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1. Bevezető

A nyilvános kulcsú kriptográfiai algoritmus radikális változásokat hozott a
titkosítási módszerek tekintetében [6]. A hagyományos egykulcsos titkosítással
szemben, mely során ugyanazt a kulcsot használjuk a kódolás és a dekódolás
során is, a nyílvános kulcsú algoritmusok matematikai függvényeken alapulnak,
és asszimetrikusak. Két kulcs használatával járnak, egy a titkosításhoz és egy tőle
különböző a visszafejtéshez szükséges, továbbá az asszimetrikus titkosításra tel-
jesül az a fontos tulajdonság, miszerint számítási szempontból megvalósíthatatlan
a visszafejtő kulcs kiszámítása csak az algoritmus és a publikus kulcs ismeretében.
Néhány ilyen algoritmus esetén a titkosító és visszafejtő kulcs fel is cserélhető, pl.:
RSA.

A titkosítás lépései:

1. Minden rendszer generál egy kulcspárt.

2. Minden rendszer közzé teszi titkosítási kulcsát, ezt nevezzük publikus kulcs-
nak, illetve titokban tartja annak párját, amit privát kulcsnak hívunk.

3. Ha A üzenetet szeretne küldeni B-nek, akkor B publikus kulcsával titkosítja
az üzenetét.

4. Amikor B megkapja az üznetet, a titkos kulcsa segítségével dekódolja az
üzenetet. Más nem tudja visszafejteni az üzenetet, mert csak B ismeri a
privát kulcsot.

Az algoritmus követelményei:

Bármely nyilvános kulcsú titkosítási algoritmusra teljesülnek a következő követelmények,
melyeket Whitfield Diffie és Martin Hellman fogalmaztak meg:

• B-nek a kulcspár (publikus(KU) és privát(KR)) generálása könnyen szá-
molható.

• A-nak a publikus kulcs (KUb) tudatában könnyen kiszámítható a titkosított
szöveg és így el tudja küldeni a megfelelő kriptoszöveget. C = EKUb

(M),
E a titkosító függvény, M pedig az üzenet.
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4 FEJEZET 1. BEVEZETŐ

• B-nek szintén könnyen számítható a privát kulcsa (KRb) segítségével a krip-
toszövegből visszafejteni az eredeti szöveget.

M = DKRb
(C) = DKRb

[EKUb
(M)],

ahol D a dekódoló függvény.

• Egy külső személynek lényegében lehetetlen KUb-ból KRb-t kiszámolni.

• Csak KUb és C tudatában lényegében lehetetlen visszafejteni M -et.

• A titkosítás és a visszafejtés bármilyen sorrendben elvégezhető:

M = EKUb
[DKRb

(M)] = DKRb
[EKUb

(M)].

A fenti "könnyen kiszámítható", "lényegében lehetetlen" fogalmak nincsenek mate-
matikailag pontosan definiálva, mégis a gyakorlatban számos kriptorendszer biz-
tonsága alapszik rajtuk.

Az NTRU az egyik leggyorsabb ma ismert, nyílvános kulcsú kriptográfiai al-
goritmus, melyet 1996-ban prezentált Jeffery Hoffstein, Jill Pipher és Joseph H.
Silverman [3]. Biztonsága a legrövidebb vektor problémán alapszik. Ebben a dol-
gozatban az NTRU titkosítás és néhány változata kerül bemutatásra.
A szakdolgozat írása közben létrejött egy cikk is, melyet 2020 júniusában mutatott
be Hayder Hashim a "20th Central European Conference on Cryptology" konfe-
rencián. Az előadás anyaga az alábbi linken elérhető: https://web.math.pmf.unizg.
hr/cecc2020/files/hashim-molnar-tengely-talk.pdf.



2. NTRU

Először az alap NTRU felépítése és működése kerülne bemutatásra.

Legyen R = Z[x]/(xn − 1) polinomgyűrű, melyben legfeljebb (N − 1)-edfokú
polinomok vannak. Az NTRU algoritmus műveleteit ebben a gyűrűben végezzük.
Szükségünk van három egész paraméterre: N , p, q úgy, hogy (p, q) = 1. p-t kicsi,
q-t pedig nagy modulusnak nevezzük. Legyenek továbbá Lm, Lf , Lg és Lr ⊆ R

olyan halmazok, melyekben kis együtthatós polinomok vannak.

Publikus kulcs generálása:

Véletlenszerűen vegyünk két polinomot, f ∈ Lf -et és g ∈ Lg-t. f -et úgy kell
megválasztanunk, hogy legyen inverze (mod p) és (mod q). Modulo p úgy dol-
gozunk, hogy a szokásos [0, p−1] intervallum helyett a

[
−p+1

2 , p−1
2

]
intervallumot

használjuk.
Fp ∗ f ≡ 1 (mod p),

Fq ∗ f ≡ 1 (mod q).

Ebből tudjuk megadni a publikus kulcsot, h-t:

h ≡ pFq ∗ g (mod q).

2.1. Kódolás

Az üzenetet egy olyan m polinommal reprezentáljuk, hogy m ∈ Lm és re-
dukáljuk m együtthatóit modulo p szerint. Választunk még egy véletlenszerű
polinomot, úgynevezett maszatoló változót, r ∈ Lr-t. Ennek a segítségével kapjuk
meg a titkosított üzenetet a következő módon:

e ≡ r ∗ h+m (mod q).
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6 FEJEZET 2. NTRU

Példa SageMath-ban:

1sage: def cmap(t,p):
2....: if (ZZ(t)%p)>(p//2):
3....: return ((ZZ(t)%p)-p)
4....: else:
5....: return ZZ(t)%p
6sage: Zx.<X>=ZZ[]
7sage: N=7
8sage: p=3
9sage: q=41
10sage: f=X^6+X^5-X^3-X^2-X-1
11sage: g=X^6+X^4-X^3+1
12sage: Pp.<b>= PolynomialRing(GF(p))
13sage: Pq.<c>= PolynomialRing(GF(q))
14sage: fp=Pp(f).inverse_mod(b^N-1)
15sage: fq=Pq(f).inverse_mod(c^N-1)
16sage: h=(p*fq*Pq(g))%(c^N-1)
17sage: "publikus␣kulcs:", h
18(’publikus␣kulcs:’, 25*c^6 + 6*c^5 + 40*c^4 + 17*c^3 +

23*c^2 + 30*c + 20)
19sage: r=X^6-X^5+X-1
20sage: m=-X^5+X^3+X^2-X+1
21sage: em=(Pq(r)*h)%(c^N-1)+Pq(m)%(c^N-1)
22sage: "kodolt␣uzenet:", em
23(’kodolt␣uzenet:’, 12*c^6 + 38*c^5 + 40*c^4 + 26*c^2 +

36*c + 13)
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2.2. Dekódolás

A kapott e titkosított üzenetet és az f publikus kulcsot összeszorozzuk, így kapjuk
a-t.

a ≡ f ∗ e (mod q)

≡ f ∗ (r ∗ h+m) (mod q)

≡ f ∗ h ∗ r + f ∗m (mod q)

≡ pf ∗ Fq ∗ g ∗ r + f ∗m (mod q)

≡ pg ∗ r + f ∗m (mod q).

Végezetül az egyenletet modulo p vesszük:

a ∗ Fp≡(p ∗ r ∗ g + f ∗m) ∗ Fp ≡ m (mod p).

24sage: A=(Pq(f)*em)%(c^N-1)
25sage: A
263*c^5 + 30*c^4 + 3*c^3 + 35*c^2 + 9*c
27sage: A1=[cmap(k,q) for k in A.list()]
28sage: Zx(A1)
293*X^5 - 11*X^4 + 3*X^3 - 6*X^2 + 9*X
30sage: "dekodolt␣uzenet:", Zx([cmap(k,p) for k in Pp((Zx

(A1)*Zx(fp))%(X^N-1)).list()])
31(’dekodolt␣uzenet:’, -X^5 + X^3 + X^2 - X + 1)
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2.3. Törés LLL-algoritmussal

Ahogyan a bekezdésben már szó esett róla, az NTRU biztonsága a legrövidebb
vektor problémán alapszik [1], ami a következő: egy tetszőleges Λ rácsban sze-
retnénk megtalálni a legrövidebb v vektort a helyvektorok között. Ebben az
esetben −v is a legrövidebb vektor lesz. A legfőbb elméleti eredményt ezzel kap-
csolatban a Minkowski-tétel tartalmazza, amely a legrövidebb vektor felső határát
adja meg.

Minkowski-tétel: Legyen Λ egy olyan rács, melynek rangjam. Ha λ a legrövidebb
vektor normája, akkor

λ ≤ 2√
π

m

2
!
1
mdetΛ

1
m .

LLL-algoritmus:

Az LLL-redukciós algoritmus egy polinomiális idejű, rácsredukciós algoritmus,
melyet Arjen Lenstra, Hendrik Lenstra és Lovász László találtak ki 1982-ben
és utánuk is lett elnevezve [5]. Máig nem ismert hatékony, polinomiális idejű
algoritmus, mely megoldaná a legrövidebb vektor problémát tetszőlegesen nagy
dimenzióban. Az LLL-algoritmust viszont tudjuk alkalmazni a legrövidebb vektor
közelítéséhez. Ez az algoritmus tulajdonképpen egy, a Gramm-Schmidt eljáráshoz
hasonló módszerrel úgynevezett redukált (majdnem ortogonális) bázist szolgáltat.

Az Rn vektortértben egy {b1,b2, · · · ,bm} bázist c-redukáltnak hívunk akkor
és csak akkor, ha a {b∗1,b∗2, · · · ,b∗m} ortonormált bázisa teljesíti a következő
egyenlőtlenséget i = 1, · · · ,m− 1 esetén:

‖b∗i+1‖2 ≥
‖b∗i ‖2

c
.

Jó redukciót jelent az, ha c értéke kicsi. Nem minden bázis 1-redukálható, de
minden bázis 4

3 -redukálható.

Ha veszünk egy Λ rácsot és annak c-redukált {b1,b2, · · · ,bm} bázisát úgy,
hogy c ≤ 4

3 , akkor a bázis közel orotogonális, abban az értelemben, hogy

m∏
i=1

‖bi‖ ≤ c(m(m−1))/4detΛ.

Ha a c-redukált bázisunk {b1,b2, · · · ,bm}, m a rács rangja, λ pedig a
legrövidebb vektor normája, akkor

‖b1‖ ≤ c(m−1)/4detΛ
1
m ,

‖b1‖ ≤ c(m−1)/2λ.
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Az LLL-algoritmus c > 4
3 -ra polinomiális időn belül megadja a rácsban a

c-redukált bázist.

NTRU törése [8]:

A publikus kulcs kielégíti a

h ≡ g ∗ pFq (mod q)

ekvivalenciát, ezért írhatjuk, hogy f ∗ h ≡ g (mod q). Tekintsük a következőkép-
pen definiált rácsot:

Λ = {(F1, F2) ∈ Rq ×Rq : F1 ∗ h ≡ F2 (mod q)}.

Nyílvánvaló, hogy (f, q) ∈ Λ. Így az f ∗h ≡ g (mod q) egyenlet helyett írható,
hogy

f ∗ h− u ∗ q = g

néhány u ∈ Rq esetén. Ez megegyezik azzal, hogy(
f

g

)
=

(
1 0

h q

)(
f

−u

)
.

Vagy még hasznosabb alakban:

f0

f1
...

fN−1

g0

g1
...

gN−1


=



1 0 · · · 0 0 0 · · · 0

0 1 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 0 0 · · · 0

h0 h1 · · · hN−1 q 0 · · · 0

hN−1 h0 · · · hN−2 0 q · · · 0
...

...
. . .

...
...

...
. . .

...
h1 h2 · · · h0 0 0 · · · q





f0

f1
...

fN−1

−u0

−u1
...

−uN−1


.

Mivel az f és g polinomokban lévő együtthatók kicsik, így az (f, g) vektor
rövid lesz a Λ rácsban. Alkalmazható az LLL-algoritmus.
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A korábbi példa törése LLL-algoritmussal Sage-mathban:

32sage: M=matrix (2*N)
33....: for i in [0..N-1]: M[i,i]=1
34....: for i in [N..2*N-1]: M[i,i]=q
35....: for i in [0..N-1]:
36....: for j in [0..N-1]:
37....: M[i+N,j]=((Zx(GF(q)(1/p)*h)*X^i)%(X^N-1))

[j]
38sage: M
39[ 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
40[ 0 1 0 0 0 0 0 0 0 0 0 0 0 0]
41[ 0 0 1 0 0 0 0 0 0 0 0 0 0 0]
42[ 0 0 0 1 0 0 0 0 0 0 0 0 0 0]
43[ 0 0 0 0 1 0 0 0 0 0 0 0 0 0]
44[ 0 0 0 0 0 1 0 0 0 0 0 0 0 0]
45[ 0 0 0 0 0 0 1 0 0 0 0 0 0 0]
46[34 10 35 33 27 2 22 41 0 0 0 0 0 0]
47[22 34 10 35 33 27 2 0 41 0 0 0 0 0]
48[ 2 22 34 10 35 33 27 0 0 41 0 0 0 0]
49[27 2 22 34 10 35 33 0 0 0 41 0 0 0]
50[33 27 2 22 34 10 35 0 0 0 0 41 0 0]
51[35 33 27 2 22 34 10 0 0 0 0 0 41 0]
52[10 35 33 27 2 22 34 0 0 0 0 0 0 41]

A kapott mátrixra tudjuk alkalmazni az LLL-algortitmust, hogy rövid vek-
torokat találjunk, és mivel f és g rövidek, így esélyes, hogy feltűnnek. A Sage-
math beépített függvényként tartalmazza az LLL-t, így könnyen használható.

53sage: f.coefficients(sparse=False)

[−1,−1,−1,−1, 0, 1, 1]

54sage: g.coefficients(sparse=False)

[1, 0, 0,−1, 1, 0, 1]

55sage: M1=M.transpose ().LLL()
56sage: M1
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

−1 1 1 0 −1 −1 −1 1 1 0 1 −1 0 0

−1 −1 0 1 −1 −1 0 1 1 0 1 0 1 −1

0 −1 −1 −1 −1 1 1 1 −1 0 0 1 1 0

−1 0 1 −1 −1 0 −1 1 0 1 0 1 −1 1

0 1 −1 −1 0 −1 −1 0 1 0 1 −1 1 1

1 1 0 −1 −1 −1 −1 1 0 1 −1 0 0 1

−1 1 0 0 1 0 −2 0 0 1 1 −1 0 0

−2 −10 7 −4 6 −3 3 3 −3 2 −2 −8 5 6

−3 1 9 −8 3 −5 4 −5 −4 3 −2 3 9 −5

3 −2 1 9 −7 3 −7 −5 −5 −3 4 −3 3 9

−6 −6 −2 3 −4 −6 1 −5 −10 −1 −5 −8 0 8

−3 −3 −6 4 −9 6 −10 −5 3 −8 −6 −3 −1 0

6 −3 3 −2 −10 7 −4 −8 5 6 3 −3 2 −2

10 −7 4 −6 3 −3 2 3 −2 2 8 −5 −6 −3



Valóban, több sorban is megtalálható f -nek és g-nek valamilyen eltolt alakja.
Ezek mindegyike jó vektor lehet a töréshez. Például, ha az első sort tekintjük,
akkor f -ben az együtthatók listája [-1 1 1 0 -1 -1 -1].

57sage: f=-X^6+X^5+X^4-X^2-X-1
58sage: Zx.<X>=ZZ[]
59sage: N=7
60sage: p=3
61sage: q=41
62sage: Pp.<b>= PolynomialRing(GF(p))
63sage: Pq.<c>= PolynomialRing(GF(q))
64sage: fp=Pp(f).inverse_mod(b^N-1)
65sage: fp

b6 + 2b5 + b4 + 2b2 + 1

66sage: em=12*c^6 + 38*c^5 + 40*c^4 + 26*c^2 + 36*c + 13
67sage: A=(Pq(f)*em)%(c^N-1)
68sage: A

3c4 + 30c3 + 3c2 + 35c+ 9

69sage: A1=[cmap(k,q) for k in A.list()]
70sage: Zx(A1)

3X4 − 11X3 + 3X2 − 6X + 9

71sage: Zx([cmap(k,p) for k in Pp((Zx(A1)*Zx(fp))%(X^N-1)
).list()])

−X5 +X3 +X2 −X + 1
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Hasonlóan a harmadik és hatodik sor első hét tagjából képzett listák jó együtt-
hatói lesznek az f polinomnak és sikeresen visszakaphatjuk segítségével az eredeti
üzenetet. Ha viszont egy másik olyan sorból választunk, ami szintén csak a -1, 0,
1 számokat tartalmazza, akkor hamar elakad az algoritmus, mivel nem lesz f -nek
inverze modulo p.



3. ITRU

Az NTRU ihlette ITRU [2] tirkosítási algoritmus nagyon hasonlít szerkezetében
az előzőekben bemutatott NTRU-hoz, azzal a különbséggel, hogy műveletei a
modulo n maradékosztály-gyűrűben helyezkednek el, amit Z/nZ-vel jelölünk.
Ebben a gyűrűben az összeadás és a szorzás a hagyományos összeadás és szorzás,
csak az eredményt modulo n vesszük.

Az ITRU paraméterei:
A paraméterek a Z/pZ és Z/qZ gyűrűkből vannak.

• p : kis modulus

• q : nagy modulus

• f : a privát kulcs generálásához szükséges privát szám

• g : a publikus kulcs generálásához szükséges random szám

• r : a kriptoszöveg generálásához szükséges random szám

• m : decimális reprezentása az üzenetnek

• Kpr : privát kulcspár, (f, Fp)

• Kpb : publikus kulcs, h

• a : közvetítő paraméter

• C : dekódolt üzenet

3.1. Paraméterek és kulcsok generálása

A kis modulust, p-t, 1000-nek választjuk és hozzá random választunk két
egészet, g-t és r-t. f -et is random számként generáljuk úgy, hogy legyen multi-
plikatív inverze modulo p és modulo q, ahol q > (p · r · g + f ·m) prím. Ezután
meghatározzuk f−1 (mod p)-t, amit Fp-vel illetve f−1 (mod q)-t, amit Fq-val
jelölünk. A kibővített euklideszi algoritmussal ez könnyen számolható.

13
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A kapott inverzek teljesítik a következő feltételeket:

f · Fp ≡ 1 (mod p),

f · Fq ≡ 1 (mod q).

A üzenet decimális alakját az ASCII-táblázat segítségével tudjuk megadni. A
Sage-mathban ezek is rögzítve vannak. Egy karakter ASCII-kódját a "ord( )"
paranccsal, a kódhoz tartozó karaktert pedig a "chr( )" paranccsal tudjuk előhívni.

A privát kulcspárt, a már korábban meghatározott f és Fp adja,

Kpr = (f, Fp).

A publikus kulcsot pedig a következőképpen számoljuk:

Kpb = h = (p · Fq · g) (mod q).

3.2. Kódolás

A kódoláshoz, az NTRU-hoz hasonlóan, szükségünk van egy random paraméterre,
amit r-rel jelölünk és itt egy egész szám. A kódolt üzenetet e-vel jelöljük és az
alábbi módon számoljuk:

e = ((r · h) +m) (mod q).

A kódoló rész interaktív megoldása SageMath-ban:
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Ennek programkódja:

sage: @interact
sage: def itru(s=input_box(’"secret"’,label = "Message:"),
r=slider(8,25,1,3, label="r")):
....: p=1000
....: F=Set([k for k in range(2,50) if gcd(k,1000)==1])
....: f=F.random_element()
....: S=Set([8..25])
....: g=S.random_element()
....: m=[ord(k) for k in s]
....: pretty_print(’The ASCII code of the message:’,m)
....: q=next_prime(p*r*g+255*f)
....: Fp=(1/f)%p
....: Fq=(1/f)%q
....: h=(p*Fq*g)%q
....: pretty_print(’Large modulus:’, q)
....: pretty_print(’Public key:’,h)
....: pretty_print(’Private key pair:’, (f,Fp))
....: e=[((r*h)+m[i])%q for i in [0..len(m)-1]]
....: pretty_print(’The encrypted message:’,e)

3.3. Dekódolás

Hogy megkapjuk az eredeti üzenetet, először a kapott, kódolt üzenetből kiszá-
moljuk a-t:

a = (f · e) (mod q).

Végül a segítségével megkapjuk az dekódolt üzenetet, m-et:

C = (Fp · a) (mod p),

C = m.

Részletes számolás:

Tudjuk, hogy
e = ((r · h) +m) (mod q).

Ezt behelyettesítve az
a = (f · e) (mod q)

egyenletbe kapjuk, hogy

a = (f · (r · h+m)) (mod q)

= (f · r · h+ f ·m) (mod q).
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Figyelembe véve, hogy
h = (p · Fq · g) (mod q),

írhatjuk, hogy
a = (f · r · p · Fq · g + f ·m) (mod q).

Mivel
f · Fq (mod q) ≡ 1,

így
a = (r · p · g + f ·m) (mod q).

q-ról tudjuk, hogy nagyobb, mint (p · r · g + f ·m), ezért a egyenlő lesz
(r · p · g + f ·m)-mel.
Az eredeti üzenetet úgy kapjuk, hogy a-t megszorozzuk Fp-vel a Z/pZ gyűrűben.

C = (f · Fp ·m) + (p · Fp · r · g) (mod p).

Felhasználva, hogy f · Fp (mod p) ≡ 1 és p · Fp · r · g = 0 (mod p),

C = m.

Ezáltal visszakaptuk az eredeti üzenetünket.
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A dekódoló rész interaktív megvalósítása SageMath-ban:

Ennek programkódja:

sage: @interact
sage: def decoditru(e=input_box(’[24839, 24825, 24823, 24838,
24825, 24840]’, label="Encrypted message:"), q=input_box(’134887’,
label="Large modulus"), h=input_box(’70534’, label="Public key"),
Fp=input_box(’963’, label="Fp"),
f=input_box(’27’, label="f")):
....: p=1000
....: a=[(f*e[i])%q for i in [0..len(e)-1]]
....: C=[(Fp*a[l])%p for l in [0..len(a)-1]]
....: D=[chr(k) for k in C]
....: pretty_print(’The original message:’, ’’.join(D))



18 FEJEZET 3. ITRU

3.4. Támadás gyakoriságanalízissel

A példán is jól látható, hogy az ITRU minden karakter ASCII kódján ugyan-
azokat a műveleteket, ugyanazon paraméterekkel hajtja végre, így megfeleltethető
egy lináris kriptorendszernek. Az ilyen titkosítások nem módosítják a karak-
terek előfordulásának gyakoriságát, hanem csak azt, hogy a betűket milyen jel-
lel jelöltük. Egy-egy betű előfordulásának gyakorisága minden nyelvben eltér,
ugyanakkor szigorú szabályoknak is felel meg. [4]

Vegyünk például egy angol nyelvű szöveget:

A B C D E F G H I J K L M
7.3 0.9 3.0 4.4 13 2.8 1.6 3.5 7.4 0.2 0.3 3.5 2.5
N O P Q R S T U V W X Y Z
7.8 7.4 2.7 0.3 7.7 6.3 9.3 2.7 1.3 1.6 0.5 1.9 0.1

A relatív gyakoriság különböző szövegtípusokban eltérő lehet, de ki lehet
választani azokat a karaktereket, amelyek gyakorisága magas, illetve azokat, melyek-
nek alacsony.

Nagy gyakoriságú karakterek: E, T, R, I, O, N, A
Kis gyakoriságú karakterek: J, K, Q, X, Z

Gyakoriságvizsgálattal könnyedén feltörhetünk egy ITRU-val titkosított szöve-
get. Elegendő hozzá megállapítani a kriptoszövegben a leggyakoribb kódot és ha
ebből kivonjuk az eredeti szövegben feltételezett leggyakoribb betű ASCII kódját,
akkor megkapjuk az eltolás mértékét.

Tekintsük a következő angol nyelvű szöveget, melyből előre eltűntettük az
összes szóközt, valamint annak egy titkosítását!

72sage: Text="InordertofurtherenhancethesecurityofNTRU ,"
73sage: Text=Text+"researchhasbeenconductedonothervaria"
74sage: Text=Text+"ntsofNTRU.Somevariantsproposetheuseo"
75sage: Text=Text+"fpolynomialringswithcoefficientsinot"
76sage: Text=Text+"herrings.In2002 ,Gaboritsuggestedtheu"
77sage: Text=Text+"seoftheringofpolynomialsinsteadofthe"
78sage: Text=Text+"ringofintegersandpresentedCTRU [5].Ko"
79sage: Text=Text+"uzmenkosuggestedtheuseofGaussianInte"
80sage: Text=Text+"gersandpresentedGTRUin2006 [6]. Otherv"
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81sage: Text=Text+"ariantsusealternativerings.In2005 ,Co"
82sage: Text=Text+"glianese&Goisuggestedtheuseofmatrice"
83sage: Text=Text+"sandpresentedMaTRU [7]. In2011and2015J"
84sage: Text=Text+"arvisandNevinssuggestedtheuseoftheri"
85sage: Text=Text+"ngofEisensteinintegersandpresentedET"
86sage: Text=Text+"RU[8,9]. In2009Malekianetal.suggested"
87sage: Text=Text+"theuseoftheringofQuaternionsandprese"
88sage: Text=Text+"ntedQTRUin2015 [10 ,11]. OtherNTRUvaria"
89sage: Text=Text+"ntsusevaryingcommutativestructures.I"
90sage: Text=Text+"n2002 ,BankspresentedavariantofNTRUwh"
91sage: Text=Text+"ichusesnoninvertiblepolynomials [12]."
92sage: Text=Text+"In2003 ,RourkeandSunarpresentedavaria"
93sage: Text=Text+"ntofNTRUwhichusesMontgomerymultiplic"
94sage: Text=Text+"ation [13]. In2007 ,Trumanpresentedtheu"
95sage: Text=Text+"seofanoncommutativeNTRU [14]. Furtherm"
96sage: Text=Text+"ore ,workby [15] presentsasimplifiedver"
97sage: Text=Text+"sionofNTRUreferredtoasminiNTRU ,which"
98sage: Text=Text+"providesageneralizedparameterselecti"
99sage: Text=Text+"oncriteriaandreducedparametersetswhi"
100sage: Text=Text+"chfosterunderstandingoftheNTRUpublic"
101sage: Text=Text+"keycryptosystem."
102sage: p=1000
103sage: F=Set([k for k in range (50) if gcd(k ,1000) ==1])
104sage: f=F.random_element ()
105sage: S=Set ([8..25])
106sage: r=8
107sage: g=S.random_element ()
108sage: m=[ord(k) for k in Text]
109sage: q=next_prime(p*r*g+255*f)
110sage: Fp=(1/f)%p
111sage: Fq=(1/f)%q
112sage: h=(p*Fq*g)%q
113sage: e=[((r*h)+m[i])%q for i in [0.. len(m) -1]]
114sage: e[0:10]

[49834, 49871, 49872, 49875, 49861, 49862, 49875, 49877, 49872, 49863]

Az utolsó paranccsal az átláthatóság miatt csak az első néhány karakter kód-
ját írja ki a program.
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Ha feltételezzük, hogy az "e" betű a leggyakoribb karakter, akkor az alábbi
módon eljuthatunk az eredeti szöveghez:
Készítünk egy olyan halmazt, melyben a különböző karakterek kódjai mellett
feltüntetjük azoknak a titkosított szövegben való előfordulási számát is, majd ezt
a halmazt rendezzük a gyakoriságot jelző tag szerinti csökkenő sorrendbe.

115sage: se=Set(e)
116sage: Gyak =[(e.count(k),k) for k in se]
117sage: GyakRend=sorted(Gyak , key=lambda tup: -tup [0])
118sage: GyakRend [0:6]

[(129, 49862) , (83, 49871) , (75, 49877) , (74, 49876) , (70, 49875) , (63, 49866)]

A rendezett listánk első tagja mutatja meg, hogy melyik a leggyakoribb karak-
ter a szövegben. Ebből kivonva az eredeti szövegben feltételezett leggyakoribb
karakterhez rendelt ASCII kódot, esetünkben az ’e’ betű kódja, ami a 101, kapjuk
meg azt az értéket, mellyel minden karakter el lett tolva.

119sage: Max=GyakRend [0]
120sage: Max[1]

49862

121sage: eltolas =(Max [1]) -(ord(’e’))
122sage: eltolas

49761

Végül vesszük a titkosított szöveget és ha karakterenként az eltolás mértékét
kivonjuk a kódokból, megkapjuk az eredeti sorrendben elhelyezkedő karakterek
ASCII kódját. Ezekhez már csak hozzá kell rendelni a megfelelő karaktereket, és
készen is van az eredeti szöveg.

123sage: (’’.join([chr(k-eltolas) for k in e]))[0:49]
InordertofurtherenhancethesecurityofNTRU,research
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Interaktív megoldás SageMath-ban választható leggyakoribb karakterrel:
Ebben a példában a "space"-t, mint karaktert, szintén belevettem a listába, hiszen
szövegeink többségében az a leggyakrabban előforduló elem.

Programkódja:

sage: @interact
sage: def BREAK(e=input_box(’[826028, 826014, 826012, 826027,
826014, 826029]’, label="Encrypted message:"),
character=[’space’, ’e’,’t’, ’a’, ’n’, ’r’, ’s’]):
....: Gyak=[e.count(k) for k in e]
....: m=max(Gyak)
....: n=Gyak.index(m)
....: A=[chr(k) for k in [0..255]]
....: x=character
....: if x==’space’:
....: eltolas=(e[n])-(A.index(’ ’))
....: else:
....: eltolas=(e[n])-(A.index(x))
....: E=[e[i]-eltolas for i in [0..len(e)-1]]
....: D=[chr(k) for k in E]
....: pretty_print(’The original message:’, D)





4. MaTRU

A MaTRU kriptorendszer már hatékonyabb lineáris transzformációt alkalmaz,
miközben jól összehasonlítható az NTRU-val [7]. Műveletei egy olyanM gyűrűben
helyezkednek el, melyben k × k típusú mátrixok vannak, és azok elemei pedig a
R = Z[x]/(xn− 1) polinomgyűrű polinomjai. Az NTRU-tól eltérően, itt kétoldali
mátrixszorzás van, emiatt két gyűrűelemre lesz szükségünk. Egy másik különbség
a két kriptorendszer között a kommutativitás. A MaTRU gyűrűje nem kommu-
tatív, ami azt jelenti, hogy a privát kulcs mátrixait és a véletlenszerű mátrixokat
speciálisan úgy kell megkonstruálni a titkosítás során, hogy azok felcserélhetőek
legyenek.

A mátrix paraméterei négy egész számból (n, k, p, q), illetve öt mátrixkészletből
(LF ,LΦ,LA,LW ,LM ) ⊂M állnak.

1. LA tartalmazza a C ∈M permutációmátrixokat oly módon, hogy C0, C1, . . . ,

Ck−1 lineárisan függetlenek modulo q. A permutációmátrix egy olyan négy-
zetes mátrix, melynek minden sorában és minden oszlopában csak egy darab
1-es van, mindenhol máshol pedig nullák vannak.

k−1∑
i=0

Ci =

1 · · · 1
...

. . .
...

1 · · · 1

 .

2. L′F és L′Φ tartalmazzák az összes olyan D ∈M mátrixot, melyek úgy vannak
megkonstruálva, hogy C ∈ LA, c0, . . . , ck−1 ∈ R és D =

∑k−1
i=0 ciC

i. Ezen
kívül az L′F mátrixainak meg kell felelniük annak a követelménynek, hogy
van inverzük modulo p és modulo q.

3. Az üzenetek halmaza, Lm, az összes olyan mátrixból áll, melyben a poli-
nomok együtthatója modulo p van redukálva. Kifejezve:

LM =

{
M ∈M| azM -beli polinomok együtthatói− p− 1

2
,
p− 1

2
közöttiek

}
.

23
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4.

L(d) =
{
M ∈M|i =

[
−p− 1

2

]
. . .

[
p− 1

2

]
, i 6= 0,minden M -beli po-

linomban van átlagosan d együttható, ami egyenlő i-vel, a többi 0
}
.

Például, ha p = 3 és n = 5, akkor L(2) tartalmazza azokat a mátrixokat,
melyekben minden polinomban van átlagosan 2 együttható, ami egyenlő
1-gyel, 2 együttható, ami egyenlő -1-gyel és 1 együttható, ami pedig nulla.

5. df és dΦ segítségével LF ,LΦ és LW így definiálható:

LF = L(df ) ∩ L′F ,

LΦ = L(dΦ) ∩ L′Φ,

LW = L(bn/pc).

Tipikusan df ≈ n/p és dΦ ≈ n/p.

4.1. Kulcs generálása

A privát, illetve publikus kulcs megalkotásához először választunk két k×k tí-
pusú mátrixot, A,B ∈ LA. F,G ∈ Lf mátrixokat a következőképpen konstruáljuk
meg:

F =
k−1∑
i=0

αiA
i, G =

k−1∑
i=0

βiB
i.

Alkalmas random α0, α1, ..., αk−1 ∈ R és β0, β1, ..., βk−1 ∈ R polinomokat használ-
va F és G kielégíti azt, hogy F,G ∈ L(df ).
Lf definiálásánál már említettük, hogy F -nek és G-nek rendelkeznie kell

modulo p és modulo q szerinti inverzekkel. Ez megfelelő paraméterek választása
esetén így lesz. Az inverzek legyenek Fp, Fq és Gp, Gq, ahol I a k × k-as
egységmátrix és

FpF ≡ I (mod p), FqF ≡ I (mod q),

GpG ≡ I (mod p), GqG ≡ I (mod q).

Ezáltal meg is van a privát kulcsunk, ami az (F , G) pár.
A publikus kulcs három mátrixból fog állni, (H,A,B), melyekből kettőt már

ismerünk. H generálásához random választunk egy W ∈ Lw mátrixot, és:

H ≡ FqWGq (mod q).
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4.2. Kódolás

Az elküldendő üzenet titkosításához a publikus kulcs elemei közül A-t illetve
B-t felhasználva elkészítjük Φ,Ψ ∈ LΦ mátrixokat:

Φ =
k−1∑
i=0

φiA
i, Ψ =

k−1∑
i=0

ψiB
i.

Alkalmas φ0, φ1, ..., φk−1 ∈ R és ψ0, ψ1, ..., ψk−1 ∈ R polinomokra Φ,Ψ ∈ L(dΦ)

is teljesülni fog.

Ezt követően a titkosítandó üzenetet a megfelelő alakban véve, M ∈ LM ,
létrehozzuk a titkosított szöveget:

E ≡ p(ΦHΨ) +M (mod q).

Ebben az alakban küldi el a feladó az üzenetét.

4.3. Dekódolás

Az üzenet megfejtéséhez elsőként kiszámoljuk X-et:

X ≡ FEG (mod q).

A kapott mátrixban az együtthatókat a −q/2 és q/2 tartományba helyezzük,
az NTRU-hoz hasonlóan. Ezután egészként kezelve az együtthatókat, dekódoljuk
az üzenetet az alábbi számolással:

D ≡ FpXGp (mod p),

D = M.

Részletes számolás:

X ≡ FEG (mod q)

≡ F (p (ΦHΨ) +M)G (mod q)

≡ p (FΦFqWGqΨG) + FMG (mod q).
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Habár a mátrixszorzás általában nem kommutatív, F és Φ azok lesznek:

FΦ ≡

(
k−1∑
i=0

αiA
i

)(
k−1∑
i=0

φiA
i

)
(mod q)

≡
k−1∑
i=0

∑
i≡j+l (mod k)

αjA
jφlA

l (mod q)

≡
k−1∑
i=0

∑
i≡j+l (mod k)

φlA
j+lαj (mod q)

≡
k−1∑
i=0

∑
i≡j+l (mod k)

φlA
lαjA

j (mod q)

≡

(
k−1∑
i=0

φiA
i

)(
k−1∑
i=0

αiA
i

)
≡ ΦF (mod q).

GΨ ≡ ΨG (mod q) hasonlóan belátható. Tehát írható, hogy

X ≡ p(FΦFqWGqΨG) + FMG ≡ p(ΦWΨ) + FMG (mod q).

Elegendően nagy q választása esetén tekinthetjük X polinomjainak az együtt-
hatóit modulo q redukció nélkül, azaz mintha Z-beliek lennének. Tudjuk venni
az együtthatókat modulo p, elhagyva a FMG (mod p) részt. Az eredeti üzenetet
megkapjuk egy Fp-vel való balszorzással és egy Gp-vel való jobbszorzással.

FpXGp ≡M (mod p).
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