 0 0 1 0 | 5

0O 0 1 0 0 0 1 | 5

0O 0 O 0 0 1 1 | 6

o0 0 1 1 1 1 | 10

Ujraeliminélva:

Ty T3 T4 T13 T4 Tis T |

1 1 1 0 0 0 0 | 6

0 1 0 0 0 1 0 | 5

R; = 0 0 1 0 0 0 1 | 5

0o0 0 1 1 1 1 | 10

o0 0 0 1 1 1 | 9

0O 0 O 0 0 1 1 | 6

x9 meghatarozasa a G(1,x2), a G(3,z2) és a G(4, x2) polinomok segitségével, ahol

G(3,20) = x5 — Ta3 + 1429 — 8
G(4,z2) = =3 — 622 + 115 — 6.
A ko6z6s gyok meghatérozésa:
LNKO(G(1,z2), G(3,22)) = 23 — 62 + 8
és
LNKO(G(4,z2), (25 — 613 + 8)) = x5 — 2.

Igy
9 = 2.
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Ri-et atalakitva és Gjraeliminalva:

r3 T4 T13 T4 T15 T16

|
1 1.0 0 0 0 | 4
R | 0 1 1 0 | 5
o0 1 1 1 1 | 10
o0 0 1 1 1 | 9
o0 0 0 1 1 | 6

x3 meghatarozasa: A felirhato egyenletek alapjan a G(4,x3), a G(2,23) és a
G (3, z3) polinomok kozos gyokeit keressiik, ahol

G(4,23) = 3 — 623 + 11a3 — 6

G(2,x3)

x% — 833% + 1923 — 12
G(3,z3) = =3

— T2 4 1423 — 8.

A harom polinom kézos gyokének megkeresése:
LNKO(G(4,x3),G(2,23)) = 23 — 4a3+ 3

és
Ezért

Ry-et atalakitva:

r3 T4 T13 T4 T15 T16

|
0 1 0 0 0 0o | 3
R, — 0 1 1 0 | 5
0 0 1 1 1 1 ] 10
0 0 O 1 1 1 ] 9
0 0 0 0 1 1 ] 6
R;1-bdl kiolvashato, hogy
T4 = 3.
Ekkor Ri-et ismét atalakitva:
T4 T13 T4 Ti5 Tie |
0 1 1 1 1 | 10
R; = 0 O 1 1 1 ] 9
0 O 0 1 1 | 6
0 O 0 0 1 | 2
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Lathato, hogy
T16 = 2.

R, atalakitasa:
13 T14 T15 T16 |
1 1 1 0 | 8
R, =
! o 1 1 0 |7
0 0 1 0 | 4

Ebbdl
I15 = 4.

Ismét atalakitva Ri-et:
T3 T4 Ti5 |

Ri=| 1 1 0 | 4
o 1 0 | 3

Akkor
T14 = 3
és
Ir13 = 1.
Ezzel minden ismeretlent rogzitettiink, melyeket beirva a racs megfelels cellaiba,

valéban a Sudoku megfejtését kaptuk, hisz minden sorban, oszlopban, és blokkban
szerepelnek a szamok 1-t6l 4-ig, de pontosan egyszer.

=N | &~
DO || W

=W N =

Wk~

2.3.3. Osszegzés

Bar a Sudoku a vilag egyik legkedveltebb logikai jatéka, lathatd, hogy egyszerd
eljarassal, mechanikusan megoldhato, nem feltétleniil sziikséges a megfejtéséhez
logika, és egyéb triikkk. Bar a jaték ezen iradnybol torténd megkozelitése valo-
szintileg nem terjed el széles korben, de kedvet adhat azok szaméra, akik eddig
tartozkodtak téle, mert gy gondoltak kizarolag logikai titon oldhaté meg.
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