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1. BEVEZETO

A nyilvanos kulcsti kriptografiai algoritmus radikalis valtozasokat hozott a
titkositasi modszerek tekintetében [6]. A hagyoményos egykulcsos titkositassal
szemben, mely sordn ugyanazt a kulcsot hasznaljuk a koédolas és a dekddolas
soran is, a nyilvanos kulcsii algoritmusok matematikai fliggvényeken alapulnak,
és asszimetrikusak. Két kulcs hasznalataval jarnak, egy a titkositashoz és egy téle
kiilonbo6z6 a visszafejtéshez sziikséges, tovabba az asszimetrikus titkositasra tel-
jestiil az a fontos tulajdonsag, miszerint szamitéasi szempontbol megvaldsithatatlan
a visszafejtd kulcs kiszamitasa csak az algoritmus és a publikus kulcs ismeretében.
Néhany ilyen algoritmus esetén a titkosito és visszafejtd kulcs fel is cserélhetd, pl.:

RSA.

A titkositas lépései:
1. Minden rendszer general egy kulcspéart.

2. Minden rendszer kozzé teszi titkositasi kulcsat, ezt nevezziik publikus kulcs-
nak, illetve titokban tartja annak parjat, amit privat kulcsnak hivunk.

3. Ha A lizenetet szeretne kiildeni B-nek, akkor B publikus kulcséval titkositja
az lzenetét.

4. Amikor B megkapja az liznetet, a titkos kulcsa segitségével dekddolja az
lizenetet. Mas nem tudja visszafejteni az iizenetet, mert csak B ismeri a
privat kulcsot.

Az algoritmus kévetelményei:

Barmely nyilvanos kulcst titkositasi algoritmusra teljesiilnek a kévetkezd kovetelmények,
melyeket Whitfield Diffie és Martin Hellman fogalmaztak meg:

e B-nek a kulcspar (publikus(KU) és privat(K R)) generalasa konnyen szé-
molhato.

e A-nak a publikus kulcs (KU,) tudataban konnyen kiszamithato a titkositott
szoveg és igy el tudja kiildeni a megfelel6 kriptoszoveget. C = Exy, (M),
E a titkosito fliggvény, M pedig az lzenet.

3



4 FEJEZET 1. BEVEZETO

e B-nek szintén konnyen szamithato a privat kulcsa (K Ry) segitségével a krip-
toszoveghdl visszafejteni az eredeti szoveget.

M = DKR;,(C) = DKRb[EKUb(M)]7

ahol D a dekddolo fiiggvény.

Egy kiilsg személynek lényegében lehetetlen KUp-bol K Rp-t kiszamolni.

Csak KUy és C tudataban lényegében lehetetlen visszafejteni M-et.

A titkositas és a visszafejtés barmilyen sorrendben elvégezhetd:
M = Exu,[Dkr,(M)] = Dgr,[Exu, (M)].

A fenti "konnyen kiszamithato", "lényegében lehetetlen" fogalmak nincsenek mate-
matikailag pontosan definidlva, mégis a gyakorlatban szdmos kriptorendszer biz-
tonsaga alapszik rajtuk.

Az NTRU az egyik leggyorsabb ma ismert, nyilvanos kulcsi kriptografiai al-

goritmus, melyet 1996-ban prezentalt Jeffery Hoffstein, Jill Pipher és Joseph H.
Silverman [3|. Biztonsaga a legrovidebb vektor probléman alapszik. Ebben a dol-
gozatban az NTRU titkositas és néhany valtozata keriil bemutatasra.
A szakdolgozat irasa kdzben 1étrejott egy cikk is, melyet 2020 janiusaban mutatott
be Hayder Hashim a "20th Central European Conference on Cryptology" konfe-
rencian. Az elGadés anyaga az alabbi linken elérhetd: https://web.math.pmf.unizg.
hr/cecc2020/files/hashim-molnar-tengely-talk.pdf.



2. NTRU

Elgszor az alap NTRU felépitése és miikddése keriilne bemutatasra.

Legyen R = Z[z]/(z™ — 1) polinomgytird, melyben legfeljebb (N — 1)-edfoku
polinomok vannak. Az NTRU algoritmus miiveleteit ebben a gytirtiben végezziik.
Sziikséglink van harom egész paraméterre: N, p, ¢ gy, hogy (p,q) = 1. p-t kicsi,
¢-t pedig nagy modulusnak nevezziik. Legyenek tovabbd L,,, Ly, Ly és L, C R
olyan halmazok, melyekben kis egyiitthatés polinomok vannak.

Publikus kulcs generalasa:

Véletlenszertien vegytlink két polinomot, f € Lys-et és g € Lg-t. f-et gy kell
megvalasztanunk, hogy legyen inverze (mod p) és (mod ¢). Modulo p ugy dol-
gozunk, hogy a szokésos [0, p — 1] intervallum helyett a [%ﬂ, %} intervallumot
hasznéljuk.

Fyxf=1 (mod p),
F,xf=1 (mod q).
Ebbdl tudjuk megadni a publikus kulcsot, h-t:

h=pF;*g (mod q).

2.1. Koédolas

Az iizenetet egy olyan m polinommal reprezentaljuk, hogy m € L,, és re-
dukaljuk m egyiitthatéit modulo p szerint. Valasztunk még egy véletlenszerd
polinomot, tigynevezett maszatold valtozot, r € L.-t. Ennek a segitségével kapjuk
meg a titkositott tizenetet a kdvetkezé modon:

e=rxh+m (mod q).
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Példa SageMath-ban:

sage: def cmap(t,p):

e if (ZZ(e)%p)>(p//2):
e return ((ZZ(t)%p)-p)
ce else:

et return ZZ(t)%p

sage: Zx.<X>=ZZ[]

sage: N=7
sage: p=3
sage: q=41

sage: f=X"6+X"5-X"3-X"2-X-1

sage: g=X"6+X"4-X"3+1

sage: Pp.<b>=PolynomialRing (GF(p))

sage: Pq.<c>=PolynomialRing (GF(q))

sage: fp=Pp(f).inverse_mod(b~N-1)

sage: fq=Pq(f).inverse_mod(c~N-1)

sage: h=(p*xfq*Pq(g))%(c~N-1)

sage: "publikus_ kulcs:", h

(’publikus kulcs:’, 25%c~6 + 6*c~5 + 40*xc~4 + 17xc~3 +
23*xc~2 + 30%c + 20)

sage: r=X"6-X"5+X-1

sage: m=-X"5+X"3+X"2-X+1

sage: em=(Pq(r)*h)%(c"N-1)+Pq(m)%(c~N-1)

sage: "kodolt_uzenet:", em

(’kodolt uzenet:’, 12*xc~6 + 38*%c~5 + 40*%c~4 + 26*xc~2 +
36xc + 13)

© 00 N O Ut ks W N
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2.2. DEKODOLAS 7

2.2. Dekddolas

A kapott e titkositott {izenetet és az f publikus kulcsot Osszeszorozzuk, igy kapjuk
a-t.
a=fxe (mod q)
=fx(r«h+m) (mod q)
=fxhxr+ fxm (mod q)
=pfxFyxg*xr+ f+xm (mod q)
=pgxr+ fxm (mod q).

Végezetiil az egyenletet modulo p vessziik:

axFp=(pxr*xg+ f*m)«F,=m (mod p).

sage: A=(Pq(f)*em)%(c~N-1) 24
sage: A 25
3*c~5 + 30*c”4 + 3*c~3 + 35%c”2 + Ox*c 26
sage: Al=[cmap(k,q) for k in A.list ()] 27
sage: Zx (A1) 28
3%¥X°5 - 11xX"4 + 3%xX~3 - 6*%X~2 + 9%X 29
sage: "dekodoltyuzenet:", Zx([cmap(k,p) for k in Pp((Zx 30

(A *xZx (fp)) %(X"N-1)) . 1ist O 1)
(’dekodolt juzenet:’, -X°5 + X°3 + X~2 - X + 1) 31
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2.3. Torés LLL-algoritmussal

Ahogyan a bekezdésben mar sz6 esett réla, az NTRU biztonsiga a legréovidebb
vektor probléméan alapszik [1|, ami a kovetkezd: egy tetszGleges A racsban sze-
retnénk megtalalni a legrovidebb v vektort a helyvektorok kozott. Ebben az
esetben —v is a legrévidebb vektor lesz. A legf6bb elméleti eredményt ezzel kap-
csolatban a Minkowski-tétel tartalmazza, amely a legrévidebb vektor fels§ hatarat
adja meg.

Minkowski-tétel: Legyen A egy olyan racs, melynek rangja m. Ha \ a legrévidebb
vektor normaja, akkor

1
T det A
2

2
A< —
J— \/7?
LLL-algoritmus:

Az LLL-redukcids algoritmus egy polinomialis idejd, racsredukcios algoritmus,
melyet Arjen Lenstra, Hendrik Lenstra és Lovasz Léaszlo talaltak ki 1982-ben
és utanuk is lett elnevezve [5]. Maig nem ismert hatékony, polinomialis idejd
algoritmus, mely megoldané a legrovidebb vektor probléméat tetszélegesen nagy
dimenziéban. Az LLL-algoritmust viszont tudjuk alkalmazni a legrévidebb vektor
kozelitéséhez. Ez az algoritmus tulajdonképpen egy, a Gramm-Schmidt eljarashoz
hasonlé modszerrel ugynevezett redukalt (majdnem ortogonalis) bazist szolgaltat.

Az R™ vektortértben egy {b1,ba, - ,bm} bazist c-redukéaltnak hivunk akkor

és csak akkor, ha a {bj,b3,--- b} } ortonormalt bazisa teljesiti a kovetkezs
egyenlGtlenséget 1 = 1,--- ,m — 1 esetén:
2
2 o [Ibill
Ibal? > 1L

J6 redukciot jelent az, ha ¢ értéke kicsi. Nem minden bazis 1-redukalhato, de

minden bézis %—redukélhaté.

Ha vesziink egy A réacsot és annak c-redukalt {by,bs, -, by} bazisat ugy,
hogy ¢ < %, akkor a bazis kozel orotogonalis, abban az értelemben, hogy

H [bi]| < mm=)/4detA.
i=1

Ha a c-redukdlt bazisunk {bj,ba, -+ ,bm}, m a racs rangja, A pedig a
legrovidebb vektor normaja, akkor

byl < ™ D/AdetA

by < m=1/2),
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Az LLL-algoritmus ¢ > %—ra polinomiélis idén beliill megadja a racsban a
c-redukalt bazist.

NTRU torése [8]:
A publikus kulcs kielégiti a
h=gx*pF, (mod q)

ekvivalenciat, ezért irhatjuk, hogy f*h =g (mod ¢). Tekintsiik a kovetkezskép-
pen definialt racsot:

A={(Fi,F5) e Rgx Ry: Fixh=F, (modq)}.

Nyilvanvalo, hogy (f,q) € A. Igy az fxh = g (mod q) egyenlet helyett irhato,
hogy
fxh—uxq=g

néhany u € R, esetén. Ez megegyezik azzal, hogy

()-(2 (%)

Vagy még hasznosabb alakban:

o 1 O --- 0 00 ---0 fo
1 0 1 -« 0 00 --- 0 f
Inc1| 0 o - 1 00 -+ 0 IN-1
90 ho hi -+ hy_ 0 )
91 hy-1 ho -+ hy—2 O - 0 —uq
gN-1 hi hy -+ hg 0 0 --- ¢ —UN_1

Mivel az f és g polinomokban 1évs egytitthatok kicsik, igy az (f,g) vektor
rovid lesz a A racsban. Alkalmazhat6 az LLL-algoritmus.
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A korébbi példa torése LLL-algoritmussal Sage-mathban:

L T s T s TR e Y s Y e IO s B ¢
O O O O O O = (»

[34

I B |
[\
NN

[27
[33
[35
[10

O O O O O O —» O

w W N N W o~
g W N NN

M=matrix (2*N)

for i in [0..N-1]: M[i,i]l=1
for i in [N..2%N-1]: M[i,il=q
for i in [0..N-1]:

in [0..N-1]:
MLi+N,jl=((Zx(GF(q) (1/p)*h)*X~1) % (X"N-1))

O O O O » O O

35

34
22

27
33

for j

O O O+ O O O

33
35
10
34
22

27

O O+, O O O O

27
33
35
10
34
22

N O O O O O O

N W~ W wN
N P O O W N

, O O O O O O

22

27
33
35
10
34

S
O O O Fr O O O O O O O oo o o

O O O O O O+ O O O O o o o

O O O O O, O O O O O O o o

O O O O+ O O O O O o o o o
N

O O P, O O O O O O O O oo o o

N
O P O O O O O O O O O o o o

0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
41]

NTRU

A kapott méatrixra tudjuk alkalmazni az LLL-algortitmust, hogy révid vek-

torokat talaljunk, és mivel f és g rovidek, igy esélyes, hogy feltiinnek. A Sage-

math beépitett fliggvényként tartalmazza az LLL-t, igy konnyen hasznélhatoé.

sage:

sage:

sage:

sage:

f.coefficients (sparse=False)

[-1,-1,-1,-1,0,1,1]

g.coefficients (sparse=False)

[1,0,0,—1,1,0,1]

M1=M.transpose () .LLL ()

M1

32
33
34
35
36
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53

54

55
56
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1 1 -1 -1 -1 1 1 0
-1 0 1 -1 -1 0 1 1 0
-1 -1 -1 -1 1 1 1 -1 0

0 1 -1 -1 -1 1 0 1

-1 -1 0O -1 -1 0 1 0

o -1 -1 -1 -1 1 0 1

0 O 1 0 -2 0 0 1

-10 7 -4 6 —3 3 3 -3 2

1 9 -8 3 =5 4 -5 -4 3
-2 19 -1 3 -7 -5 -5 =3
-6 -2 3 -4 -6 1 -5 =10 -1
-3 -6 4 -9 6 —-10 -5 3 =8
-3 3 -2 -10 7 -4 =8 5 6
-7 4 —6 3 =3 2 3 =2 2

[
W D O

8

-5

—6

-2
-3

11

Val6ban, t6bb sorban is megtalalhato f-nek és g-nek valamilyen eltolt alakja.

Ezek mindegyike jo vektor lehet a toréshez. Példaul, ha az els6 sort tekintjiik,
akkor f-ben az egyiitthatok listaja [-1 11 0 -1 -1 -1].

sage: f=-X"6+X"5+X"4-X"2-X-1
sage: Zx.<X>=ZZ[]
sage: N=7
sage: p=3
sage: q=41
sage: Pp.<b>=PolynomialRing (GF(p))
sage: Pq.<c>=PolynomialRing (GF(qg))
sage: fp=Pp(f).inverse_mod(b~N-1)
sage: fp
b0 +2b° + " + 20 + 1
sage: em=12*xc~6 + 38%c~5 + 40*c~4 + 26xc~2 + 36*xc + 13
sage: A=(Pq(f)*em)%(c~N-1)
sage: A
3¢* 4 30¢3 + 3¢ 4 35¢ + 9
sage: Al=[cmap(k,q) for k in A.list ()]
sage: Zx (A1)
3X* - 11X% +3X% - 6X +9

sage: Zx([cmap(k,p) for k in Pp((Zx(A1)*Zx(fp))%h(X~N-1)

). list O1)

X+ XP 4+ X2 - X +1

57
58
59
60
61
62
63
64
65

67
68

69
70
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Hasonl6an a harmadik és hatodik sor els6 hét tagjabodl képzett listak jo egytitt-
hatoi lesznek az f polinomnak és sikeresen visszakaphatjuk segitségével az eredeti
tizenetet. Ha viszont egy masik olyan sorbdl valasztunk, ami szintén csak a -1, 0,
1 szamokat tartalmazza, akkor hamar elakad az algoritmus, mivel nem lesz f-nek

inverze modulo p.



3. I'TRU

Az NTRU ihlette ITRU |2] tirkositasi algoritmus nagyon hasonlit szerkezetében
az el6z6ekben bemutatott NTRU-hoz, azzal a kiilénbséggel, hogy miiveletei a
modulo n maradékosztaly-gytirtiben helyezkednek el, amit 7Z/nZ-vel jeloliink.
Ebben a gyitirtiben az 6sszeadés és a szorzas a hagyoményos Osszeadés és szorzas,
csak az eredményt modulo n vessziik.

Az ITRU paraméterei:
A paraméterek a Z/pZ és 7./qZ gytriikbdl vannak.

e p : kis modulus

e ¢ : nagy modulus

e f : a privat kulcs generédlasdhoz sziikséges privat szam

e g : a publikus kulcs generdlasahoz sziikséges random szam
e 1 : a kriptoszdveg generalasdhoz sziikséges random szam

e m : decimalis reprezentisa az tlizenetnek

e K, : privat kulespar, (f, F})
e K : publikus kules, h
o a : kozvetitd paraméter

o (C : dekodolt tizenet

3.1. Paraméterek és kulcsok generalasa

A kis modulust, p-t, 1000-nek valasztjuk és hozza random valasztunk két
egészet, g-t és r-t. f-et is random szamként generéljuk tgy, hogy legyen multi-
plikativ inverze modulo p és modulo ¢, ahol ¢ > (p-r- g+ f-m) prim. Ezutan
meghatarozzuk f~! (mod p)-t, amit F,-vel illetve f~! (mod g)-t, amit F,-val
jeloliink. A kib&vitett euklideszi algoritmussal ez konnyen szamolhato.

13
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A kapott inverzek teljesitik a kovetkezd feltételeket:
[-Fy,=1 (mod p),

f-F,=1 (mod q).

A iizenet decimélis alakjat az ASCII-tédblazat segitségével tudjuk megadni. A
Sage-mathban ezek is rogzitve vannak. Egy karakter ASCII-kodjat a "ord( )"
parancesal, a kodhoz tartozo karaktert pedig a "chr( )" paranccsal tudjuk elghivni.

A privat kulcspart, a méar kordbban meghatarozott f és Fj, adja,

Kpr = (f , F p)~
A publikus kulcsot pedig a kovetkezGképpen szamoljuk:

Kpy=h=(p-F;-g) (modgq).

3.2. Kbédolas

A kodolashoz, az NTRU-hoz hasonléan, sziikségiink van egy random paraméterre,
amit r-rel jeloliink és itt egy egész szam. A kodolt tizenetet e-vel jeldljilk és az
alabbi médon széamoljuk:

e=((r-h)+m) (mod q).

A ko6dold rész interaktiv megoldasa SageMath-ban:

Message: R

r 13

The ASCII code of the message: [115, 101, 99, 114, 101, 116)
Large modulus: 265871
Public key: 47108
Private key pair: (23, 87)
The encrypted message: [B0TTT, 80763, 80761, 80776, 80763, BOTTS]
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Ennek programkodja:

sage: Q@interact

sage: def itru(s=input_box(’"secret"’,label = "Message:"),

r=slider(8,25,1,3, label="r")):

p=1000

F=Set([k for k in range(2,50) if gcd(k,1000)==1])
f=F.random_element ()

S=Set ([8..25])

g=S.random_element ()

m=[ord(k) for k in s]

pretty_print(’The ASCII code of the message:’,m)
g=next_prime (pxr*g+255*f)

Fp=(1/£)%p

Fg=(1/£)%q

h=(p*Fq*g) %q

pretty_print(’Large modulus:’, q)

pretty_print (’Public key:’,h)

pretty_print (’Private key pair:’, (f,Fp))
e=[((r*h)+m[i])%q for i in [0..len(m)-1]]
pretty_print(’The encrypted message:’,e)

3.3. Dekddolas

15

Hogy megkapjuk az eredeti lizenetet, elGszor a kapott, kodolt {izenetbdl kisza-

moljuk a-t:

a=(f-e) (mod q).

Végiil a segitségével megkapjuk az dekoédolt iizenetet, m-et:

C=(Fy-a) (modp),

Részletes szamolas:

Tudjuk, hogy

e=((r-h)+m) (mod q).

Ezt behelyettesitve az

a=(f-e) (mod q)

egyenletbe kapjuk, hogy

a=(f (r-h+m) (modq)
=(f-r-h+f-m) (mod q).
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Figyelembe véve, hogy
h=(p-Fy-g) (modyq),

irhatjuk, hogy
a=(f-r-p-Fy-g+f-m) (modq).

Mivel
f-F, (modgq)=1,

igy
a=(r-p-g+f-m) (modyq).

g-rol tudjuk, hogy nagyobb, mint (p-7-g+ f-m), ezért a egyenls lesz
(r-p-g+ f-m)-mel
Az eredeti iizenetet ugy kapjuk, hogy a-t megszorozzuk Fj-vel a Z/pZ gytiriiben.

C=(f-Fp-m)+(p-Fp-r-g) (modp).
Felhasznalva, hogy f - F, (mod p)=1ésp-F,-r-g=0 (mod p),
C=m.

Ezaltal visszakaptuk az eredeti iizenetiinket.
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A dekddold rész interaktiv megvaldsitasa SageMath-ban:

Encrypted message: (80777, 80763, 80761 80776, 80763, 80778
Large modulus 265871
Public key 47108
Fp 57

f 213

The original message: secret

Ennek programkodja:

sage: Qinteract

sage: def decoditru(e=input_box(’[24839, 24825, 24823, 24838,
24825, 24840]°, label="Encrypted message:"), g=input_box(’134887’,
label="Large modulus"), h=input_box(’70534’, label="Public key"),
Fp=input_box(’963’, label="Fp"),

f=input_box(’27’, label="f")):

....: p=1000

...t a=[(fxe[il)%q for i in [0..len(e)-11]

....: C=[(Fp*all1])%p for 1 in [0..len(a)-1]]

....:  D=[chr(k) for k in C]

....: pretty_print(’The original message:’, ’’.join(D))
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3.4. Tamadas gyakorisaganalizissel

A példan is j6l lathatd, hogy az ITRU minden karakter ASCII koédjan ugyan-
azokat a miveleteket, ugyanazon paraméterekkel hajtja végre, igy megfeleltethets
egy linaris kriptorendszernek. Az ilyen titkositdsok nem modositjak a karak-
terek eléfordulédsanak gyakorisdgat, hanem csak azt, hogy a bettiket milyen jel-
lel jeloltik. Egy-egy betl el6forduldsanak gyakorisdga minden nyelvben eltér,
ugyanakkor szigoru szabalyoknak is felel meg. [4]

Vegyiink példaul egy angol nyelvl szdveget:

A B C D E F ¢ H I J K L M
73 09 30 44 13 28 1.6 35 7.4 02 03 35 25
N O P Q R S T U V W X Y Z
78 74 27 03 7.7 63 93 27 13 16 05 19 0.1

A relativ gyakorisag kiilonb6zs szévegtipusokban eltérd lehet, de ki lehet
valasztani azokat a karaktereket, amelyek gyakorisdga magas, illetve azokat, melyek-
nek alacsony.

Nagy gyakorisagu karakterek: | E, T, R, I, O, N, A
Kis gyakorisagu karakterek: J, K, Q, X, Z

Gyakorisagvizsgélattal konnyedén feltorhetiink egy ITRU-val titkositott széve-
get. Elegend6 hozza megéllapitani a kriptoszovegben a leggyakoribb kédot és ha
ebbdl kivonjuk az eredeti szévegben feltételezett leggyakoribb bettd ASCII kodjét,
akkor megkapjuk az eltolds mértékét.

Tekintslik a kovetkezd angol nyelvi szoveget, melybdl el6re elttintettiik az
Osszes szOkozt, valamint annak egy titkositasat!

sage: Text="InordertofurtherenhancethesecurityofNTRU," 72
sage: Text=Text+"researchhasbeenconductedonothervaria" 73
sage: Text=Text+"ntsofNTRU.Somevariantsproposetheuseo" 74
sage: Text=Text+"fpolynomialringswithcoefficientsinot" 75
sage: Text=Text+"herrings.In2002,Gaboritsuggestedtheu" 76
sage: Text=Text+"seoftheringofpolynomialsinsteadofthe" 7
sage: Text=Text+"ringofintegersandpresentedCTRU[5].Ko" 78
sage: Text=Text+"uzmenkosuggestedtheuseofGaussianInte" 79

sage: Text=Text+'"gersandpresentedGTRUin2006 [6].0therv" 80
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sage:

sage:

sage:

sage:

sage:

sage:

sage:

sage:

sage:

sage:

sage:

sage:

sage:

sage:

sage:

sage:

sage:

sage:

sage:

sage:

sage:

sage:

sage:

sage:

sage:

sage:

sage:

sage:

sage:

sage:

sage:

sage:

sage:

sage:

149

Text=Text+"ariantsusealternativerings.In2005,Co"
Text=Text+"glianese&Goisuggestedtheuseofmatrice"
Text=Text+"sandpresentedMaTRU[7].In2011and20156J"
Text=Text+"arvisandNevinssuggestedtheuseoftheri"
Text=Text+"ngofEisensteinintegersandpresentedET"
Text=Text+"RU[8,9].In2009Malekianetal.suggested"
Text=Text+"theuseoftheringofQuaternionsandprese"
Text=Text+"ntedQTRUin2015[10,11].0therNTRUvaria"
Text=Text+"ntsusevaryingcommutativestructures.I"
Text=Text+"n2002 ,BankspresentedavariantofNTRUwh"
Text=Text+"ichusesnoninvertiblepolynomials [12]."
Text=Text+"In2003 ,RourkeandSunarpresentedavaria"
Text=Text+"ntofNTRUwhichusesMontgomerymultiplic"
Text=Text+"ation [13].In2007 , Trumanpresentedtheu"
Text=Text+"seofanoncommutativeNTRU [14].Furtherm"
Text=Text+"ore,workby [15] presentsasimplifiedver"
Text=Text+"sionofNTRUreferredtoasminiNTRU , which"
Text=Text+"providesageneralizedparameterselecti"
Text=Text+"oncriteriaandreducedparametersetswhi"
Text=Text+"chfosterunderstandingoftheNTRUpublic"
Text=Text+"keycryptosystem."

p=1000

F=Set ([k for k in range(50) if gcd(k,1000)==1])
f=F.random_element ()

S=Set ([8..25])

r=8

g=S.random_element ()

m=[ord(k) for k in Text]

g=next_prime (p*xr*g+255%f)

Fp=(1/£)%p

Fq=(1/f)%q

h=(p*xFq*g)%q

e=[((r*h)+m[i])%q for i in [0..len(m) -1]]
e[0:10]

834, 49871,49872, 49875, 49861, 49862, 49875, 49877, 49872, 49863

19

Az utols6 paranccsal az atlathatosag miatt csak az els6 néhany karakter kod-

jat irja ki a program.

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
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Ha feltételezziik, hogy az "e" betii a leggyakoribb karakter, akkor az aldbbi
modon eljuthatunk az eredeti szoveghez:
Készitiink egy olyan halmazt, melyben a kiilonbo6z§ karakterek kodjai mellett
feltiintetjiik azoknak a titkositott szovegben val6 el6fordulasi szamat is, majd ezt
a halmazt rendezziik a gyakorisidgot jelz6 tag szerinti csokkend sorrendbe.

sage: se=Set(e)
sage: Gyak=[(e.count(k),k) for k in se]
sage: GyakRend=sorted(Gyak, key=lambda tup: -tupl[0])
sage: GyakRend [0:6]
[(129,49862), (83,49871), (75,49877) , (74,49876) , (70, 49875) , (63,49866)]

A rendezett listank els6 tagja mutatja meg, hogy melyik a leggyakoribb karak-
ter a szovegben. Ebbdl kivonva az eredeti szovegben feltételezett leggyakoribb
karakterhez rendelt ASCII kédot, esetiinkben az ’e’ betti kodja, ami a 101, kapjuk
meg azt az értéket, mellyel minden karakter el lett tolva.

sage: Max=GyakRend [0]
sage: Max[1]
49862

sage: eltolas=(Max[1]) -(ord(’e’))
sage: eltolas
49761

Végiil vessziik a titkositott szoveget és ha karakterenként az eltolds mértékeét
kivonjuk a kédokbol, megkapjuk az eredeti sorrendben elhelyezkedd karakterek
ASCII koédjat. Ezekhez mar csak hozza kell rendelni a megfelel§ karaktereket, és
készen is van az eredeti szdveg.

sage: (’’.join([chr(k-eltolas) for k in e])) [0:49]
InordertofurtherenhancethesecurityofNTRU,research

115
116
117
118

119
120

121
122

123
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Interaktiv megoldas SageMath-ban valaszthato leggyakoribb karakterrel:
Ebben a példaban a "space"-t, mint karaktert, szintén belevettem a listaba, hiszen
szovegeink tobbségében az a leggyakrabban el6forduld elem.

Encrypted message: famm e 199662 cmm s [ [, . P R, R, R
[122626, 122¢63, 122664, 122667, 122653, 122634, 122¢67, 122669, 122664,

character e v

space

The original message: Inordertofurth sthesecurityofNTRU, researchhasbeenconductedonothervariantsofNTRU. Somevariantsp

w3 o oW o

Programkddja:

sage: Qinteract

sage: def BREAK(e=input_box(’[826028, 826014, 826012, 826027,
826014, 826029]’, label="Encrypted message:"),
character=[’space’, ’e’,’t’, ’a’, ’n’, ’r’, ’s’]):
....: Gyak=[e.count(k) for k in e]

....: m=max(Gyak)

....: n=Gyak.index(m)

.e..: A=[chr(k) for k in [0..255]]

R x=character

R if x==’space’:

R eltolas=(e[n])-(A.index(’ ?))

R else:

ceal eltolas=(e[n])-(A.index(x))

....: E=[e[i]l-eltolas for i in [0..len(e)-1]]
....:  D=[chr(k) for k in E]

....: pretty_print(’The original message:’, D)






4. MATRU

A MaTRU kriptorendszer mar hatékonyabb lineéris transzformaciot alkalmaz,
mikozben jol 6sszehasonlithaté az NTRU-val [7]. Miiveletei egy olyan M gytirtiben
helyezkednek el, melyben k x k tipust métrixok vannak, és azok elemei pedig a
R = Zz]/(x™ — 1) polinomgyiri polinomjai. Az NTRU-tol eltérGen, itt kétoldali
matrixszorzas van, emiatt két gytrtelemre lesz sziikségiink. Egy mésik kiilonbség
a két kriptorendszer kozott a kommutativitds. A MaTRU gytirtije nem kommu-
tativ, ami azt jelenti, hogy a privat kulcs méatrixait és a véletlenszerd méatrixokat
specidlisan ugy kell megkonstrualni a titkositas soran, hogy azok felcserélhetGek
legyenek.

A maéatrix paraméterei négy egész szambol (n, k, p, q), illetve 6t matrixkészletbsl
(Lr, Lo, La, Ly, Lpr) C M allnak.

1. L4 tartalmazza a C' € M permutéciématrixokat oly médon, hogy C°, Ct, . ..,
C*1 linearisan fiiggetlenek modulo ¢. A permutéciématrix egy olyan négy-
zetes matrix, melynek minden sordban és minden oszlopaban csak egy darab
1-es van, mindenhol mashol pedig nulldk vannak.

k—1 1 1
> =
=0 1 1

2. L% és L, tartalmazzak az 6sszes olyan D € M méatrixot, melyek ugy vannak
megkonstrualva, hogy C € L4, ¢g,...,cp_1 €E Rés D = Z?:_ol ¢;C*. Ezen
kiviil az £, matrixainak meg kell felelniiik annak a kovetelménynek, hogy
van inverziik modulo p és modulo gq.

3. Az iizenetek halmaza, L£,,, az Gsszes olyan matrixbdl all, melyben a poli-
nomok egyiitthatoja modulo p van redukélva. Kifejezve:

-1 p—-1
Ly = {M € M| az M-beli polinomok egyiitthatoi — pT’ p? kézéttiek} .

23
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-1 -1
ﬁ(d):{MGMi:[—p2 ]”[p2 },i#O,mindenM—belipo-

linomban van atlagosan d egyiitthat6, ami egyenld i-vel, a tobbi 0}.

Példaul, ha p = 3 és n = 5, akkor £(2) tartalmazza azokat a méatrixokat,
melyekben minden polinomban van &atlagosan 2 egyiitthat6, ami egyenlé
1-gyel, 2 egyiitthatd, ami egyenld -1-gyel és 1 egyiitthatd, ami pedig nulla.

5. dy és dg segitségével L, Lo és Ly 1gy definialhato:
Lp= ﬁ(df) N ,C/F,
Lo = ﬁ(d@) N ﬁﬁp,

Ly = L(|n/p]).
Tipikusan df =~ n/p és do ~ n/p.

4.1. Kulcs generalasa

A privat, illetve publikus kulcs megalkotasahoz elGszor valasztunk két k x k ti-
pust matrixot, A, B € L4. F,G € L; matrixokat a kovetkezképpen konstrualjuk

meg:

k-1 k-1
=0 1=0

Alkalmas random ag, a1, ..., a1 € R és fBg, 51, ..., Bx—1 € R polinomokat hasznél-
va F' és G kielégiti azt, hogy F,G € L(dy).

Ly definidlasanadl mar emlitettiik, hogy F-nek és G-nek rendelkeznie kell
modulo p és modulo ¢ szerinti inverzekkel. Ez megfelel§ paraméterek valasztésa
esetén igy lesz. Az inverzek legyeneck F,, F, és Gp, Gy, ahol I a k x k-as

egységmatrix és

F,F =1 (mod p), F,F =1 (mod q),
GpG =1 (mod p), G,G=1 (mod q).

Ezaltal meg is van a privat kulcsunk, ami az (F, G) par.

A publikus kulcs harom matrixbol fog allni, (H, A, B), melyekbdl kett&t mar
ismeriink. H generalasihoz random vélasztunk egy W € L,, matrixot, és:

H=FWG, (modq).
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4.2. Koédolas

Az elkiildend§ tizenet titkositasdhoz a publikus kulcs elemei koziil A-t illetve
B-t felhasznéalva elkészitjiik ®, ¥ € Lg maéatrixokat:

k—1 k—1
=) ¢id, =) B
1=0 1=0

Alkalmas ¢g, ¢1, ..., 01 € R és g, 1, ...,05_1 € R polinomokra &, ¥ € L(dg)

is teljesiilni fog.

Ezt kovetGen a titkositandd lizenetet a megfelels alakban véve, M € Ly,
létrehozzuk a titkositott szdveget:

E=p(®HY)+ M (mod q).

Ebben az alakban kiildi el a feladd az tizenetét.

4.3. Dekd6dolas

Az iizenet megfejtéséhez elséként kiszamoljuk X-et:
X =FEG (mod q).

A kapott matrixban az egyiitthatokat a —q/2 és ¢/2 tartomanyba helyezziik,
az NTRU-hoz hasonldéan. Ezutan egészként kezelve az egyiitthatokat, dekddoljuk
az lizenetet az alabbi szamolassal:

D =F,XG, (modp),
D =M.

Részletes szamolas:

X =FEG (mod q)
=F(p(®PHY)+ M)G (mod q)
=p(FOF,WG,VG)+ FMG (mod q).
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Habar a méatrixszorzas altaldban nem kommutativ, F' és ® azok lesznek:

k-1 4 k—1 ‘
Fo = (Z aiAl> (Z qﬁiAZ) (mod q)
i=0 i=0

N
—_

Z a; ATy A (mod q)

i=j+l (mod k)

1
™

N ﬂ
|
- o

I
(]

Z oA a;  (mod q)

i=j+l (mod k)

>
(!
_ O

Z drAla; AV (mod q)
i=j+l (mod k)
—1

k-1
(Z ¢iz4i) (Z oziAZ) =®F (mod q).
i=0 i=0

G¥Y = VUG (mod ¢) hasonloan belathato. Tehat irhato, hogy

I
™

i
> L

X =p(FOF,WG,VG) + FMG = p(®WV) + FMG (mod gq).

FElegend6en nagy g valasztésa esetén tekinthetjiik X polinomjainak az egyiitt-
hatoit modulo ¢ redukcié nélkiil, azaz mintha Z-beliek lennének. Tudjuk venni
az egylitthatokat modulo p, elhagyva a FMG (mod p) részt. Az eredeti iizenetet
megkapjuk egy Fp-vel valé balszorzassal és egy G)-vel valo jobbszorzassal.

F,XG,=M (mod p).
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