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ABSTRACT. In this paper we provide bounds for the size of the
z(z+1)(z+2)(z+3)
(z+a)(z+b)
a,b € Z,a # b are parameters. We also determine all integral

solutions for a,b € {—4,—-3,—-2,—1,4,5,6,7}.

solutions of the Diophantine equation = y?, where

1. INTRODUCTION

Let us define
flz,k,d)=xz(x+d)-- (x+ (k—1)d).

Erdés [7] and independently Rigge [19] proved that f(z,k,1) is never
a perfect square. A celebrated result of Erdés and Selfridge [8] states
that f(x,k,1) is never a perfect power of an integer, provided z > 1
and k > 2. That is, they completely solved the Diophantine equation

(1) f(kavd) :yl

with d = 1. The literature of this type of Diophantine equations is very
rich. First consider some results related to [ = 2. Euler proved (see [5]
pp. 440 and 635) that a product of four terms in arithmetic progression
is never a square solving (1) with £ = 4,1 = 2. Oblath [18] obtained
a similar statement for k& = 5. Saradha and Shorey [23] proved that
(1) has no solutions with k& > 4, provided that d is a power of a prime
number. Laishram and Shorey [16] extended this result to the case
where either d < 10'°, or d has at most six prime divisors. Bennett,
Bruin, Gyéry and Hajdu [2] solved (1) with 6 < k < 11 and [ = 2.
Hirata-Kohno, Laishram, Shorey and Tijdeman [15] completely solved
(1) with 3 < k < 110.
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Now assume for this paragraph that [ > 3. Many authors have con-
sidered the more general equation

(2) f(xv k, d) = byla

where b > 0 and the greatest prime factor of b does not exceed k.
Saradha [22] proved that (2) has no solution with k£ > 4. Gyéry [11]
studied the cases k = 2,3, he determined all solutions. Gyéry, Hajdu
and Saradha [12] proved that the product of four or five consecutive
terms of an arithmetical progression of integers cannot be a perfect
power, provided that the initial term is coprime to the difference. Ha-
jdu, Tengely and Tijdeman [13] proved that the product of k coprime
integers in arithmetic progression cannot be a cube when 2 < k < 39.
Gyory, Hajdu and Pintér proved that for any positive integers x, d and k
with ged(x,d) = 1 and 3 < k < 35, the product z(z+d) - - - (z+(k—1)d)
cannot be a perfect power.
Erdés and Graham [6] asked if the Diophantine equation

H f(xla kia 1) = y2
i=1

has, for fixed r > 1 and {ky, ko, ..., k. } with k; > 4 for i =1,2,...,7,
at most finitely many solutions in positive integers (z1, 2, ..., T, y)
with z; + k; < ;49 for 1 <4 < r — 1. Skatba [25] provided a bound
for the smallest solution and estimated the number of solutions below
a given bound. Ulas [27] answered the above question of Erdés and
Graham in the negative when either r = k; = 4, or r > 6 and k; = 4.
Bauer and Bennett [1] extended this result to the cases r = 3 and
r = 5. Bennett and Van Luijk [3] constructed an infinite family of
r > 5 non-overlapping blocks of five consecutive integers such that
their product is always a perfect square. Luca and Walsh [17] studied
the case (1, k;) = (2,4).
In this paper we study the Diophantine equation
z(z+ 1) (z+2)(z+3) 5

() @ta)z+rd) 77

where a,b € Z,a # b are parameters. We provide bounds for the size
of solutions and an algorithm to determine all solutions (z,y) € Z2.
The method of proof is based on Runge’s method [10, 14, 20, 21, 24,
26, 28]. In 2008, Sankaranarayanan and Saradha established improved
upper bounds for the size of the solutions of the Diophantine equations
F(z) = y™and F(z) = G(y), for which Runge’s method can be applied.
They generalized the method to obtain bounds for the solutions of
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equations of the form P(z)/Q(x) = y™. Based on this latter result we

provide bounds for the solutions of equation (3).

Theorem 1. (I) If (x,y) € Z? is a solution of (3) witha =b (mod 2),

then

, 1
o] < max{|Aaf, [A1]2, [ Aol %, | Bal, | B2, | Bo[ %, | S (a+ b — 6)ab]},

where

1
A2:§a2+§ab+§lb2—2a—2b+7

4
A :—la3+1a2b+lab2+2a2—1b3—|—262—4a—4b+6
! 4 4 4 4

1
AO:—Z(a+b—4)2ab

3 1 3
5 4a +2ab+4b a b—5
B :—1a3—|—1a2b—|—lab2—|—4a2—lb3—|—4b2—16a—16b—|—6
! 4 4 4 4

1
By = —=(a+b—8)%ab.

4
(I1) If (z,y) € Z* is a solution of (3) with a # b (mod 2), then

|$| S 2maX{|CQ‘7 |CI|1/27 |C()’1/37 ‘D2‘7 |D1|1/27 |D0|1/3}7

where
3 1 3 7 7 5
Co="a’>+—-ab+-bV’—-a—-b— =
2= @ tgabt bt mgamgbmy
1 1 1 7 1 7 49 49
Ci=—f—a+-ad*b+-ab’+-a>— =P +-b0’ ——a— —b+6
1 4a—|—4a +4a —|—2a 1 +2 4(1 1 +
1
00:—1(a+b—7)2ab
3 1 3 5 5 19
Do="ad*4+-ab+-b —=a——-b+ —
2= @ tgabt bt mgamgbt g
1 1 1 5 1 5 25 25
Di=—-+-dh+-aP?+=-*— =P+ —-"a—""b+6
1 4a+4a —|—4a —|—2a 1 +2 4a 1 +
1
D() = _Z (Cl+ b— 5)2ab.

We apply the above theorem to determine all integral solutions of

(3) with a,b € {—4,-3,-2,—1,4,5,6,7},a # b.
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Corollary 1. All solutions (x,y) € Z*,y # 0 of (3) with a,b €
{—4,-3,-2,-1,4,5,6,7},a # b are as follows

a=—-4,b=-3, (z,y) €{(-6,2),(1,2)}

a=-4,b=5 (x,y) € {(—6,6)}
a=-2b=7 (x,y) € {(3,6)}
a=6,b=7 (z,y) €{(—4,2),(3,2)}.

2. PROOF OF THE RESULTS
In the proof we will use the following result of Fujiwara [9].

Lemma 1. Given p(z) = > a;z",a, # 0. Then
lﬂl}

Proof of Theorem. The polynomial part of the Puiseux expansion of

(:p(m +1)(x+2)(z + 3))1/2

1/2
Ap—2

an

Qp—1
G,

Qo

) (R

max{|C| : p(¢) = 0} < 2max{

7

(x4 a)(z+0b)
is © + 3 — <2 (I) First we deal with the case a = b (mod 2) that is,
when “TH’ is an integer. We have that

:L“(x+1)(x+2)(x+3)—(x+a)(m—|—b)(m—i—Q—a;b) _

227 4 Apz® + Ay + Ag =: fa(x)

and

z(z+1)(x+2)(z+3) — (z+a)(x + b) (:L‘—f-4— a+b)2 =
—22° 4 Bya? + Bix + By =: fp(x).
If follows from Lemma 1 that f4(x) # 0 if
2| > max{| Ay, |A1|V2, |Ag|V/3Y = 74
Similarly, one has that fg(x) # 0 if
|z| > max{|Ba|, | B1|"?, |Bo|"*} =: 7.
Therefore fa(x)fp(x) <0, if |z| > max{ra,rp}. We obtain that either

(ea-55) <TG < (ere- )
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or
b\’ 1 2 b\?
x+2—i z(x+1)(z + )(:1:—|—3)< x+4_a+ '
2 (x +a)(x+0b) 2
Since% = y?, we get that 3> = (:E+3—“T+b)2 in both

cases. Thus z is a root of a quadratic polynomial z(x + 1)(z + 2)(z +
3)— (z+a)(z+b) (z+3— %“’)2 . The constant term of this quadratic
polynomial is —% (a + b — 6)ab, hence

1
lz] < |Z (a+b—6)°ab.

(IT) Now we consider the case a Z b (mod 2). We have that

2z + 1)z +2)(z+3) — (2 +a)(x +b) <x+3_%b‘1> _
—2% + Oy + Crz + Cy =: fo(x)

and
x(x+1)(x+2)(x+3)—(x+a)(x+b)(x+3—%b+l) =

2 + Dy + Dyx + Dy =: fp(x).
Lemma 1 implies that fo(x) # 0 if
2| > 2max{|Cy|,|C1[Y2,|Co|V3Y =: re
and fp(x) # 0 if
2| > 2max{|Dy|,|D1|"2, |Do|*3} =: rp.

It is clear that fo(z)fp(z) < 0, if |x| > max{rc,rp}. One gets that
either

a+b—1\" z(@+1)(z+2)(z+3) a+b+1\°
<x—|—3— 5 ) < @ +a)(+b) < x+3——2
or
a+b+1\" @+ 1D(z+2)(z+3) a+b—1\"
3 — < 3——— | .
(QH_ 2 ) (x4 a)(z+0b) v 2
In both cases we get a contradiction, since sletD@+D@+3) y? and

(z+a)(z+b)
there cannot be a square between consecutive squares. Thus |z| <

max{rc,rp}. O
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We wrote a Magma [4] code to solve equation (3). If a = b (mod 2),
then we used the bound

|Zﬂ f; 1113)({|/42\,]/41]1/2,]/40]1/3,\132|,]l31\1/2,|130]1/3}

and we determined the roots of the quadratic equation x(z + 1)(z +

2)(z+3) — (z+a)(z+0b) (z+3— GTH))Z . Some details of the compu-
tations are given in the following table. We only indicate those cases
where there is a solution with y # 0.

a | b | bound for |z
-41-3 96
415 46
207 50
6|7 114
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