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Abstract. In this paper, we study the Diophantine equation x2 + C = 2yn

in positive integers x, y with gcd(x, y) = 1, where n ≥ 3 and C is a positive

integer. If C ≡ 1 (mod 4) we give a very sharp bound for prime values of the

exponent n; our main tool here is the result on existence of primitive divisors
in Lehmer sequence due Bilu, Hanrot and Voutier. We illustrate our approach

by solving completely the equations x2 + 17a1 = 2yn, x2 + 5a113a2 = 2yn,

and x2 + 3a111a2 = 2yn.

1. introduction

The Diophantine equation x2 + C = yn, in integer unknowns x, y and n ≥ 3,
has a long and distinguished history. The first case to have been solved appears to
be C = 1: in 1850, Victor Lebesgue [24] showed, using an elementary factorization
argument, that the only solution is x = 0, y = 1. Over the next 140 years many
equations of the form x2 + C = yn have been solved using Lebesgue’s elementary
trick. In 1993, John Cohn [17] published an exhaustive historical survey of this
equation which completes the solution for all but 23 values of C in the range
1 ≤ C ≤ 100. In a second paper, [19], Cohn shows that the tedious elementary
argument can be eliminated by appealing to the remarkable recent theorem [8] on
the existence of primitive divisors of Lucas sequences, due to Bilu, Hanrot and
Voutier. The next major breakthrough came in 2006 when Bugeaud, Mignotte and
Siksek [13] applied a combination of Baker’s Theory and the modular approach to
the equation x2 + C = yn and completed its solution for 1 ≤ C ≤ 100.

It has been noted recently (e.g. [1], [3], [4]) that the result of Bilu, Hanrot and
Voutier can sometimes be applied to equations of the form x2 + C = yn where
instead of C being a fixed integer, C is the product of powers of fixed primes
p1, . . . , pk.

By comparison, the Diophantine equation x2 + C = 2yn, with the same restric-
tions, has received little attention. For C = 1, John Cohn [18], showed that the
only solutions to this equation are x = y = 1 and x = 239, y = 13 and n = 4. The
fourth-named author studied [29] the equation x2 + q2m = 2yp where m, p, q, x, y
are integer unknowns with m > 0, and p, q are odd primes and gcd(x, y) = 1. He
proved that there are only finitely many solutions (m, p, q, x, y) for which y is not
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a sum of two consecutive squares. He also studied the equation for fixed q and
resolved it when q = 3.

The purpose of this paper is to perform a deeper study of the equation x2 +C =
2yn, both in the case where C is a fixed integer, as well as in the case where C is
the product of powers of fixed primes. Principally, we show that in some cases this
equation can be solved by appealing to the theorem of Bilu, Hanrot and Voutier
on primitive divisors of Lehmer sequences. In particular, we prove the following
theorem.

Theorem 1. Let C be a positive integer satisfying C ≡ 1 (mod 4), and write
C = cd2, where c is square-free. Suppose that (x, y) is a solution to the equation

(1) x2 + C = 2yp, x, y ∈ Z+, gcd(x, y) = 1,

where p ≥ 5 is a prime. Then either
(i) x = y = C = 1, or
(ii) p divides the class number of the quadratic field Q(

√
−c), or

(iii) p = 5 and (C, x, y) = (9, 79, 5), (125, 19, 3), (125, 183, 7), (2125, 21417, 47),
or

(iv) p | (q − (−c|q)), where q is some odd prime such that q | d and q - c. Here
(c|q) denotes the Legendre symbol of the integer c with respect to the prime
q.

Theorem 2. The only solutions to the equation x2 + C = 2yn with x, y coprime
integers, n ≥ 3, and C ≡ 1 (mod 4), 1 ≤ C < 100 are

12 + 1 = 2 · 1n, 792 + 9 = 2 · 55, 52 + 29 = 2 · 33, 1172 + 29 = 2 · 193,

9932 + 29 = 2 · 793, 112 + 41 = 2 · 34, 692 + 41 = 2 · 74, 1712 + 41 = 2 · 114,

12 + 53 = 2 · 33, 252 + 61 = 2 · 73, 512 + 61 = 2 · 113, 372 + 89 = 2 · 93.

Proof. Theorem 1 implies that either (C, x, y) ∈ {(1, 1, 1), (9, 79, 5)} or p ∈ {2, 3}.
It remains to solve the equations x2+C = 2y3 and x2+C = 2y4 for C ≡ 1 (mod 4),
1 ≤ C < 100. Hence, we have reduced the problem to computing integral points
on certain elliptic curves. Using the computer package MAGMA [10], we find the
solutions listed in the theorem. ¤

Theorem 1 yields the following straightforward corollary.

Corollary 1.1. Let q1, . . . , qk be distinct primes satisfying qi ≡ 1 (mod 4). Sup-
pose that (x, y, p, a1, . . . , ak) is a solution to the equation

(2) x2 + qa1
1 . . . qak

k = 2yp,

satisfying

x, y ∈ Z+, gcd(x, y) = 1, ai ≥ 0, p ≥ 5 prime.

Then either
(i) x = y = 1 and all the ai = 0, or
(ii) p divides the class number of the quadratic field Q(

√
−c) for some square-

free c dividing q1q2 . . . qk, or
(iii) p = 5 and (

∏
qai
i , x, y) = (125, 19, 3), (125, 183, 7), (2125, 21417, 47), or

(iv) p | (q2
i − 1) for some i.
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We illustrate by solving completely the equations

x2 + 17a1 = 2yn,

x2 + 5a113a2 = 2yn,

x2 + 3a111a2 = 2yn,

under the restrictions gcd(x, y) = 1, and n ≥ 3.

Theorem 3. The only solutions to the equation

x2 + 17a1 = 2yn, a1 ≥ 0, gcd(x, y) = 1, n ≥ 3,

are
12 + 170 = 2 · 1n, 2392 + 170 = 2 · 134, 312 + 172 = 2 · 54.

The only solutions to the equation

x2 + 5a113a2 = 2yn, a1, a2 ≥ 0, gcd(x, y) = 1, n ≥ 3,

are

12 + 50 · 130 = 2 · 1n, 92 + 50 · 132 = 2 · 53, 72 + 51 · 130 = 2 · 33,

992 + 52 · 130 = 2 · 173, 192 + 52 · 131 = 2 · 73, 791372 + 52 · 133 = 2 · 14633,

2532 + 52 · 134 = 2 · 733, 1880004972 + 58 · 134 = 2 · 2604733,

2392 + 50 · 130 = 2 · 134.

The only solutions to the equation

x2 + 3a111a2 = 2yn, a1, a2 ≥ 0, gcd(x, y) = 1, n ≥ 3,

are

12 + 30 · 110 = 2 · 1n, 3512 + 30 · 114 = 2 · 413, 132 + 34 · 110 = 2 · 53,

52 + 34 · 112 = 2 · 173, 276072 + 34 · 112 = 2 · 7253, 5452 + 36 · 110 = 2 · 533,

6792 + 36 · 112 = 2 · 653, 10932 + 38 · 114 = 2 · 3653,

4106392 + 310 · 112 = 2 · 43853, 2392 + 30 · 110 = 2 · 134, 792 + 32 · 110 = 2 · 55.

2. Arithmetic of Some Biquadratic Fields

In this section, we let c be a square-free positive integer such that c ≡ 1 (mod 4).
We let K = Q(

√
2,
√
−c).

Lemma 2.1. The field K has Galois group Z/2Z× Z/2Z and precisely three qua-
dratic subfields: L1 = Q(

√
2), L2 = Q(

√
−c) and L3 = Q(

√
−2c). The ring of

integers OK has Z-basis {
1,
√

2,
√
−c,

1 +
√
−c√

2

}
.

The class number of h of K is h = 2−ih2h3 where h2, h3 are respectively the class
numbers of L2 and L3, and 0 ≤ i ≤ 2.

Proof. The ring of integers can be read off from the tables in Kenneth Williams’
seminal paper on integers of biquadratic fields [31].

For the relation between class numbers, see [9].
¤
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3. Lehmer Sequences

We briefly define Lehmer sequences and state some relevant facts about them.
A Lehmer pair is a pair (α, β) of algebraic integers such that (α + β)2 and αβ are
non-zero coprime rational integers and α/β is not a root of unity. For a Lehmer
pair (α, β), the corresponding Lehmer sequence {un} is given by

un =

{
(αn − βn)/(α− β) if n is odd,
(αn − βn)/(α2 − β2) if n is even.

Two Lehmer pairs (α1, β1) and (α2, β2) are said to be equivalent if α1/α2 = β1/β2 ∈
{±1,±

√
−1}. One sees that general terms of Lehmer sequences corresponding to

equivalent pairs are the same up to signs.
A prime q is called a primitive divisor of the term un if q divides un but q does

not divide (α2−β2)2u1 . . . un−1. We shall not state the full strength of the theorems
of Bilu, Hanrot and Voutier [8] as this would take too long, but merely the following
special cases:

(i) if n > 30, then un has a primitive divisor;
(ii) if n = 11, 17, 19, 23 or 29, then un has a primitive divisor;
(iii) u7 and u13 have primitive divisors unless (α, β) is equivalent to

(3)
(
(
√

a−
√

b)/2, (
√

a +
√

b)/2
)

,

where (a, b) is one of (1,−7), (1,−19), (3,−5), (5,−7), (13,−3), (14,−22).
(iv) u5 has a primitive divisor unless (α, β) is equivalent to a Lehmer pair of

the form (3) where
• a = Fk+2ε, b = Fk+2ε − 4Fk for some k ≥ 3, ε = ±1, where Fn is the

Fibonacci sequence given by F0 = F1 = 1 and Fn+2 = Fn+1 + Fn for
all n ≥ 0;

• a = Lk+2ε, b = Lk+2ε − 4Lk for some k ≥ 0, k 6= 1, ε = ±1, where Ln

is the Lucas sequence given by L0 = 2, L1 = 1 and Ln+2 = Ln+1 +Ln

for all n ≥ 0.

Lemma 3.1. Let c be a positive square-free integer, c ≡ 1 (mod 4). Let U , V be
odd integers such that gcd(U, cV ) = 1. Suppose moreover that (c, U2, V 2) 6= (1, 1, 1).
Write

(4) α =
U + V

√
−c√

2
, β =

U − V
√
−c√

2
.

Then (α, β) is a Lehmer pair. Denote the corresponding Lehmer sequence by {un}.
Then up has a primitive divisor for all prime p ≥ 7. Moreover, u5 has a primitive
divisor provided that

(5) (c, U2, V 2) 6= (1, 1, 9), (5, 1, 1), (5, 9, 1), (85, 9, 1).

Proof. Throughout, we shall write x = U/(V
√
−c) and use the fact that

t =
x + 1
x− 1

iff x =
t + 1
t− 1

.

We shall also repeatedly use the easy fact that, for ε = ±1 and k ≥ 0, both
gcd(Fk+2ε, Fk+2ε − 4Fk) and gcd(Lk+2ε, Lk+2ε − 4Lk) are either 1, 2 or 4.
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Note that α, β are algebraic integers by Lemma 2.1. Moreover (α + β)2 = 2U2,
αβ = (U2 + cV 2)/2 are coprime rational integers. We next show that α/β is not a
root of unity. But

α/β =
x + 1
x− 1

is in Q(
√
−c) and so if it is a root of unity, it must be ±1, ±

√
−1, (±1±

√
−3)/2.

From our assumptions on c, U and V , we find that this is impossible. In particular,
±
√
−1 leads to (c, U2, V 2) = (1, 1, 1), which we have excluded.

It remains to show that up has a primitive divisor. Suppose otherwise. Then

x + 1
x− 1

= ±

(√
a−

√
b

√
a +

√
b

)
or

x + 1
x− 1

= ±
√
−1

(√
a−

√
b

√
a +

√
b

)
,

where (a, b) is one of the pairs listed in (iii), (iv) above.
Let us first deal with the case (x + 1)/(x − 1) = ±

√
−1(

√
a −

√
b)/(

√
a +

√
b).

Solving for x and squaring we obtain

U2

−cV 2
=

a− b∓ 2
√
−ab

b− a∓ 2
√
−ab

,

which implies that a = b or that −ab is a square. This is not possible for the pairs
listed in (iii), whilst for (iv) it leads to equations that can easily be solved with the
help of Lemma 3.2 below.

Next we deal with the case (x+1)/(x−1) = ±(
√

a−
√

b)/(
√

a+
√

b). This leads
to x = −(

√
a/
√

b)±1. Squaring we obtain

U2

−cV 2
=
(a

b

)±1

=
(

a′

b′

)±1

.

where a′ = a/ gcd(a, b) and b′ = b/ gcd(a, b). Since U and cV are coprime we have{
±U2 = a′,

∓cV 2 = b′,
or

{
±U2 = b′,

∓cV 2 = a′.

One quickly eliminates all the possibilities in (iii) mostly using the fact that c ≡ 1
(mod 4). For the possibilities in (iv), we obtain equations of the form solved in
Lemma 3.2 and these lead to one of the possibilities excluded in (5). This completes
the proof of the lemma. ¤

In the proof of Lemma 3.1, we needed the following results about Fibonacci and
Lucas numbers.

Lemma 3.2. Let {Fn}n≥0 and {Ln}n≥0 be the Fibonacci and Lucas sequences. The
only solutions to the equation Fn = u2 have n = 0, 1, 2 or 12. The only solutions
to Fn = 2u2 have n = 3 or 12. The only solutions to the equation Ln = v2 have
n = 1 or 3. The only solutions to the equation Ln = 2v2 have n = 0 or 6.

The only solutions to the equation

(6) Fk+2ε − 4Fk = ±2ru2, ε = ±1, k, r ≥ 0, u ∈ Z,

have (k, ε) = (0,±1), (1, 1), (2,±1), (4, 1), (5,−1), (7, 1). The only solutions to
the equation

(7) Lk+2ε − 4Lk = ±2ru2, ε = ±1, k, r ≥ 0, u ∈ Z,

have (k, ε) = (1, 1), (4,−1), (6, 1).
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Proof. The results about Fibonacci and Lucas numbers of the form 2ru2 are clas-
sical. See, for example, [15], [16].

It remains to deal with (6) and (7). Here, we may take r = 0, 1. We explain
how to deal with (6) with r = 0:

Fk+2ε − 4Fk = ±u2, ε = ±1, k ≥ 0, u ∈ Z;

the other cases are similar. We make use of Binet’s formula for Fibonacci numbers:

Fn =
λn − µn

√
5

, λ =
1 +

√
5

2
, µ =

1−
√

5
2

.

Our equation can thus be rewritten as

γλk − δµk = u2
√

5, γ = λ2ε − 4, δ = µ2ε − 4.

Let v = γλk + δµk. It is clear that v ∈ Z. Moreover,

v2 = (γλk + δµk)2 = (γλk − δµk)2 + 4γδ(λµ)k = 5u4 ± 20.

Let X = 5u2, and Y = 5uv. Then Y 2 = X(X2 ± 100). Thus, we have reduced
the problem to computing integral points on a pair of elliptic curves. Using the
computer package MAGMA [10], we find that

(X, Y ) = (0, 0), (5,±25), (20,±100), (±100, 0).

The remaining equations similarly lead to integral points on elliptic curves which
we found using MAGMA. Working backwards, we obtain the solutions given in the
lemma. ¤

4. Proof of Theorem 1

We follow the notation from the statement of the theorem. We shall suppose
that (C, x, y) 6= (1, 1, 1) and p does not divide the class number of the Q(

√
−c). We

will show that either statement (iii) or (iv) of the theorem must hold.
Considering equation (1) modulo 4 reveals that x and y are odd. We work

first in Q(
√
−c). Since c ≡ 1 (mod 4), this has ring of integers O = Z[

√
−c].

Moreover, (2) = q2, where q is a prime ideal of O. It is clear that the principal
ideals (x + d

√
−c) and (x− d

√
−c) have q as their greatest common factor. From

(1) we deduce that
(x + d

√
−c)O = q · ap,

where a is some ideal of O. Now multiply both sides by 2(p−1)/2. We obtain

2(p−1)/2(x + d
√
−c)O = (qa)p.

Since the class number of Q(
√
−c) is not divisible by p, we see that qa is a principal

ideal. Moreover, as c is positive, the units of Z[
√
−c] are ±1. Hence

(8) 2(p−1)/2(x + d
√
−c) = (U + V

√
−c)p

for some integers U , V . Since x, d, c are odd, we deduce that U and V are both
odd. Moreover, y = (U2 + cV 2)/2. From the coprimality of x and y we see that U ,
cV are coprime.

In conclusion,
x + d

√
−c√

2
=
(

U + V
√
−c√

2

)p

,

where U , V , c satisfy the conditions of Lemma 3.1.
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Let α, β be as in (4). Let {un} be the corresponding Lehmer sequence. We note
that

αp − βp = d
√
−2c, α− β = V

√
−2c.

Thus, V | d and up | d/V . By Lemma 3.1, up has a primitive divisor unless p = 5
and (c, U2, V 2) is one of the possibilities listed in (5). These possibilities lead to
cases given in item (iii) of the theorem. Thus, we may exclude these and so assume
that up has a primitive divisor q. Our objective now is to show that (iv) holds.
Clearly, q | d, but by the definition of the primitive divisor, q - (α2 − β2)2 and so,
in particular, q - c. To complete the proof, let

γ = U + V
√
−c, δ = U − V

√
−c.

Write vn = (γn− δn)/(γ− δ). We note that q | vp but, from the accumulated facts,
q - (γ − δ)γδ. We claim that q | vq−(−c|q). Given our claim, it follows from [12,
Lemma 5], that p divides q − (−c|q). Now let us prove our claim. If (−c|q) = 1,
then

γq−1 ≡ δq−1 ≡ 1 (mod q),
and hence q | vq−1. Suppose (−c|q) = −1. Then, by the properties of the Frobenius
automorphism, we have

γq ≡ δ (mod q), δq ≡ γ (mod q).

Hence,
γq+1 − δq+1 ≡ γδ − γδ ≡ 0 (mod q),

proving q | vq+1 as required. This completes the proof of the theorem.

Remark. In the proof of Theorem 1, it would have been possible to factorize the
left-hand side of (1) in K = Q(

√
2,
√
−c). Doing this, the hypothesis that would be

needed is that p does not divide the class number of K. By Lemma 2.1, the class
number of Q(

√
−c) divides the class number of K, up to powers of 2. Thus, we

obtained a stronger result by working in Q(
√
−c) instead of K.

5. Dealing with small exponents

Let q1, . . . , qk be distinct primes. In this section, we explain how to solve the
equation

(9) x2 + qa1
1 . . . qak

k = 2yn,

for small values of n. The method can be applied more easily to the equation
x2 + C = 2yn. This section is meant to complement Theorem 1 and Corollary 1.1.

For the cases n = 3 and n = 4, we show that (9) can be reduced to computing
S-integral points on a handful of elliptic curves. The problem can now be solved
by applying standard algorithms for computing S-integral points on elliptic curves
(see, for example, [26]). Fortunately these algorithms are available as an inbuilt
functions in the computer package MAGMA [10].

Suppose n = 4. We are then dealing with an equation of the form x2 +C = 2y4.
Now write C = cz4, where c is fourth power free and made up only of the primes
q1, . . . , qk. There are clearly only 4k possibilities for c. Write

Y =
2xy

z3
, X =

2y2

z2
.

We immediately see that (X,Y ) is an S-integral point on the elliptic curve Y 2 =
X(X2 − 2c), where S = {q1, . . . , qk}.
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Similarly, if n = 3, we are dealing with an equation of the form x2 + C = 2y3.
We then write C = cz6 for some sixth power free integer c made up with the primes
q1, . . . , qk. There are only 6k possibilities for c. For each such c, let

X =
2y

z2
, Y =

2x

z3
.

Observe that (X, Y ) is an S-integral point on the elliptic curve Y 2 = X3 − 4c.
If n ≥ 5, then we require S-integral points on finitely many curves of genus ≥ 2.

Here it is often—but not always—possible to compute all the rational points on the
curves using some variant of the method of Chabauty [11], [21], [25], [30].

6. Proof of Theorem 3

In this section, we prove Theorem 3. We consider the three Diophantine equa-
tions mentioned in the theorem separately.

• The equation x2 +17a1 = 2yn. Corollary 1.1 implies that either (a1, x, y) =
(0, 1, 1) or p ∈ {2, 3}, where p is a prime divisor of n. Therefore it remains
to solve the equations x2 + 17a1 = 2y3 and x2 + 17a1 = 2y4. We apply
the method described in Section 5 to determine all integral solutions. We
obtain the following solutions

12 + 170 = 2 · 13, 12 + 170 = 2 · 14,

2392 + 170 = 2 · 134, 312 + 172 = 2 · 54.

• The equation x2 + 5a113a2 = 2yn. In this case, Corollary 1.1 yields that
either

(a1, a2, x, y, n) ∈ {(0, 0, 1, 1, n), (3, 0, 19, 3, 5), (3, 0, 183, 7, 5)},

or p ∈ {2, 3, 7}, where p is a prime divisor of n. If p = 2 or 3, then the method
of Section 5 provides all solutions of the corresponding equations. Now we
deal with the case p = 7. We have that 5a113a2 ∈ {1¤, 5¤, 13¤, 65¤}.
Assume that 5a113a2 = ¤. Working in the imaginary quadratic field Q[i],
we easily get

5b113b2 = (U − V )(U6 + 8U5V − 13U4V 2 − 48U3V 3 − 13U2V 4 + 8UV 5 + V 6).

One can obtain all integral solutions of the Thue equations U6 + 8U5V −
13U4V 2 − 48U3V 3 − 13U2V 4 + 8UV 5 + V 6 = ±1,±5,±13,±65. The only
solutions are (U, V ) ∈ {(±1, 0), (0,±1)}. So we may assume that

U − V = ±5c113c2 ,

U6 + 8U5V − 13U4V 2 − 48U3V 3 − 13U2V 4 + 8UV 5 + V 6 = ±5b1−c113b2−c2 ,

with b1−c1, b2−c2 ≥ 2. Considering the above system of equations modulo
5 and modulo 13 we get a contradiction. If 5a113a2 = 5d2, 13d2 or 65d2,
then equation (8) leads to

5d2 : 8d = V (7U6 − 175U4V 2 + 525U2V 4 − 125V 6),
13d2 : 8d = V (7U6 − 455U4V 2 + 3549U2V 4 − 2197V 6),
65d2 : 8d = V (7U6 − 2275U4V 2 + 88725U2V 4 − 274625V 6),



9

respectively. It follows that V is a divisor of 8d, so the prime divisors of V
belong to the set {2, 5, 13}. Therefore the above equations can be written
as

¤ = X3 ± 175ω1X
2 + 3675ω2

1X ± 6125ω3
1 ,

¤ = X3 ± 455ω2X
2 + 24843ω2

2X ± 107653ω3
2 ,

¤ = X3 ± 2275ω3X
2 + 621075ω2

3X ± 13456625ω3
3 ,

where ω1, ω2, ω3 ∈ {2α15α213α3 : αi = 0, 1}. We use MAGMA [10] to
determine all {2, 5, 13}-integral points on the above elliptic curves. Then
we find (U, V ) and the corresponding solutions (x, y, a1, a2).

• Equation x2 +3a111a2 = 2yn. Note that x2 +3¤ = 2yp and x2 +11¤ = 2yp

can be excluded modulo 8. Hence it remains to deal with the equations
x2 + ¤ = 2yp and x2 + 33¤ = 2yp. We apply Theorem 1 with 32b1112b2 =
C ≡ 1 (mod 4) and 33 · 32c1112c2 = C ≡ 1 (mod 4). In the former case
we obtain that (x, y, a1, a2, n) ∈ {(1, 1, 0, 0, n), (79, 5, 2, 0, 5)} or p ∈ {2, 3}.
In the latter case we get that p = 2. If p = 2 or 3, then the method of
Section 5 provides all solutions of the corresponding equations. The proof
of Theorem 3 is completed.
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