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1. Introduction

These notes are based on the papers [1] and [3]. Talk was delivered by
Attila Pethő at the Workshop ”Algebraic Systems and Theoretical Computer
Science”, RIMS, Kyoto, February 20, 2012.

Let k be an algebraically closed field of characteristic zero and let k(x)
be the rational function field in one variable over k. For f ∈ k(x) we define
deg f = [k(x) : k(f(x))].

We are interested in f ∈ k(x) that are decomposable as rational functions,
i.e., for which there exist g, h ∈ k(x), deg g, deg h ≥ 2 such that f(x) =
g(h(x)) holds.

Such a decomposition is only unique up to a linear fractional transfor-

mation λ =
ax+ b

cx+ d
) ∈ GL2(k) with ad − bc 6= 0, since we may always

replace g(x) by g(λ(x)) and h(x) by λ−1(h(x)) without affecting the equa-
tion f(x) = g(h(x)). Especially we are interested in such decompositions
when f is a “lacunary” rational function.

There are different possible notions of “lacunarity”. The most common
notion is that the number of non-constant terms appearing in a given rep-
resentation of f(x) = P (x)/Q(x), P,Q ∈ k[x] is bounded.

A. Schinzel conjectured that if for fixed g the polynomial g(h(x)) has at
most l non-constant terms, then the number of terms of h is bounded only
in terms of l. It was confirmed in a more general form by U. Zannier [8].
He actually proved that if one starts with a positive integer l, then one can
describe effectively all decompositions of polynomials f ∈ k[x] having at
most l non-constant terms if one excludes the inner function h being of the
exceptional shape axn + b, a, b ∈ k, n ∈ N.

This description was “algorithmic” in the sense that all possible polyno-
mials and decompositions were described by letting the possible coefficients
vary in some effectively computable affine algebraic varieties and the expo-
nents in some computable integer lattices.
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There are also other possibilities to think of the “lacunarity”. In these
notes we are interested in rational functions f with a bounded number of
zeros and poles. This means that the number of distinct roots of P,Q in a
reduced expression of f is bounded. We assume that the number of zeros
and poles are fixed, whereas the actual values of the zeros and poles and
their multiplicities are considered as variables.

There are some simple families of such decomposable functions.
• Example 1. If the multiplicities of the zeros and poles of f all have a

common divisor, say m ∈ N, then f(x) = (h(x))m for some h ∈ k(x). Clearly
f and g have the same number of singularities, but h is not controlled by
n. For this reason we say that if g(x) = (λ(x))m for a suitable λ ∈ PGL2(k)
then g is of exceptional shape (also called the forbidden shape later).
• Example 2. Let λ1, λ2 be the roots of x2 − x − 1 in k = C then for

g(x) = xk1(x− 1)k2 , h(x) = x(x− 1) we have

f(x) = g(h(x)) = xk1(x− 1)k1(x− λ1)k2(x− λ2)k2

for every k1, k2 ∈ Z. Thus we have constructed infinitely many rational func-
tions f with four distinct zeros and poles altogether and which are decom-
posable. This phenomenon can easily be generalized to rational functions
with an arbitrary number of singularities and shows that the multiplicities
cannot underly severe restrictions (we will see later that the only condition
we have to take into account is whether the sum of the ki vanishes or not).

We also shall give a complete description of composite f ’s in analogy to
Zannier’s result. This result was proved in [1]. Our proof was algorithmic,
it provided a method to find all possible decomposable rational functions
not of exceptional shape with a fixed number of singularities. In [3] we
performed these computation if the number of singularities is at most four
and found many examples if this number is at most six.

To make the understanding of the main results simpler we work out a
non-trivial, but simple enough example.

2. A non-trivial example

Assume that f(x) has three singularities: two roots of order one and two
respectively, and one pole of order four, i.e.

f(x) =
(x− α1)2(x− α2)

(x− α3)4
.

Moreover assume that f(x) = g(h(x)) with

g(x) = (x− β1)l1 · · · (x− βr)lr , l1, . . . , lr ∈ Z,
h(x) =

h1(x)
h2(x)

, gcd(h1, h2) = 1.

Inserting h(x) into g(x) we get the equation

g(h(x)) = (h(x)− β1)l1 · · · (h(x)− βr)lr =
(x− α1)2(x− α2)

(x− α3)4
.
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Taking into account that gcd(h1(x) − βih2(x), h1(x) − βjh2(x)) = 1, 1 ≤
i < j ≤ r we get r ≤ 3. The possibilities r = 1 and r = 3 can be excluded,
because in the first case l1 = 1 and in the second h(x) is linear, which are
excluded.

Thus r = 2. Then either l1 = l2 = 2, which is again impossible, or
l1 = l2 = 1. Then

(
h1(x)

(x− α3)2
− β1

)(
h1(x)

(x− α3)2
− β2

)
=

(x− α1)2(x− α2)
(x− α3)4

.

Hence after possible change of the enumeration we get

h1(x)− β1(x− α3)2 = (x− α1)2,

h1(x)− β2(x− α3)2 = x− α2.

Eliminating h1(x) and comparing coefficients we get

β2 − β1 = 1,
α1 − α3 = −1/2,
α1 + α3 = 2α2.

Hence α1 = α3 − 1/2 and α2 = α3 − 1/4. Thus the only possibility is

f(x) =
(x− α3 + 1/2)2(x− α3 + 1/4)

(x− α3)4
,

g(x) = (x− β1)(x− β1 + 1),

where α3, β1 ∈ k.

3. Main theorem

To simplify slightly the statement we make the following remark. By
changing g(x) into g(θx) with an appropriate θ ∈ k we may assume that the
rational function h is the quotient of two monic polynomials and by dividing
both sides of the equation f(x) = g(h(x)) by a suitable constant we may
even assume the same for f and g. Now we are in the position to formulate
the main result of [1].

Main Theorem. Let n be a positive integer. Then there exists a positive
integer J and, for every i ∈ {1, . . . , J}, an affine algebraic variety Vi defined
over Q and with Vi ⊂ An+ti for some 2 ≤ ti ≤ n, such that:

(i) If f, g, h ∈ k(x) with f(x) = g(h(x)) and with deg g, deg h ≥ 2, g not
of the shape (λ(x))m,m ∈ N, λ ∈ PGL2(k), and f has at most n zeros
and poles altogether, then there exists for some i ∈ {1, . . . , J} a point
P = (α1, . . . , αn, β1, . . . , βti) ∈ Vi(k), a vector (k1, · · · , kti) ∈ Zti
with k1 + k2 + · · · + kti = 0 or not depending on Vi, a partition of
{1, . . . , n} in ti + 1 disjoint sets S∞, Sβ1 , . . . , Sβti with S∞ = ∅ if
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k1 + k2 + · · ·+ kti = 0, and a vector (l1, . . . , ln) ∈ {0, 1, . . . , n− 1}n,
also both depending only on Vi, such that

f(x) =
ti∏

j=1

(wj/w∞)kj , g(x) =
ti∏

j=1

(x− βj)kj ,

and

h(x) =

{
βj + wj

w∞ (j = 1, . . . , ti), if k1 + k2 + · · ·+ kti 6= 0,
βj1wj2−βj2wj1

wj2−wj1 (1 ≤ j1 < j2 ≤ ti), otherwise,

where
wj =

∏

m∈Sβj
(x− αm)lm , j = 1, . . . , ti

and
w∞ =

∏

m∈S∞
(x− αm)lm .

Moreover, we have deg h ≤ (n− 1)/(ti − 1) ≤ n− 1.
(ii) Conversely for given data P ∈ Vi(k), (k1, . . . , kti), S∞, Sβ1 , . . . , Sβti ,

(l1, . . . , ln) as described in (i) one defines by the same equations ra-
tional functions f, g, h with f having at most n zeros and poles alto-
gether for which f(x) = g(h(x)) holds.

(iii) The integer J and equations defining the varieties Vi are effectively
computable only in terms of n.

The theorem says that all decomposable rational functions with at most
n singularities and all their decompositions arise from finitely many generic
such decompositions, namely that for each i ∈ {1, . . . , n} there are rational
functions Fi, Gi, Hi ∈ [Vi][x] with degHi ≤ n − 1 and with Fi = Gi ◦ Hi

having at most n singularities. Precise formulae for these functions in terms
of expressions from the coordinate ring of the corresponding variety are
explicitly given in the statement, and if f, g, h are as in (i) above, then
there is an i and a point P ∈ Vi(k) such that f(x) = Fi(P, x), g(x) =
Gi(P, x), h(x) = Hi(P, x).

Example 2. is obtained by taking

n = 4, t = 2, S∞ = ∅, S0 = {1, 2}, Sβ = {3, 4}, l1 = l2 = l3 = l4 = 1

and P = (0, 1, λ1, λ2, 1) = (α1, α2, α3, α4, β) ∈ V(C), where the variety
V ⊂ A5 is defined as the zero locus of the system of algebraic equations
α1α2 − α3α4 − β = 0, α1 + α2 − α3 − α4 = 0.

4. Preparation for the proof of the main theorem

Observe first that for g(x) = g1(x)
g2(x) , g1, g2 ∈ k[x], gcd(g1(x), g2(x)) = 1

and deg g1 = deg g2 every pole of h will be canceled in the decomposition
f(x) = g(h(x)).
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Indeed, if h(x) = h1(x)/h2(x) and deg h2 > 0, then

g(h(x)) = g1

(
h1(x)
h2(x)

)
/g2

(
h1(x)
h2(x)

)
=
h2(x)deg g1g1

(
h1(x)
h2(x)

)

h2(x)deg g2g2

(
h1(x)
h2(x)

) .

As the numerator and denominator belong to k[x] and the denominator is
coprime to h2(x) the claim is proved.

Hence a priori h could have arbitrary poles; this explains the difference
between the two cases below. We also mention that if the number of distinct
zeros and poles of g is two, then g has exactly one zero and one pole both
with the same multiplicity and then we are in the forbidden shape for g.

For every θ ∈ k there is a valuation defined by the order of vanishing of
f at x = θ. Moreover for f(x) = P (x)/Q(x), P,Q ∈ k[x] a non-archimedean
valuation is defined by v∞(f) = degQ − degP . In this way all valuations
M of k(x) are obtained.

Then we have

deg f =
∑

v∈M
max{0, v(f)} = −

∑

v∈M
min{0, v(f)}.

In other words the degree is just the number of zeros respectively poles of
f (in P1(k)) counted by their multiplicities.

The Mason-Stothers theorem [2] says: Let f, g ∈ k(x), not both constant,
with f + g = 1 and let S be any set of valuations of k(x) containing all the
zeros and poles in P1(k) of f and g. Then we have max{deg f, deg g} ≤
|S| − 2.

More generally Zannier [6] proved: Let S is any set of valuations of k(x)
containing all the zeros and poles in P1(k) of g1, . . . , gm. If g1, . . . , gm ∈ k(x)
span a k-vector space of dimension µ < m and any µ of the gi are linearly
independent over k, then

−
∑

v∈M
min{v(g1), . . . , v(gm)} ≤ 1

m− µ
(
µ

2

)
(|S| − 2).

After these preparation we are in the position to outline the proof of the
main theorem.

5. Proof of the main theorem

Let n be a positive integer. Let f, g, h ∈ k(x),deg g, deg h ≥ 2, g not of
the exceptional shape (λ(x))m,m ∈ N, λ ∈ PGL2(k) and with f having at
most n zeros and poles in A1(k) altogether and such that f(x) = g(h(x)).

Since k is algebraically closed we can write

f(x) =
n∏

i=1

(x− αi)fi

with pairwise distinct αi ∈ k and fi ∈ Z for i = 1, . . . , n.
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Similarly we get

(1) g(x) =
t∏

j=1

(x− βj)kj

with pairwise distinct βj ∈ k and kj ∈ Z for j = 1, . . . , t and t ∈ N. Thus
we have

n∏

i=1

(x− αi)fi = f(x) = g(h(x)) =
t∏

j=1

(h(x)− βj)kj .

We now distinguish two cases depending on k1 + k2 + · · · + kt 6= 0 or not;
observe that this condition is equivalent to v∞(g) 6= 0 or not.

We shall write h(x) = p(x)/q(x) with p, q ∈ k[x], p, q coprime.

First assume that v∞(g) 6= 0. It follows that the poles in A1(k) of h
are among the values αi: This is true because q(θ) = 0 for θ ∈ k implies
h(θ) = ∞, where ∞ = (0 : 1) is the unique point at infinity of P1(k), and
h(θ)− βj =∞. Also the valuation vθ of h and h(x)− βj is the same. Thus
vθ(f) = v∞(g)vθ(h) 6= 0, i.e. g(h(θ)) ∈ {0,∞}, and hence θ = αi for some
i ∈ {1, . . . , n}.

This implies that there is a subset S∞ of the set {1, . . . , n} such that the
αm for m ∈ S∞ are precisely the poles in A1(k) of h, i.e.

q(x) =
∏

m∈S∞
(x− αm)lm , lm ∈ N.

Furthermore h and h(x) − βj have the same number of poles counted by
multiplicity, which means that their degrees are equal.

Calculating the valuations vαm of both sides of the equation f(x) =
g(h(x)) we infer that

(k1 + k2 + · · ·+ kt)lm = v∞(g)vαm(h) = vαm(f) = fm

for m ∈ S∞. We also point out that for βi 6= βj the factors h(x) − βi and
h(x) − βj do not have any zeros (in A1(k)) in common; therefore we have
t ≤ n.

It follows that there is a partition of the set {1, . . . , n}\S∞ in t disjoint
subsets Sβ1 , . . . , Sβt such that

(2) h(x) = βj +
1

q(x)

∏

m∈Sβj
(x− αm)lm ,

where lm ∈ N satisfies lmkj = fm for m ∈ Sβj , j = 1, . . . , t.
Since we assume that g is not of the shape (λ(x))m it follows that t ≥ 2.

Let 1 ≤ i < j ≤ t be given. We have at least two different representations
of h and thus we get

βi +
1

q(x)

∏

r∈Sβi
(x− αr)lr = βj +

1
q(x)

∏

s∈Sβj
(x− αs)ls
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or equivalently β(ui − uj) = 1, where β = 1/(βj − βi) and

ui =
1

q(x)

∏

r∈Sβi
(x− αr)lr =

wi
w∞

.

Actually, the ui are S-units for the set of valuations S = {vα1 , . . . , vαn , v∞} ⊂
M corresponding to α1, . . . , αn ∈ k and ∞.

In fact ui and uj have also no zeros in A1(k) in common and they have all
exactly the same poles (also with multiplicities), namely αm,m ∈ S∞ and
possibly ∞.

The Mason-Stothers theorem implies that

(3) lm ≤ n− 1 for all m = 1, . . . , n.

Observe that an application to β(ui−uj) = 1 gives the bound only for those
m which are in S∞∪Sβi∪Sβj ; by using the relations from (2) for all possible
combinations of 1 ≤ i < j ≤ t we see that indeed (3) holds.

More precisely, it follows that the sum L+ over all lm,m ∈ Sβi plus
max{0, v∞(ui)}, and the sum L− over all lm,m ∈ S∞ plus −min{0, v∞(ui)},
is bounded by n− 1.

This can be immediately improved by an application Zannier’s theorem.
First let us define ut+1 := 1. The k-vector space generated by the S-units
u1, . . . , ut, ut+1 ∈ k(x) has dimension 2 and any two of the ui are linearly
independent, because αui + βuj = 0 with α, β ∈ k implies either ui ∈ k, a
contradiction, or αui + β(ui − βj + βi) = (α + β)ui + β(βi − βj) = 0 and
thus α = β = 0. It follows that

deg ui = L+ = L− ≤ −
∑

v∈M
min{v(u1), . . . , v(ut), 0} ≤ n− 1

t− 1
≤ n− 1

for all i = 1, . . . , t.
Especially, the degree of h is therefore also bounded by n − 1 since it is

equal to the degree of ui for all i = 1, . . . , t, so altogether deg h = deg ui ≤
(n− 1)/(t− 1) ≤ n− 1.

By comparing coefficients in (2) after canceling denominators for all com-
binations of the equations that have to hold there, we get an affine algebraic
variety V (possibly reducible) defined over Q in the variables α1, . . . , αn,
β1, . . . , βt; thus V ⊂ An+t.

We point out that the number of variables and the exponents depend only
on n. Since f(x) = g(h(x)) is given at this point, there are k-rational points
on this algebraic variety and one of them corresponds to (α1, . . . , αn, β1, . . . , βt)
coming from f and g.

Now we turn to the case v∞(g) = 0. Here we have
n∏

i=1

(x− αi)fi =
t∏

j=1

(
p(x)
q(x)

− βj
)kj

=
t∏

j=1

(p(x)− βjq(x))kj .
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Observe that a priori we have no control on the poles of h. However, as the
factors on the right hand side of the last equation are again pairwise coprime,
there is a partition of the set {1, . . . , n} in t disjoint subsets Sβ1 , . . . , Sβt such
that

(p(x)− βjq(x))kj =
∏

m∈Sβj
(x− αm)fm .

Thus kj divides fm for all m ∈ Sβj , j = 1, . . . , t. On putting lm = fm/kj for
m ∈ Sβj we obtain

(4) p(x)− βjq(x) =
∏

m∈Sβj
(x− αm)lm , j = 1, . . . , t.

Note that the exponents lm ∈ N, because p(x)−βjq(x) are polynomials and
the αm’s are distinct. We have already pointed out above that in this case
we may assume that t ≥ 3, since g is not of exceptional shape.

Let us choose 1 ≤ j1 < j2 < j3 ≤ t. From the corresponding three
equations in (4) the so called Siegel identity vj1,j2,j3 + vj3,j1,j2 + vj2,j3,j1 = 0
follows, where

vj1,j2,j3 = (βj1 − βj2)
∏

m∈Sβj3

(x− αm)lm .

The quantities vj1,j2,j3 are non-constant rational functions and they are S-
units. Observe that by taking j1 = 1, j2 = i, j4 = j with 1 ≤ i < j ≤ t the
Siegel identity can be rewritten as

βj − β1

βj − βi
wi
w1

+
β1 − βi
βj − βi

wj
w1

= 1.

Moreover, we get from (4) that

p(x) =
1

βi − βj


βi

∏

m∈Sβj
(x− αm)lm − βj

∏

m∈Sβi
(x− αm)lm




=
βiwj − βjwi
βi − βj(5)

and

(6) q(x) =
1

βi − βj


 ∏

m∈Sβj
(x− αm)lm −

∏

m∈Sβi
(x− αm)lm


 =

wj − wi
βi − βj .

Hence, the numerator of h is in any case given by f, g and the integer vector
(l1, . . . , ln).

The Mason-Stothers theorem applied to the Siegel identity now implies
that lm ≤ n − 1 for m ∈ Sβ1 ∪ Sβi ∪ Sβj ; as we may choose e.g. i = 2 and
j = 3, . . . , t we have actually lm ≤ n− 1 for m ∈ {1, . . . , n}.

More precisely it follows for every i that the sum over all lm with m ∈ Sβi
is bounded by n− 1, hence by (5) and (6) it follows that the degrees of p, q
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and hence, since the degree of a rational function is the maximum of the
degrees of the numerator and denominator in a reduced representation, the
degree of h is bounded by n− 1.

Again this can be improved: We take wt+1 := w1. Then the S-units
w2/w1, . . . , wt/w1, wt+1/w1 = 1 span a k-vector space of dimension 2 and
any two are linearly independent, because the wi are pairwise coprime poly-
nomials and a constant quotient wi/w1 would imply that h is constant,
a contradiction, and if αwi/w1 + βwj/w1 = 0 for 1 ≤ i < j ≤ t, then
(α − β(βj − β1)/(β1 − βi))wi/w1 + β(βj − βi)/(β1 − βi) = 0 and therefore
β(βj − βi) = 0 which implies β = α = 0.

Thus Zannier’s theorem gives that degwi/w1 ≤ (n−1)/(t−1) and, again
since the wi are coprime polynomials, degwi ≤ (n − 1)/(t − 1) for all i =
1, . . . , t. The definition of h now implies that deg h ≤ (n−1)/(t−1) ≤ n−1.
By taking the Siegel identities as defining equations we again get an alge-
braic variety V ⊂ An+t and (α1, . . . , αn, β1, . . . , βt) is a k-rational point on
this variety.

Finally we point out that we have h(x) = βj + wj/w∞ if v∞(g) 6= 0 and
S∞ = ∅ and h(x) = (βiwj − βjwi)/(wj − wi) otherwise. In conclusion we
have now proved (i).

Now we come to (ii) and (iii). The point is that we get all possible
decompositions of rational functions with at most n zeros and poles alto-
gether by considering for every integer 2 ≤ t ≤ n and for every partition
of {1, . . . , n} into t+ 1 disjoint sets S∞, Sβ1 , . . . , Sβt and for every choice of
(l1, . . . , ln) ∈ {0, 1, . . . , n − 1}n the variety defined by equating the coeffi-
cients given by (2) after canceling denominators and, if S∞ = ∅ and t ≥ 3,
the variety given by the various Siegel identities.

If the first system has a k-rational solution, then (2) defines the rational
function h(x); afterwards for any choice of integers k1, . . . , kt with k1 + · · ·+
kt 6= 0 we define a rational function g(x) by (1). If the second system has
a k-rational solution, then we define h(x) = p(x)/q(x) by (5) and (6) and
then for any choice of integers k1, . . . , kt with k1 + · · ·+ kt = 0 we define a
rational function g(x) again by (1). Finally, in both cases, we use

f(x) =
t∏

j=1

( ∏

m∈Sβj
(x− αm)lm

∏

m∈S∞
(x− αm)−lm

)kj
=

t∏

j=1

(wj/w∞)kj

to define the rational function f , which then has at most n zeros and poles
altogether and for which f(x) = g(h(x)) holds.

The number J of possible varieties is at most 2np(n)nn, where p(n) is
the partition function and since everything above is completely explicit, the
defining equations of the varieties can be found explicitly. This proves the
remaining parts of the statement.
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6. The algorithm for the computation of the exceptions

The proof of the Theorem implies an algorithm for the computation of
all decomposable rational functions of given number of singularities. It was
implemented by Szabolcs Tengely in MAGMA. We report about the results
of the computation in [3]. In the following pseudocode we use the same
notation as in the theorem. Especially n denotes the number of singularities.

1) Let S∞, Sβ1 , . . . , Sβt be a partition of {1, 2, . . . , n}.
2) For the partition and a vector (l1, . . . , ln) ∈ {1, 2, . . . , n}n compute the
corresponding variety V = {v1, . . . , vr}, where vi is a polynomial in α1, . . . , αn,
β1, . . . , βt. Here we used Groebner basis technique.
3) To remove contradictory systems we compute

Φ =
∏

i6=j
(αi − αj)

∏

i6=j
(βi − βj).

4) For all vi compute

ui1 =
vi

gcd(vi,Φ)
,

and

uik =
uik−1

gcd(uik−1
,Φ)

,

until gcd(uik−1
,Φ) = 1.

As the cases n = 1, 2 are trivial we performed the algorithm for n = 3 and
n = 4 and obtained a complete list of all decomposable rational functions
with number of singularities at most three or four. We have several sporadic
examples for n > 4 too, but the number of partitions to be considered grows
very fast, and we do not understand yet how to exclude very early the
contradictory systems or systems of similar shape.

For n = 3 there are nine exceptions, but only two are essentially different.
The first was shown in Section 2. The second is the following.

g(x) = (x− β)(x− β − 4α1 + 4α2),

h(x) = β +
(x− α2)2

x− α1
,

f(x) =
(x− α2)2(x− 2α1 + α2)

(x− α1)2
,

where α1, α2, β ∈ k.
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For n = 4 we found several hundred exceptions. We give here only one
example:

g(x) = (x− β)(x− β + 1),

h(x) = β +
(
x− 9α+

√−3
9

)(
x− 3α+

√−3
3

)−3

,

f(x) =
(
x− 9α+

√−3
9

)(
x− α−√−3

)
(x− α)2

(
x− 3α+

√−3
3

)−6

,

with α, β ∈ k.
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