
Debreceni Egyetem
Természettudományi és Technológiai Kar

Matematikai Intézet

Szakdolgozat

Titkosítási eljárások

készítette:

Molnár Alexandra

témavezető: Dr. Tengely Szabolcs

Debrecen, 2020

Tartalomjegyzék

Tartalomjegyzék i

1 Bevezető 3

2 NTRU 5
2.1. Kódolás . 5
2.2. Dekódolás . 7
2.3. Törés LLL-algoritmussal . 8

3 ITRU 13
3.1. Paraméterek és kulcsok generálása 13
3.2. Kódolás . 14
3.3. Dekódolás . 15
3.4. Támadás gyakoriságanalízissel . 18

4 MaTRU 23
4.1. Kulcs generálása . 24
4.2. Kódolás . 25
4.3. Dekódolás . 25

Irodalomjegyzék 27

i

Köszönetnyilvánítás

Ezúton szeretnék köszönetet mondani témavezetőmnek, Dr. Tengely Szabolcsnak,
kinek segítsége nélkül nem jöhetett volna létre ezen dolgozat.
Szeretném megköszönni családomnak, hogy tanulmányaim során mellettem voltak
és támogattak, valamint páromnak, Gábor Sándornak, hogy mindig átsegített a
nehézségeken, bíztatott, motivált.
Végül köszönöm tanáraimnak és csoporttársaimnak, hogy segítséget nyújtottak
az egyetemi éveim alatt.

1

1. Bevezető

A nyilvános kulcsú kriptográfiai algoritmus radikális változásokat hozott a
titkosítási módszerek tekintetében [6]. A hagyományos egykulcsos titkosítással
szemben, mely során ugyanazt a kulcsot használjuk a kódolás és a dekódolás
során is, a nyílvános kulcsú algoritmusok matematikai függvényeken alapulnak,
és asszimetrikusak. Két kulcs használatával járnak, egy a titkosításhoz és egy tőle
különböző a visszafejtéshez szükséges, továbbá az asszimetrikus titkosításra tel-
jesül az a fontos tulajdonság, miszerint számítási szempontból megvalósíthatatlan
a visszafejtő kulcs kiszámítása csak az algoritmus és a publikus kulcs ismeretében.
Néhány ilyen algoritmus esetén a titkosító és visszafejtő kulcs fel is cserélhető, pl.:
RSA.

A titkosítás lépései:

1. Minden rendszer generál egy kulcspárt.

2. Minden rendszer közzé teszi titkosítási kulcsát, ezt nevezzük publikus kulcs-
nak, illetve titokban tartja annak párját, amit privát kulcsnak hívunk.

3. Ha A üzenetet szeretne küldeni B-nek, akkor B publikus kulcsával titkosítja
az üzenetét.

4. Amikor B megkapja az üznetet, a titkos kulcsa segítségével dekódolja az
üzenetet. Más nem tudja visszafejteni az üzenetet, mert csak B ismeri a
privát kulcsot.

Az algoritmus követelményei:

Bármely nyilvános kulcsú titkosítási algoritmusra teljesülnek a következő követelmények,
melyeket Whitfield Diffie és Martin Hellman fogalmaztak meg:

• B-nek a kulcspár (publikus(KU) és privát(KR)) generálása könnyen szá-
molható.

• A-nak a publikus kulcs (KUb) tudatában könnyen kiszámítható a titkosított
szöveg és így el tudja küldeni a megfelelő kriptoszöveget. C = EKUb

(M),
E a titkosító függvény, M pedig az üzenet.

3

4 FEJEZET 1. BEVEZETŐ

• B-nek szintén könnyen számítható a privát kulcsa (KRb) segítségével a krip-
toszövegből visszafejteni az eredeti szöveget.

M = DKRb
(C) = DKRb

[EKUb
(M)],

ahol D a dekódoló függvény.

• Egy külső személynek lényegében lehetetlen KUb-ból KRb-t kiszámolni.

• Csak KUb és C tudatában lényegében lehetetlen visszafejteni M -et.

• A titkosítás és a visszafejtés bármilyen sorrendben elvégezhető:

M = EKUb
[DKRb

(M)] = DKRb
[EKUb

(M)].

A fenti "könnyen kiszámítható", "lényegében lehetetlen" fogalmak nincsenek mate-
matikailag pontosan definiálva, mégis a gyakorlatban számos kriptorendszer biz-
tonsága alapszik rajtuk.

Az NTRU az egyik leggyorsabb ma ismert, nyílvános kulcsú kriptográfiai al-
goritmus, melyet 1996-ban prezentált Jeffery Hoffstein, Jill Pipher és Joseph H.
Silverman [3]. Biztonsága a legrövidebb vektor problémán alapszik. Ebben a dol-
gozatban az NTRU titkosítás és néhány változata kerül bemutatásra.
A szakdolgozat írása közben létrejött egy cikk is, melyet 2020 júniusában mutatott
be Hayder Hashim a "20th Central European Conference on Cryptology" konfe-
rencián. Az előadás anyaga az alábbi linken elérhető: https://web.math.pmf.unizg.
hr/cecc2020/files/hashim-molnar-tengely-talk.pdf.

2. NTRU

Először az alap NTRU felépítése és működése kerülne bemutatásra.

Legyen R = Z[x]/(xn − 1) polinomgyűrű, melyben legfeljebb (N − 1)-edfokú
polinomok vannak. Az NTRU algoritmus műveleteit ebben a gyűrűben végezzük.
Szükségünk van három egész paraméterre: N , p, q úgy, hogy (p, q) = 1. p-t kicsi,
q-t pedig nagy modulusnak nevezzük. Legyenek továbbá Lm, Lf , Lg és Lr ⊆ R

olyan halmazok, melyekben kis együtthatós polinomok vannak.

Publikus kulcs generálása:

Véletlenszerűen vegyünk két polinomot, f ∈ Lf -et és g ∈ Lg-t. f -et úgy kell
megválasztanunk, hogy legyen inverze (mod p) és (mod q). Modulo p úgy dol-
gozunk, hogy a szokásos [0, p−1] intervallum helyett a

[
−p+1

2 , p−1
2

]
intervallumot

használjuk.
Fp ∗ f ≡ 1 (mod p),

Fq ∗ f ≡ 1 (mod q).

Ebből tudjuk megadni a publikus kulcsot, h-t:

h ≡ pFq ∗ g (mod q).

2.1. Kódolás

Az üzenetet egy olyan m polinommal reprezentáljuk, hogy m ∈ Lm és re-
dukáljuk m együtthatóit modulo p szerint. Választunk még egy véletlenszerű
polinomot, úgynevezett maszatoló változót, r ∈ Lr-t. Ennek a segítségével kapjuk
meg a titkosított üzenetet a következő módon:

e ≡ r ∗ h+m (mod q).

5

6 FEJEZET 2. NTRU

Példa SageMath-ban:

1sage: def cmap(t,p):
2....: if (ZZ(t)%p)>(p//2):
3....: return ((ZZ(t)%p)-p)
4....: else:
5....: return ZZ(t)%p
6sage: Zx.<X>=ZZ[]
7sage: N=7
8sage: p=3
9sage: q=41
10sage: f=X^6+X^5-X^3-X^2-X-1
11sage: g=X^6+X^4-X^3+1
12sage: Pp.= PolynomialRing(GF(p))
13sage: Pq.<c>= PolynomialRing(GF(q))
14sage: fp=Pp(f).inverse_mod(b^N-1)
15sage: fq=Pq(f).inverse_mod(c^N-1)
16sage: h=(p*fq*Pq(g))%(c^N-1)
17sage: "publikus␣kulcs:", h
18(’publikus␣kulcs:’, 25*c^6 + 6*c^5 + 40*c^4 + 17*c^3 +

23*c^2 + 30*c + 20)
19sage: r=X^6-X^5+X-1
20sage: m=-X^5+X^3+X^2-X+1
21sage: em=(Pq(r)*h)%(c^N-1)+Pq(m)%(c^N-1)
22sage: "kodolt␣uzenet:", em
23(’kodolt␣uzenet:’, 12*c^6 + 38*c^5 + 40*c^4 + 26*c^2 +

36*c + 13)

2.2. DEKÓDOLÁS 7

2.2. Dekódolás

A kapott e titkosított üzenetet és az f publikus kulcsot összeszorozzuk, így kapjuk
a-t.

a ≡ f ∗ e (mod q)

≡ f ∗ (r ∗ h+m) (mod q)

≡ f ∗ h ∗ r + f ∗m (mod q)

≡ pf ∗ Fq ∗ g ∗ r + f ∗m (mod q)

≡ pg ∗ r + f ∗m (mod q).

Végezetül az egyenletet modulo p vesszük:

a ∗ Fp≡(p ∗ r ∗ g + f ∗m) ∗ Fp ≡ m (mod p).

24sage: A=(Pq(f)*em)%(c^N-1)
25sage: A
263*c^5 + 30*c^4 + 3*c^3 + 35*c^2 + 9*c
27sage: A1=[cmap(k,q) for k in A.list()]
28sage: Zx(A1)
293*X^5 - 11*X^4 + 3*X^3 - 6*X^2 + 9*X
30sage: "dekodolt␣uzenet:", Zx([cmap(k,p) for k in Pp((Zx

(A1)*Zx(fp))%(X^N-1)).list()])
31(’dekodolt␣uzenet:’, -X^5 + X^3 + X^2 - X + 1)

8 FEJEZET 2. NTRU

2.3. Törés LLL-algoritmussal

Ahogyan a bekezdésben már szó esett róla, az NTRU biztonsága a legrövidebb
vektor problémán alapszik [1], ami a következő: egy tetszőleges Λ rácsban sze-
retnénk megtalálni a legrövidebb v vektort a helyvektorok között. Ebben az
esetben −v is a legrövidebb vektor lesz. A legfőbb elméleti eredményt ezzel kap-
csolatban a Minkowski-tétel tartalmazza, amely a legrövidebb vektor felső határát
adja meg.

Minkowski-tétel: Legyen Λ egy olyan rács, melynek rangjam. Ha λ a legrövidebb
vektor normája, akkor

λ ≤ 2√
π

m

2
!
1
mdetΛ

1
m .

LLL-algoritmus:

Az LLL-redukciós algoritmus egy polinomiális idejű, rácsredukciós algoritmus,
melyet Arjen Lenstra, Hendrik Lenstra és Lovász László találtak ki 1982-ben
és utánuk is lett elnevezve [5]. Máig nem ismert hatékony, polinomiális idejű
algoritmus, mely megoldaná a legrövidebb vektor problémát tetszőlegesen nagy
dimenzióban. Az LLL-algoritmust viszont tudjuk alkalmazni a legrövidebb vektor
közelítéséhez. Ez az algoritmus tulajdonképpen egy, a Gramm-Schmidt eljáráshoz
hasonló módszerrel úgynevezett redukált (majdnem ortogonális) bázist szolgáltat.

Az Rn vektortértben egy {b1,b2, · · · ,bm} bázist c-redukáltnak hívunk akkor
és csak akkor, ha a {b∗1,b∗2, · · · ,b∗m} ortonormált bázisa teljesíti a következő
egyenlőtlenséget i = 1, · · · ,m− 1 esetén:

‖b∗i+1‖2 ≥
‖b∗i ‖2

c
.

Jó redukciót jelent az, ha c értéke kicsi. Nem minden bázis 1-redukálható, de
minden bázis 4

3 -redukálható.

Ha veszünk egy Λ rácsot és annak c-redukált {b1,b2, · · · ,bm} bázisát úgy,
hogy c ≤ 4

3 , akkor a bázis közel orotogonális, abban az értelemben, hogy

m∏
i=1

‖bi‖ ≤ c(m(m−1))/4detΛ.

Ha a c-redukált bázisunk {b1,b2, · · · ,bm}, m a rács rangja, λ pedig a
legrövidebb vektor normája, akkor

‖b1‖ ≤ c(m−1)/4detΛ
1
m ,

‖b1‖ ≤ c(m−1)/2λ.

2.3. TÖRÉS LLL-ALGORITMUSSAL 9

Az LLL-algoritmus c > 4
3 -ra polinomiális időn belül megadja a rácsban a

c-redukált bázist.

NTRU törése [8]:

A publikus kulcs kielégíti a

h ≡ g ∗ pFq (mod q)

ekvivalenciát, ezért írhatjuk, hogy f ∗ h ≡ g (mod q). Tekintsük a következőkép-
pen definiált rácsot:

Λ = {(F1, F2) ∈ Rq ×Rq : F1 ∗ h ≡ F2 (mod q)}.

Nyílvánvaló, hogy (f, q) ∈ Λ. Így az f ∗h ≡ g (mod q) egyenlet helyett írható,
hogy

f ∗ h− u ∗ q = g

néhány u ∈ Rq esetén. Ez megegyezik azzal, hogy(
f

g

)
=

(
1 0

h q

)(
f

−u

)
.

Vagy még hasznosabb alakban:

f0

f1
...

fN−1

g0

g1
...

gN−1


=



1 0 · · · 0 0 0 · · · 0

0 1 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 0 0 · · · 0

h0 h1 · · · hN−1 q 0 · · · 0

hN−1 h0 · · · hN−2 0 q · · · 0
...

...
. . .

...
...

...
. . .

...
h1 h2 · · · h0 0 0 · · · q





f0

f1
...

fN−1

−u0

−u1
...

−uN−1


.

Mivel az f és g polinomokban lévő együtthatók kicsik, így az (f, g) vektor
rövid lesz a Λ rácsban. Alkalmazható az LLL-algoritmus.

10 FEJEZET 2. NTRU

A korábbi példa törése LLL-algoritmussal Sage-mathban:

32sage: M=matrix (2*N)
33....: for i in [0..N-1]: M[i,i]=1
34....: for i in [N..2*N-1]: M[i,i]=q
35....: for i in [0..N-1]:
36....: for j in [0..N-1]:
37....: M[i+N,j]=((Zx(GF(q)(1/p)*h)*X^i)%(X^N-1))

[j]
38sage: M
39[1 0 0 0 0 0 0 0 0 0 0 0 0 0]
40[0 1 0 0 0 0 0 0 0 0 0 0 0 0]
41[0 0 1 0 0 0 0 0 0 0 0 0 0 0]
42[0 0 0 1 0 0 0 0 0 0 0 0 0 0]
43[0 0 0 0 1 0 0 0 0 0 0 0 0 0]
44[0 0 0 0 0 1 0 0 0 0 0 0 0 0]
45[0 0 0 0 0 0 1 0 0 0 0 0 0 0]
46[34 10 35 33 27 2 22 41 0 0 0 0 0 0]
47[22 34 10 35 33 27 2 0 41 0 0 0 0 0]
48[2 22 34 10 35 33 27 0 0 41 0 0 0 0]
49[27 2 22 34 10 35 33 0 0 0 41 0 0 0]
50[33 27 2 22 34 10 35 0 0 0 0 41 0 0]
51[35 33 27 2 22 34 10 0 0 0 0 0 41 0]
52[10 35 33 27 2 22 34 0 0 0 0 0 0 41]

A kapott mátrixra tudjuk alkalmazni az LLL-algortitmust, hogy rövid vek-
torokat találjunk, és mivel f és g rövidek, így esélyes, hogy feltűnnek. A Sage-
math beépített függvényként tartalmazza az LLL-t, így könnyen használható.

53sage: f.coefficients(sparse=False)

[−1,−1,−1,−1, 0, 1, 1]

54sage: g.coefficients(sparse=False)

[1, 0, 0,−1, 1, 0, 1]

55sage: M1=M.transpose ().LLL()
56sage: M1

2.3. TÖRÉS LLL-ALGORITMUSSAL 11



−1 1 1 0 −1 −1 −1 1 1 0 1 −1 0 0

−1 −1 0 1 −1 −1 0 1 1 0 1 0 1 −1

0 −1 −1 −1 −1 1 1 1 −1 0 0 1 1 0

−1 0 1 −1 −1 0 −1 1 0 1 0 1 −1 1

0 1 −1 −1 0 −1 −1 0 1 0 1 −1 1 1

1 1 0 −1 −1 −1 −1 1 0 1 −1 0 0 1

−1 1 0 0 1 0 −2 0 0 1 1 −1 0 0

−2 −10 7 −4 6 −3 3 3 −3 2 −2 −8 5 6

−3 1 9 −8 3 −5 4 −5 −4 3 −2 3 9 −5

3 −2 1 9 −7 3 −7 −5 −5 −3 4 −3 3 9

−6 −6 −2 3 −4 −6 1 −5 −10 −1 −5 −8 0 8

−3 −3 −6 4 −9 6 −10 −5 3 −8 −6 −3 −1 0

6 −3 3 −2 −10 7 −4 −8 5 6 3 −3 2 −2

10 −7 4 −6 3 −3 2 3 −2 2 8 −5 −6 −3



Valóban, több sorban is megtalálható f -nek és g-nek valamilyen eltolt alakja.
Ezek mindegyike jó vektor lehet a töréshez. Például, ha az első sort tekintjük,
akkor f -ben az együtthatók listája [-1 1 1 0 -1 -1 -1].

57sage: f=-X^6+X^5+X^4-X^2-X-1
58sage: Zx.<X>=ZZ[]
59sage: N=7
60sage: p=3
61sage: q=41
62sage: Pp.= PolynomialRing(GF(p))
63sage: Pq.<c>= PolynomialRing(GF(q))
64sage: fp=Pp(f).inverse_mod(b^N-1)
65sage: fp

b6 + 2b5 + b4 + 2b2 + 1

66sage: em=12*c^6 + 38*c^5 + 40*c^4 + 26*c^2 + 36*c + 13
67sage: A=(Pq(f)*em)%(c^N-1)
68sage: A

3c4 + 30c3 + 3c2 + 35c+ 9

69sage: A1=[cmap(k,q) for k in A.list()]
70sage: Zx(A1)

3X4 − 11X3 + 3X2 − 6X + 9

71sage: Zx([cmap(k,p) for k in Pp((Zx(A1)*Zx(fp))%(X^N-1)
).list()])

−X5 +X3 +X2 −X + 1

12 FEJEZET 2. NTRU

Hasonlóan a harmadik és hatodik sor első hét tagjából képzett listák jó együtt-
hatói lesznek az f polinomnak és sikeresen visszakaphatjuk segítségével az eredeti
üzenetet. Ha viszont egy másik olyan sorból választunk, ami szintén csak a -1, 0,
1 számokat tartalmazza, akkor hamar elakad az algoritmus, mivel nem lesz f -nek
inverze modulo p.

3. ITRU

Az NTRU ihlette ITRU [2] tirkosítási algoritmus nagyon hasonlít szerkezetében
az előzőekben bemutatott NTRU-hoz, azzal a különbséggel, hogy műveletei a
modulo n maradékosztály-gyűrűben helyezkednek el, amit Z/nZ-vel jelölünk.
Ebben a gyűrűben az összeadás és a szorzás a hagyományos összeadás és szorzás,
csak az eredményt modulo n vesszük.

Az ITRU paraméterei:
A paraméterek a Z/pZ és Z/qZ gyűrűkből vannak.

• p : kis modulus

• q : nagy modulus

• f : a privát kulcs generálásához szükséges privát szám

• g : a publikus kulcs generálásához szükséges random szám

• r : a kriptoszöveg generálásához szükséges random szám

• m : decimális reprezentása az üzenetnek

• Kpr : privát kulcspár, (f, Fp)

• Kpb : publikus kulcs, h

• a : közvetítő paraméter

• C : dekódolt üzenet

3.1. Paraméterek és kulcsok generálása

A kis modulust, p-t, 1000-nek választjuk és hozzá random választunk két
egészet, g-t és r-t. f -et is random számként generáljuk úgy, hogy legyen multi-
plikatív inverze modulo p és modulo q, ahol q > (p · r · g + f ·m) prím. Ezután
meghatározzuk f−1 (mod p)-t, amit Fp-vel illetve f−1 (mod q)-t, amit Fq-val
jelölünk. A kibővített euklideszi algoritmussal ez könnyen számolható.

13

14 FEJEZET 3. ITRU

A kapott inverzek teljesítik a következő feltételeket:

f · Fp ≡ 1 (mod p),

f · Fq ≡ 1 (mod q).

A üzenet decimális alakját az ASCII-táblázat segítségével tudjuk megadni. A
Sage-mathban ezek is rögzítve vannak. Egy karakter ASCII-kódját a "ord()"
paranccsal, a kódhoz tartozó karaktert pedig a "chr()" paranccsal tudjuk előhívni.

A privát kulcspárt, a már korábban meghatározott f és Fp adja,

Kpr = (f, Fp).

A publikus kulcsot pedig a következőképpen számoljuk:

Kpb = h = (p · Fq · g) (mod q).

3.2. Kódolás

A kódoláshoz, az NTRU-hoz hasonlóan, szükségünk van egy random paraméterre,
amit r-rel jelölünk és itt egy egész szám. A kódolt üzenetet e-vel jelöljük és az
alábbi módon számoljuk:

e = ((r · h) +m) (mod q).

A kódoló rész interaktív megoldása SageMath-ban:

3.3. DEKÓDOLÁS 15

Ennek programkódja:

sage: @interact
sage: def itru(s=input_box(’"secret"’,label = "Message:"),
r=slider(8,25,1,3, label="r")):
....: p=1000
....: F=Set([k for k in range(2,50) if gcd(k,1000)==1])
....: f=F.random_element()
....: S=Set([8..25])
....: g=S.random_element()
....: m=[ord(k) for k in s]
....: pretty_print(’The ASCII code of the message:’,m)
....: q=next_prime(p*r*g+255*f)
....: Fp=(1/f)%p
....: Fq=(1/f)%q
....: h=(p*Fq*g)%q
....: pretty_print(’Large modulus:’, q)
....: pretty_print(’Public key:’,h)
....: pretty_print(’Private key pair:’, (f,Fp))
....: e=[((r*h)+m[i])%q for i in [0..len(m)-1]]
....: pretty_print(’The encrypted message:’,e)

3.3. Dekódolás

Hogy megkapjuk az eredeti üzenetet, először a kapott, kódolt üzenetből kiszá-
moljuk a-t:

a = (f · e) (mod q).

Végül a segítségével megkapjuk az dekódolt üzenetet, m-et:

C = (Fp · a) (mod p),

C = m.

Részletes számolás:

Tudjuk, hogy
e = ((r · h) +m) (mod q).

Ezt behelyettesítve az
a = (f · e) (mod q)

egyenletbe kapjuk, hogy

a = (f · (r · h+m)) (mod q)

= (f · r · h+ f ·m) (mod q).

16 FEJEZET 3. ITRU

Figyelembe véve, hogy
h = (p · Fq · g) (mod q),

írhatjuk, hogy
a = (f · r · p · Fq · g + f ·m) (mod q).

Mivel
f · Fq (mod q) ≡ 1,

így
a = (r · p · g + f ·m) (mod q).

q-ról tudjuk, hogy nagyobb, mint (p · r · g + f ·m), ezért a egyenlő lesz
(r · p · g + f ·m)-mel.
Az eredeti üzenetet úgy kapjuk, hogy a-t megszorozzuk Fp-vel a Z/pZ gyűrűben.

C = (f · Fp ·m) + (p · Fp · r · g) (mod p).

Felhasználva, hogy f · Fp (mod p) ≡ 1 és p · Fp · r · g = 0 (mod p),

C = m.

Ezáltal visszakaptuk az eredeti üzenetünket.

3.3. DEKÓDOLÁS 17

A dekódoló rész interaktív megvalósítása SageMath-ban:

Ennek programkódja:

sage: @interact
sage: def decoditru(e=input_box(’[24839, 24825, 24823, 24838,
24825, 24840]’, label="Encrypted message:"), q=input_box(’134887’,
label="Large modulus"), h=input_box(’70534’, label="Public key"),
Fp=input_box(’963’, label="Fp"),
f=input_box(’27’, label="f")):
....: p=1000
....: a=[(f*e[i])%q for i in [0..len(e)-1]]
....: C=[(Fp*a[l])%p for l in [0..len(a)-1]]
....: D=[chr(k) for k in C]
....: pretty_print(’The original message:’, ’’.join(D))

18 FEJEZET 3. ITRU

3.4. Támadás gyakoriságanalízissel

A példán is jól látható, hogy az ITRU minden karakter ASCII kódján ugyan-
azokat a műveleteket, ugyanazon paraméterekkel hajtja végre, így megfeleltethető
egy lináris kriptorendszernek. Az ilyen titkosítások nem módosítják a karak-
terek előfordulásának gyakoriságát, hanem csak azt, hogy a betűket milyen jel-
lel jelöltük. Egy-egy betű előfordulásának gyakorisága minden nyelvben eltér,
ugyanakkor szigorú szabályoknak is felel meg. [4]

Vegyünk például egy angol nyelvű szöveget:

A B C D E F G H I J K L M
7.3 0.9 3.0 4.4 13 2.8 1.6 3.5 7.4 0.2 0.3 3.5 2.5
N O P Q R S T U V W X Y Z
7.8 7.4 2.7 0.3 7.7 6.3 9.3 2.7 1.3 1.6 0.5 1.9 0.1

A relatív gyakoriság különböző szövegtípusokban eltérő lehet, de ki lehet
választani azokat a karaktereket, amelyek gyakorisága magas, illetve azokat, melyek-
nek alacsony.

Nagy gyakoriságú karakterek: E, T, R, I, O, N, A
Kis gyakoriságú karakterek: J, K, Q, X, Z

Gyakoriságvizsgálattal könnyedén feltörhetünk egy ITRU-val titkosított szöve-
get. Elegendő hozzá megállapítani a kriptoszövegben a leggyakoribb kódot és ha
ebből kivonjuk az eredeti szövegben feltételezett leggyakoribb betű ASCII kódját,
akkor megkapjuk az eltolás mértékét.

Tekintsük a következő angol nyelvű szöveget, melyből előre eltűntettük az
összes szóközt, valamint annak egy titkosítását!

72sage: Text="InordertofurtherenhancethesecurityofNTRU ,"
73sage: Text=Text+"researchhasbeenconductedonothervaria"
74sage: Text=Text+"ntsofNTRU.Somevariantsproposetheuseo"
75sage: Text=Text+"fpolynomialringswithcoefficientsinot"
76sage: Text=Text+"herrings.In2002 ,Gaboritsuggestedtheu"
77sage: Text=Text+"seoftheringofpolynomialsinsteadofthe"
78sage: Text=Text+"ringofintegersandpresentedCTRU [5].Ko"
79sage: Text=Text+"uzmenkosuggestedtheuseofGaussianInte"
80sage: Text=Text+"gersandpresentedGTRUin2006 [6]. Otherv"

3.4. TÁMADÁS GYAKORISÁGANALÍZISSEL 19

81sage: Text=Text+"ariantsusealternativerings.In2005 ,Co"
82sage: Text=Text+"glianese&Goisuggestedtheuseofmatrice"
83sage: Text=Text+"sandpresentedMaTRU [7]. In2011and2015J"
84sage: Text=Text+"arvisandNevinssuggestedtheuseoftheri"
85sage: Text=Text+"ngofEisensteinintegersandpresentedET"
86sage: Text=Text+"RU[8,9]. In2009Malekianetal.suggested"
87sage: Text=Text+"theuseoftheringofQuaternionsandprese"
88sage: Text=Text+"ntedQTRUin2015 [10 ,11]. OtherNTRUvaria"
89sage: Text=Text+"ntsusevaryingcommutativestructures.I"
90sage: Text=Text+"n2002 ,BankspresentedavariantofNTRUwh"
91sage: Text=Text+"ichusesnoninvertiblepolynomials [12]."
92sage: Text=Text+"In2003 ,RourkeandSunarpresentedavaria"
93sage: Text=Text+"ntofNTRUwhichusesMontgomerymultiplic"
94sage: Text=Text+"ation [13]. In2007 ,Trumanpresentedtheu"
95sage: Text=Text+"seofanoncommutativeNTRU [14]. Furtherm"
96sage: Text=Text+"ore ,workby [15] presentsasimplifiedver"
97sage: Text=Text+"sionofNTRUreferredtoasminiNTRU ,which"
98sage: Text=Text+"providesageneralizedparameterselecti"
99sage: Text=Text+"oncriteriaandreducedparametersetswhi"
100sage: Text=Text+"chfosterunderstandingoftheNTRUpublic"
101sage: Text=Text+"keycryptosystem."
102sage: p=1000
103sage: F=Set([k for k in range (50) if gcd(k ,1000) ==1])
104sage: f=F.random_element ()
105sage: S=Set ([8..25])
106sage: r=8
107sage: g=S.random_element ()
108sage: m=[ord(k) for k in Text]
109sage: q=next_prime(p*r*g+255*f)
110sage: Fp=(1/f)%p
111sage: Fq=(1/f)%q
112sage: h=(p*Fq*g)%q
113sage: e=[((r*h)+m[i])%q for i in [0.. len(m) -1]]
114sage: e[0:10]

[49834, 49871, 49872, 49875, 49861, 49862, 49875, 49877, 49872, 49863]

Az utolsó paranccsal az átláthatóság miatt csak az első néhány karakter kód-
ját írja ki a program.

20 FEJEZET 3. ITRU

Ha feltételezzük, hogy az "e" betű a leggyakoribb karakter, akkor az alábbi
módon eljuthatunk az eredeti szöveghez:
Készítünk egy olyan halmazt, melyben a különböző karakterek kódjai mellett
feltüntetjük azoknak a titkosított szövegben való előfordulási számát is, majd ezt
a halmazt rendezzük a gyakoriságot jelző tag szerinti csökkenő sorrendbe.

115sage: se=Set(e)
116sage: Gyak =[(e.count(k),k) for k in se]
117sage: GyakRend=sorted(Gyak , key=lambda tup: -tup [0])
118sage: GyakRend [0:6]

[(129, 49862) , (83, 49871) , (75, 49877) , (74, 49876) , (70, 49875) , (63, 49866)]

A rendezett listánk első tagja mutatja meg, hogy melyik a leggyakoribb karak-
ter a szövegben. Ebből kivonva az eredeti szövegben feltételezett leggyakoribb
karakterhez rendelt ASCII kódot, esetünkben az ’e’ betű kódja, ami a 101, kapjuk
meg azt az értéket, mellyel minden karakter el lett tolva.

119sage: Max=GyakRend [0]
120sage: Max[1]

49862

121sage: eltolas =(Max [1]) -(ord(’e’))
122sage: eltolas

49761

Végül vesszük a titkosított szöveget és ha karakterenként az eltolás mértékét
kivonjuk a kódokból, megkapjuk az eredeti sorrendben elhelyezkedő karakterek
ASCII kódját. Ezekhez már csak hozzá kell rendelni a megfelelő karaktereket, és
készen is van az eredeti szöveg.

123sage: (’’.join([chr(k-eltolas) for k in e]))[0:49]
InordertofurtherenhancethesecurityofNTRU,research

3.4. TÁMADÁS GYAKORISÁGANALÍZISSEL 21

Interaktív megoldás SageMath-ban választható leggyakoribb karakterrel:
Ebben a példában a "space"-t, mint karaktert, szintén belevettem a listába, hiszen
szövegeink többségében az a leggyakrabban előforduló elem.

Programkódja:

sage: @interact
sage: def BREAK(e=input_box(’[826028, 826014, 826012, 826027,
826014, 826029]’, label="Encrypted message:"),
character=[’space’, ’e’,’t’, ’a’, ’n’, ’r’, ’s’]):
....: Gyak=[e.count(k) for k in e]
....: m=max(Gyak)
....: n=Gyak.index(m)
....: A=[chr(k) for k in [0..255]]
....: x=character
....: if x==’space’:
....: eltolas=(e[n])-(A.index(’ ’))
....: else:
....: eltolas=(e[n])-(A.index(x))
....: E=[e[i]-eltolas for i in [0..len(e)-1]]
....: D=[chr(k) for k in E]
....: pretty_print(’The original message:’, D)

4. MaTRU

A MaTRU kriptorendszer már hatékonyabb lineáris transzformációt alkalmaz,
miközben jól összehasonlítható az NTRU-val [7]. Műveletei egy olyanM gyűrűben
helyezkednek el, melyben k × k típusú mátrixok vannak, és azok elemei pedig a
R = Z[x]/(xn− 1) polinomgyűrű polinomjai. Az NTRU-tól eltérően, itt kétoldali
mátrixszorzás van, emiatt két gyűrűelemre lesz szükségünk. Egy másik különbség
a két kriptorendszer között a kommutativitás. A MaTRU gyűrűje nem kommu-
tatív, ami azt jelenti, hogy a privát kulcs mátrixait és a véletlenszerű mátrixokat
speciálisan úgy kell megkonstruálni a titkosítás során, hogy azok felcserélhetőek
legyenek.

A mátrix paraméterei négy egész számból (n, k, p, q), illetve öt mátrixkészletből
(LF ,LΦ,LA,LW ,LM) ⊂M állnak.

1. LA tartalmazza a C ∈M permutációmátrixokat oly módon, hogy C0, C1, . . . ,

Ck−1 lineárisan függetlenek modulo q. A permutációmátrix egy olyan négy-
zetes mátrix, melynek minden sorában és minden oszlopában csak egy darab
1-es van, mindenhol máshol pedig nullák vannak.

k−1∑
i=0

Ci =

1 · · · 1
...

. . .
...

1 · · · 1

 .

2. L′F és L′Φ tartalmazzák az összes olyan D ∈M mátrixot, melyek úgy vannak
megkonstruálva, hogy C ∈ LA, c0, . . . , ck−1 ∈ R és D =

∑k−1
i=0 ciC

i. Ezen
kívül az L′F mátrixainak meg kell felelniük annak a követelménynek, hogy
van inverzük modulo p és modulo q.

3. Az üzenetek halmaza, Lm, az összes olyan mátrixból áll, melyben a poli-
nomok együtthatója modulo p van redukálva. Kifejezve:

LM =

{
M ∈M| azM -beli polinomok együtthatói− p− 1

2
,
p− 1

2
közöttiek

}
.

23

24 FEJEZET 4. MATRU

4.

L(d) =
{
M ∈M|i =

[
−p− 1

2

]
. . .

[
p− 1

2

]
, i 6= 0,minden M -beli po-

linomban van átlagosan d együttható, ami egyenlő i-vel, a többi 0
}
.

Például, ha p = 3 és n = 5, akkor L(2) tartalmazza azokat a mátrixokat,
melyekben minden polinomban van átlagosan 2 együttható, ami egyenlő
1-gyel, 2 együttható, ami egyenlő -1-gyel és 1 együttható, ami pedig nulla.

5. df és dΦ segítségével LF ,LΦ és LW így definiálható:

LF = L(df) ∩ L′F ,

LΦ = L(dΦ) ∩ L′Φ,

LW = L(bn/pc).

Tipikusan df ≈ n/p és dΦ ≈ n/p.

4.1. Kulcs generálása

A privát, illetve publikus kulcs megalkotásához először választunk két k×k tí-
pusú mátrixot, A,B ∈ LA. F,G ∈ Lf mátrixokat a következőképpen konstruáljuk
meg:

F =
k−1∑
i=0

αiA
i, G =

k−1∑
i=0

βiB
i.

Alkalmas random α0, α1, ..., αk−1 ∈ R és β0, β1, ..., βk−1 ∈ R polinomokat használ-
va F és G kielégíti azt, hogy F,G ∈ L(df).
Lf definiálásánál már említettük, hogy F -nek és G-nek rendelkeznie kell

modulo p és modulo q szerinti inverzekkel. Ez megfelelő paraméterek választása
esetén így lesz. Az inverzek legyenek Fp, Fq és Gp, Gq, ahol I a k × k-as
egységmátrix és

FpF ≡ I (mod p), FqF ≡ I (mod q),

GpG ≡ I (mod p), GqG ≡ I (mod q).

Ezáltal meg is van a privát kulcsunk, ami az (F , G) pár.
A publikus kulcs három mátrixból fog állni, (H,A,B), melyekből kettőt már

ismerünk. H generálásához random választunk egy W ∈ Lw mátrixot, és:

H ≡ FqWGq (mod q).

4.2. KÓDOLÁS 25

4.2. Kódolás

Az elküldendő üzenet titkosításához a publikus kulcs elemei közül A-t illetve
B-t felhasználva elkészítjük Φ,Ψ ∈ LΦ mátrixokat:

Φ =
k−1∑
i=0

φiA
i, Ψ =

k−1∑
i=0

ψiB
i.

Alkalmas φ0, φ1, ..., φk−1 ∈ R és ψ0, ψ1, ..., ψk−1 ∈ R polinomokra Φ,Ψ ∈ L(dΦ)

is teljesülni fog.

Ezt követően a titkosítandó üzenetet a megfelelő alakban véve, M ∈ LM ,
létrehozzuk a titkosított szöveget:

E ≡ p(ΦHΨ) +M (mod q).

Ebben az alakban küldi el a feladó az üzenetét.

4.3. Dekódolás

Az üzenet megfejtéséhez elsőként kiszámoljuk X-et:

X ≡ FEG (mod q).

A kapott mátrixban az együtthatókat a −q/2 és q/2 tartományba helyezzük,
az NTRU-hoz hasonlóan. Ezután egészként kezelve az együtthatókat, dekódoljuk
az üzenetet az alábbi számolással:

D ≡ FpXGp (mod p),

D = M.

Részletes számolás:

X ≡ FEG (mod q)

≡ F (p (ΦHΨ) +M)G (mod q)

≡ p (FΦFqWGqΨG) + FMG (mod q).

26 FEJEZET 4. MATRU

Habár a mátrixszorzás általában nem kommutatív, F és Φ azok lesznek:

FΦ ≡

(
k−1∑
i=0

αiA
i

)(
k−1∑
i=0

φiA
i

)
(mod q)

≡
k−1∑
i=0

∑
i≡j+l (mod k)

αjA
jφlA

l (mod q)

≡
k−1∑
i=0

∑
i≡j+l (mod k)

φlA
j+lαj (mod q)

≡
k−1∑
i=0

∑
i≡j+l (mod k)

φlA
lαjA

j (mod q)

≡

(
k−1∑
i=0

φiA
i

)(
k−1∑
i=0

αiA
i

)
≡ ΦF (mod q).

GΨ ≡ ΨG (mod q) hasonlóan belátható. Tehát írható, hogy

X ≡ p(FΦFqWGqΨG) + FMG ≡ p(ΦWΨ) + FMG (mod q).

Elegendően nagy q választása esetén tekinthetjük X polinomjainak az együtt-
hatóit modulo q redukció nélkül, azaz mintha Z-beliek lennének. Tudjuk venni
az együtthatókat modulo p, elhagyva a FMG (mod p) részt. Az eredeti üzenetet
megkapjuk egy Fp-vel való balszorzással és egy Gp-vel való jobbszorzással.

FpXGp ≡M (mod p).

Irodalomjegyzék

[1] Helfer Etienne. LLL lattice basis reduction algorithm. pages 1–17, 2010.

[2] J. N. Gaithuru, M. Salleh, and I. Mohamad. ITRU: NTRU-Based Cryptosystem
Using Ring of Integers. International Journal of Innovative Computing, 7(1):33–38,
2017.

[3] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key cryp-
tosystem. In Joe P. Buhler, editor, Algorithmic Number Theory, pages 267–288,
Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[4] David R. Kohel. Cryptography. pages 19–21, 2008.

[5] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring poly-
nomials with rational coefficients. Math. Ann., 261(4):515–534, 1982.
https://doi.org/10.1007/BF01457454.

[6] Sourav Mukhopadhyay. Public Key Cryptography, 2018.
http://www.facweb.iitkgp.ac.in/ sourav/PublicKeyCrypto.pdf.

[7] Jeong Eun SONG, Tae Youn HAN, and Mun-Kyu LEE. Analysis and Improvement
of MaTRU Public Key Cryptosystem. pages 982–988, 2015.

[8] Tengely Szabolcs. Lecture Notes on Cryptography. Online published, 2019.
http://shrek.unideb.hu/ tengely/crypto/section-8.htmlsubsection-29.

27

