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Partitions

Let A ⊂ N be given and take n ∈ N. By an A-partition λ = (λ1, . . . , λk ), of a
non-negative integer n with parts in A, we mean a representation of n in the form

n = λ1 + . . .+ λk ,

where λi ∈ A. The representations of n di�ering only in order of the terms are
counted as one. We also put

PartA(n) = {λ : λ is A-partition of n},

and consider the corresponding partition function

PA(n) := # PartA(n).
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It is well know that the ordinary generating function of the sequence (PA(n))n∈N
takes the form ∏

a∈A

11− xa = ∞∑
n=0 PA(n)xn.

In particular, if A = N, then PA(n), simply denoted as p(n), is the famous partition
function introduced by Euler and extensively studied by Ramanujan.
If W is a certain property which can be applied to the parts of a given A-partition
λ of a positive integer n, then by PA(W, n) we denote the number of A-partitions
of n which have the property W. Thus, by a partition identity we mean an identity
of the form

PA1(W1, n) = PA2(W2, n),
where A1,A2 ⊂ N and W1,W2 are given properties.
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Classical results

We have that
∞∏

j=1
11− x j = ∞∑

n=0 p(n)xn.

Euler pentagonal number theorem:

∞∏
j=1(1− x j ) = ∞∑

−∞
(−1)nxn(3n+1)/2.

Jacobi triple product identity:

∞∏
n=1(1− x2n)(1 + x2n−1z2)(1 + x2n−1z−2) = ∞∑

−∞
xn2z2n.
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Classical results

Euler's famous identity:

PN(distinct parts, n) = PN(odd parts, n)
that is

∞∏
n=1(1 + xn) = ∞∏

n=1
11− x2n−1 .

Rogers-Ramanujan type identities:

∞∏
n=1

1(1− x5n−1)(1− x5n−4) = ∞∑
n=1

xn2(1− x)(1− x2) · . . . · (1− xn) ,
∞∏

n=1
1(1− x5n−2)(1− x5n−3) = ∞∑

n=1
xn2+n(1− x)(1− x2) · . . . · (1− xn) .
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Polynomial values: f (m) = PA(W, n) 6= 0
The Ramanujan congruences:

p(5n + 4) ≡ 0 (mod 5), p(7n + 5) ≡ 0 (mod 7), p(11n + 7) ≡ 0 (mod 11).
The equations

p(n) = 5m, p(n) = 7m, p(n) = 11m

have in�nitely many solutions in positive integers.
Lovejoy obtained similar results in case of p(n| distinct parts), for example

p(26645n + 76| distinct parts) ≡ 0 (mod 5).
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It was conjectured by Erd®s that if m is prime, then there is at least one
non-negative integer nm for which

p(nm) ≡ 0 (mod m).
Nicolas, Ruzsa and Sárközy in 1998 constructed a set
A = {1, 2, 3, 5, 8, 9, 10, 13, . . .} by recursion such that PA(n) is even if n ≥ 4.
In 2000 Ono proved that

p
(

mk l3n + 124
)
≡ 0 (mod m),

where m ≥ 5 is a prime, k is a positive integer and gcd(n, l) = 1 (for a positive
proportion of the primes l).
As a special case one has that

p(594 · 13n + 111247) ≡ 0 (mod 13).
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Recently (May 2022, arXiv), Zheng considered the function g(n) counting the
number of partitions of n in which no part appears exactly once. For example
g(6) = 4 since

6 = 3 + 3 = 2 + 2 + 2 = 2 + 2 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1.
It is proved that

g
(

ml3n + 124
)
≡ 0 (mod m),

where m ≥ 5 is a prime and gcd(n, l) = 1 (for a positive proportion of the primes
l).
As a special case one has

g(102487n + 1941) ≡ 0 (mod 7).
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In May 2022 (arXiv) Kronenburg described two algorithms to compute the
number of integer partitions of n into exactly m parts.
In May 2022 (arXiv) Binner studied the number of partitions of n into parts not
divisible by m. The following formula was obtained

Pm(n) = p(n) +∑
k≥1(−1)k (p

(
n − mk (3k − 1)2

)+ p
(

n − mk (3k + 1)2
))

.

If n = 17 and m = 3, then one has that

P3(17) = p(17)− p(14)− p(11) + p(2).
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Counting the rationals

Construction by Calkin and Wilf (2000):

{b(n)}n≥∞ = {1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, . . .}.
The fractions b(n)

b(n+1) :
1, 12 , 2, 13 , 32 , 23 , 3, 14 , 43 , 35 , 52 , 25 , 53 , 34 , 4, 15 , 54 , 47 , 73 , 38 , 85 , 57 , 72 , 27 , 75 , 58 , 83 , 37 , 74 , 45 , 5,16 , 65 , 59 , 94 , 411 , 117 , 710 , 103 , 311 , 118 , 813 , 135 , 512 , 127 , 79 , 92 , 29 , 97 , 712 , 125 , 513
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Counting the rationals

The sequence b(n) is the number of ways of writing the integer n as a sum of
powers of 2, each power being used at most twice. For example5 = 4 + 1 = 2 + 2 + 1, hence b(5) = 2.
Every positive rational occurs once and only once in this list.
One has that b(0) = 1 and

b(2n + 1) = b(n) b(2n + 2) = b(n + 1) + b(n).
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Formulas

If the part are from some "small" sets {1, 2, . . . ,m}, then there exist formulas
(method by Cayley and MacMahon):

P{1}(n) = 1,
P{1,2}(n) = ⌊n2⌋+ 1,
P{1,2}(n) = 2n + 3 + (−1)n4 ,

P{1,2,3}(n) = (n + 3)212 + ω(n), where ω(n) ∈ {−1/3,−1/12, 0, 1/4},
P{1,2,3,4}(n) = {(n + 5)(n2 + n + 22 + 18 ⌊n2⌋)/144)} ,

where {·} denotes the nearest integer
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The equation P3(x) = Pn(y) for n = 4, 5
Theorem 1 (Ulas-Tengely)
The Diophantine equation P3(x) = P4(y) has in�nitely many solutions in integers.

Theorem 2 (Ulas-Tengely)
The equation P3(x) = P5(y) has only �nitely many solutions in positive integers.
More precisely, the pair (x , y) is a solution if and only if (x , y) ∈ A, where
A = {(1, 1), (2, 2), (3, 3), (5, 4), (6, 5), (8, 6), (16, 10), (18, 11), (26, 14),(45, 20), (174, 45), (217, 51), (457, 77), (468, 78), (701, 97), (10093, 388)}.
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Conjecture
There are in�nitely many values of a ∈ N≥4 such that for A = {1, 2, 3, a}, the Dio-
phantine equation P3(x) = PA(y) has in�nitely many solutions in positive integers.
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Proof of Theorem 1

De�ne Pi,6,3(n) = P3(6n + i) and observe that

P0,6,3(n) = 3n2 + 3n + 1, P1,6,3(n) = (n + 1)(3n + 1),
P2,6,3(n) = (n + 1)(3n + 2), P3,6,3(n) = 3(n + 1)2,
P4,6,3(n) = (n + 1)(3n + 4), P5,6,3(n) = (n + 1)(3n + 5).

By de�ning P2i+1,6,4(n) = P4(6n + 2i + 1) for i = 0, 1, 2 and
P2i,12,4(n) = P4(12n + 2i) for i = 0, 1, . . . , 5, we get polynomials as well, e.g.

P0,12,4(n) = 12n3 + 15n2 + 6n + 1.
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Proof of Theorem 1

(i, j) integral solutions (x , y) of Pi,6,3(x) = P2j+1,6,4(y)(0, 0) (0, 0)(0, 1) (0, 0)(1, 1) (8, 4), (6533, 439)(1, 2) (293, 54)(3, 1) ((t − 1)(2t2 + 2t + 1), 2(t − 1)(t + 1)), t ∈ N+(3, 2) (2t3 + t − 1, 2t2 − 1), t ∈ N+(5, 1) (5, 3)(i, j) integral solutions (x , y) of Pi,6,3(x) = P2j,12,4(y)(0, 0) ((t − 1)(2t2 − t + 1), 2(t − 1)t), t ∈ N+(1, 0) (0, 0)(2, 1) (0, 0)(3, 4) (2t3 + 3t2 + t − 1, t2 + t − 1), t ∈ N+(5, 2) (0, 0)
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Proof of Theorem 2

Special thanks to Nikos Tzanakis sharing ideas to complete the proof of this result.

We have that P5(60n + i), i ∈ {0, . . . , 59} is a polynomial in variable n. We need
to consider 6 · 60 = 360 equations of the form Y 2 = quartic. We may apply the
MAGMA procedure IntegralQuarticPoints() based on a paper by Tzanakis. It
worked well in all except the 8 cases, where the MAGMA function failed to
determine the complete set of integral solutions. These 8 problematic equations
are of the form

P3(6y + i) = P5(60x + j)
for

(i, j) ∈ A = {(3, 9), (3, 12), (3, 21), (3, 24), (3, 33), (3, 36), (3, 48), (3, 57)}.
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Proof of Theorem 2

The equations corresponding to (i, j) = (3, 48), (3, 57) are of the following form

Y 2 = u(54000u3 − 16200u2 + 1410u − 18),
Y 2 = u(54000u3 + 16200u2 + 1410u + 18),

respectively, where u = x + 1. In both cases we obtain that u is a square
multiplied by a divisor of 18. Therefore we need to handle the equations

(2δ2v )2 = (60δu)3 − 18δ(60δu)2 + 94δ2(60δu)− 72δ3,
where δ ∈ {±1,±2,±3,±6,±9,±18}.
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Proof of Theorem 2

In the remaining 6 cases, we observed that the discriminant of
P3(6y + i) = P5(60x + j) with respect to y is equal to

F (u) = 432u4 + 648u3 + 282u2 + 18u,

for suitable substitution of the form u = ax + b (depending on values of i, j).
Therefore we only need to determine integral points on the curve72u4 + 108u3 + 47u2 + 3u = 30v2.
We obtain that 3 divides u, so u = 3u1 for some integer u1. We have that

u1(648u31 + 324u21 + 47u1 + 1) = 30v21 , where v = 3v1.
The factorization yields the following elliptic curves

X3 +324δX2 +30456δ2X +419904δ3 = Y 2, where δ ∈ {1, 2, 3, 5, 6, 10, 15, 30}.
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Results related to P{1,2,a}(n)
Earlier results by Ehrhart, Sertöz and Özlük, here we need explicit coe�cients.
Let a ∈ N≥3 and put A = {1, 2, a}. If a = 2c for some c ∈ N≥2 then

PA(4cn+i) = 2cn2+(c + 2⌊ i2
⌋+ 2) n+{ ⌊ i+22 ⌋ , i ∈ {0, . . . , 2c − 1}2 ⌊ i2⌋+ 2− a, i ∈ {2c, . . . , 4c − 1} .

If a = 2c + 1 for some c ∈ N+ then

PA(2(2c + 1)n + i) = (2c + 1)n2 + (c + i + 2)n
+{ ⌊ i+22 ⌋ , i ∈ {0, . . . , 2c}

i + 1− a, i ∈ {2c + 1, . . . , 4c + 1}.
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Results related to P{1,2,a}(n)
Theorem 3 (Ulas-Tengely)
Let a ∈ N≥3 and put A = {1, 2, a}. The Diophantine equation y2 = PA(x) has
in�nitely many solutions in positive integers.

The proof is based on Pell-equations. Let a be even, i.e., a = 2c for some c. We
have that PA(4cn) = 2cn2 + (c + 2)n + 1 = y2. The lines through (0, 1) can be
written as y = mn + 1. Therefore we get that 2cn2 + (c + 2)n + 1 = (mn + 1)2 ,
that is n = 0 or n = c+2−2m

m2−2c . Here m = u/v is a rational parameter, so we have
that

n = (c + 2)v2 − 2uv
u2 − 2cv2 .

For our assumption, a = 2c is not a square, then we consider the Pell-equation
u2 − 2cv2 = 1 and denote the sequence of positive integer solutions by (uk , vk ). In
this case it follows that n = (c + 2)v2

k − 2ukvk and y = (c + 2)ukvk − 2u2
k .
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Results related to P{1,2,a}(n)
Theorem 4 (Ulas-Tengely)
Let a, b ∈ N≥3, a < b such that a, b are divisible by 4 and either a/2 or b/2 is not a
square. Put A = {1, 2, a},B = {1, 2, b}. The Diophantine equation PA(x) = PB(y)
has in�nitely many solutions in positive integers.

Let a = 2s and b = 2t . We have that

PA(4sn) = 2sn2 + (s + 2)n + 1,
PB(4tm) = 2tm2 + (t + 2)m + 1.

Suppose that a/2 = s is not a square. We get that

m = (s + 2)/2uv − (t + 2)/2v2
v2 − su2 .

The integer s is not a square, hence we consider the sequence of positive solutions(uk , vk ) of the Pell-equation v2 − su2 = 1. For these solutions we have
m = (s + 2)/2ukvk − (t + 2)/2v2

k and n = (s + 2)/2u2
k − (t + 2)/2ukvk . 22/39



Conjecture
Let a, b ∈ N≥3, a < b and put A = {1, 2, a},B = {1, 2, b}. The Diophantine
equation PA(x) = PB(y) has in�nitely many solutions in positive integers.
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The equation PA(x) = PB(y)
Theorem 5 (Ulas-Tengely)
Let a ∈ N≥3, b ∈ N≥4 and put A = {1, 2, a},B = {1, 2, 3, 4, b}. If a ≡1, 2, 5, 7, 11, 10 (mod 12) and b = 4a, then the Diophantine equation PA(x) =
PB(y) has in�nitely many solutions in positive integers.

We present the values of i, j such that the polynomial PA(2am + i)− PB(3bn + j)
is reducible.
Let a = 6k + 1, b = 4a, i = 11k , j = 3(8k − 1). Then
PA(2am + i)− PB(3bn + j) = R1(m, n)R2(m, n), where

R1(m, n) = m − 3(6k + 5)n2 − 2(9k + 7)n − 4k + 1,
R2(m, n) = (6k + 1)m + 3(6k + 1)2n2 + 2(6k + 1)(9k + 1)n + 24k2 + 12k + 1.

Thus, if m = 3(6k + 5)n2 + 2(9k + 7)n + 4k − 1 then PA(2am + i) = PB(3bn + j)
and our equation has in�nitely many solutions. 24/39



The equation PA(x) = PB(y)
We proved that for many choices of sequences A,B, the corresponding
Diophantine equation PA(x) = PB(y) has in�nitely many solutions in positive
integers. However, in each case under consideration we had min{#A,#B} ≤ 3.

Question
Let A,B ⊂ N+. Let us suppose that the Diophantine equation PA(x) = PB(y) has
in�nitely many (non-trivial) solutions in positive integers. How large the numbermin{#A,#B} can be?

25/39



The equation PA(x) = PB(y)
Let us explain what a trivial solution means. More precisely, if for example
A = {1, pa2, . . . , pak} then if PA(pn) is a non-zero, then in each representation

1 · x1 + k∑
i=2 paixi = pn

we need to have p|x1 and thus we get a representation

1 · y1 + k∑
i=2 aixi = n.

It is clear that this mapping can be reversed. Thus, by taking B = {1, a2, . . . , ak}
we have the boring identity PA(pn) = PB(n).
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The equation PA(x) = PB(y)
We considered equations of the form PA(x) = PB(y), where A,B are sets having 5
elements from {1, 2, . . . , 10} and one of the elements is 1. We searched for
reducible polynomials PA(x)− PB(y) having a linear or quadratic factor. We
implemented a parallel algorithm and used SageMath on a machine having 16
cores. It took about 10 hours to determine the appropriate polynomials. There are
44982 such cases. Among these polynomials we looked for examples providing
in�nitely many integral solutions. To reduce the time of computation a timeout
was set to be 60 seconds. There are 392 cases for which the 60 seconds were not
su�cient to compute the result. There are 2338 quadratic equations that yield
in�nitely many integral solutions and 2100 linear equations that provide
parametric solutions. However, even in the case of reducibility we sometimes get
factors without positive integer solutions.
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The equation PA(x) = PB(y)
Let A = {1, 2, 4, 5, 6} and B = {1, 4, 6, 9, 10}. Here we obtain that
PA(60m + 22)− PB(180n + 111) is, up to a constant factor, equal to
f1(m, n)f2(m, n), where

f1(m, n) = 150m2 + 450n2 + 155m + 630n + 259,
f2(m, n) = 30m2 − 90n2 + 31m − 126n − 36.

The equation f1(m, n) = 0 has no solution modulo 5. The equation f2(m, n) = 0
has in�nitely many integral solutions. However, all are negative.
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The equation PA(x) = PB(y)
Let A = {1, 2, 3, 4, 6},B = {1, 2, 4, 5, 10}. It follows that
PA(12m + 1)− PB(20n + 1) = 1/6h1(m, n)h2(m, n), where

h1(m, n) = 6m2 + 10n2 + 9m + 12n + 5
h2(m, n) = 6m2 − 10n2 + 9m − 12n.

The equation h1(m, n) = 0 can be written as

15(36m + 27)2 + (180n + 108)2 = 6399,
and it follows that the only integral solution is given by (m, n) = (−1,−1). The
equation h2(m, n) = 0 has in�nitely many positive integral solutions, the two
smallest being (m, n) = (2928, 2268), (11252256, 8715960).
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The equation y2 = PA(x)
In case of #A = 5 there is a large number of sets such that PA(LAn + i) is a
square of a polynomial in n. More precisely, with the constraint max(A) ≤ 15,
there are exactly 119 di�erent pairs (A, i) such that PA(LAn + i) is a square of a
polynomial with integer coe�cients. For example, if A = {1, 2, 8, 10, 15}, then
LA = 120 and for i = 1, 11, 41, 43, 73, 83, 91, 113 we have PA(LAn + i) is a square
of a polynomial. In particular,

PA(120n + 1) = (4n + 1)2(15n + 1)2.
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The equation y2 = PA(x)
A LA i
{1, 2, 8, 10, 15} 120 1, 11, 41, 43, 73, 83, 91, 113
{1, 4, 5, 10, 12} 60 12, 16, 36, 52
{1, 4, 8, 9, 12} 72 1, 13, 19, 25, 37, 43, 49, 61, 67
{1, 5, 6, 8, 10} 120 2, 8, 13, 17, 32, 37, 53, 58, 73, 77, 82, 88, 97, 98, 112, 113
{2, 3, 7, 8, 14} 168 32, 102, 144, 158
{2, 4, 5, 6, 10} 60 12, 16, 17, 21, 36, 41, 52, 57
{3, 4, 6, 9, 12} 36 3, 7, 11, 27, 31, 35
{3, 5, 6, 9, 15} 90 18, 23, 24, 28, 29, 34, 54, 59, 64, 78, 83, 88
{4, 5, 6, 12, 15} 60 27, 51
{4, 7, 9, 12, 14} 252 58, 64, 142, 148, 226, 232
{5, 6, 8, 9, 10} 360 8, 29, 53, 74, 89, 98, 104, 113, 128, 149, 173, 194, 209,218, 224, 233, 248, 269, 293, 314, 329, 338, 344, 353
{5, 7, 9, 14, 15} 630 47, 113, 173, 197, 257, 323, 383, 407, 467, 533, 593, 617
{7, 8, 10, 14, 15} 840 182, 212, 364, 422, 574, 604, 812, 814 31/39



The equation y2 = PA(x)
We were able to �nd only one set A with 7 elements, max(A) ≤ 10 such that
y2 = PA(x) has in�nitely many solutions in positive integers. More precisely, if
A = {1, 2, 4, 5, 8, 9, 10} then

PA(360n + 95) = 25(3n + 1)2(18n + 5)2(36n + 13)(40n + 13),
PA(360n + 226) = 25(3n + 2)2(18n + 13)2(36n + 23)(40n + 27).

One can easily check that the factor (36n + 13)(40n + 13) is a square in�nitely
often. The smallest values of n which makes this factor a square, are
n = 0, 494, 712842, . . ..
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The equation y2 = Pk (x)
A di�cult and still unsolved question is whether the number p(n) can be a perfect
power. Let us recall that p(n) counts the number of all partitions of n, i.e.,

∞∏
n=1

11− xn = ∞∑
n=0 p(n)xn.

In other words, we do not know any example of n ≥ 2 such that yk = p(n) for
some k ∈ N≥2. In fact Zhi-Wei Sun conjectured that the equation yk = p(n) has
no solutions in positive integers n, y, k with k ≥ 2. Let us also note that
Alekseyev checked that there are no solutions with n ≤ 108.
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The equation y2 = Pk (x)
Theorem 6 (Ulas-Tengely)
The equation y2 = P5(x) has only �nitely many solutions in positive integers. More
precisely, the pair (x , y) is a solution if and only if (x , y) = (1, 1), (2027, 77129).

We have 60 curves of the form y2 = P5(60n + i), i ∈ {0, . . . , 59}. If
i ∈ {5, 20, 25, 40} the corresponding quartic has no Q5-rational points, and thus
has no rational points at all. The solution (1, 1) comes from the equation
y2 = P5(60n + 1) with n = 0. The solution (2027, 77129) comes from the
solution (n, y) = (33, 77129) of the equation y2 = P5(60n + 47).
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The equation y2 = Pk (x)
The procedure IntegralQuarticPoints() works well, except in 6 special cases.
Here we get warnings about time-consuming �nal enumerations. The 6
problematic polynomials correspond to i ∈ {21, 24, 48, 51, 54, 57}.
The equations (up to multiplication by 16) corresponding to i = 21, 24 give the
following equations

5y2 = u(36u3 + 108u2 + 34u + 12), u = 5(2x + 1),5y2 = u(36u3 − 108u2 + 34u − 12), u = 2(5x + 3),
respectively. Hence we need to resolve the following elliptic equations

Y 2 = X3 + 108δX2 + 3384δ2X + 15552δ3,
where δ divides 60.

35/39



The equation y2 = Pk (x)
For i ∈ {48, 51, 54, 57} after the substitution u = 2(x + 1) we get the following
quartic equations

y2 = u(4500u3 − 2700u2 + 470u − 12),
y2 = u(4500u3 − 900u2 − 70u + 4),
y2 = u(4500u3 + 900u2 − 70u − 4),
y2 = u(4500u3 + 2700u2 + 470u + 12).
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The equation y2 = Pk (x)
The case of the equation y2 = P6(x) is far more di�cult. To get the solutions we
need to consider 60 genus 2 curves

Ci : y2 = P6(60x + i), i = 0, . . . , 59.
Let Ji = Jac(Ci) be the Jacobian of the curve Ci and by ri denote the rank of Ji.
We checked that ri ≤ 5 for 0 ≤ i ≤ 59.
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The equation y2 = Pk (x)
r values of i such that ri ≤ r0 3, 14, 34, 47, 50, 51, 55, 591 18, 22, 27, 32, 35, 38, 41, 43, 44, 45, 46, 542 0, 7, 8, 9, 15, 23, 24, 25, 26, 28, 29, 30, 33, 36, 37, 39, 40, 42, 49, 52, 53, 57, 583 2, 5, 6, 11, 17, 31, 484 4, 10, 13, 16, 19, 20, 21, 565 1, 12

Upper bounds for the Q-rank of the Jacobian Ji of the curve
Ci : y2 = P6(60x + i) for i = 0, . . . , 59.
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The equation y2 = Pk (x)
It is curious that the polynomial P6(60x + i) is reducible (in the ring Q[x ]) for
i ∈ {40, . . . , 59} and thus, instead of working with genus two curve we need to
play with certain curves of the type y2 = Qi(x), where Qi is quartic.
Among the above curves there are some for which we were not able to obtain
Mordell-Weil bases, these are as follows

i ∈ {15, 16, 23, 24, 27, 28, 29, 31, 32, 33, 35, 36, 38, 39}.
The most interesting one may be the hyperelliptic curve given by

y2 = 12x5 + 1125x4 + 41960x3 + 778050x2 + 7171020x + 26276400,
corresponding to the curve C27 : y2 = P6(60x + 27). In this case the rank is 1,
however we were unable to �nd a generator of the Mordell-Weil group.
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