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Abstract. In this paper we provide bounds for the size of the

solutions of the Diophantine equation x(x+1)(x+2)(x+3)
(x+a)(x+b) = y2, where

a, b ∈ Z, a 6= b are parameters. We also determine all integral
solutions for a, b ∈ {−4,−3,−2,−1, 4, 5, 6, 7}.

1. introduction

Let us define

f(x, k, d) = x(x+ d) · · · (x+ (k − 1)d).

Erdős [7] and independently Rigge [19] proved that f(x, k, 1) is never
a perfect square. A celebrated result of Erdős and Selfridge [8] states
that f(x, k, 1) is never a perfect power of an integer, provided x ≥ 1
and k ≥ 2. That is, they completely solved the Diophantine equation

(1) f(x, k, d) = yl

with d = 1. The literature of this type of Diophantine equations is very
rich. First consider some results related to l = 2. Euler proved (see [5]
pp. 440 and 635) that a product of four terms in arithmetic progression
is never a square solving (1) with k = 4, l = 2. Obláth [18] obtained
a similar statement for k = 5. Saradha and Shorey [23] proved that
(1) has no solutions with k ≥ 4, provided that d is a power of a prime
number. Laishram and Shorey [16] extended this result to the case
where either d ≤ 1010, or d has at most six prime divisors. Bennett,
Bruin, Győry and Hajdu [2] solved (1) with 6 ≤ k ≤ 11 and l = 2.
Hirata-Kohno, Laishram, Shorey and Tijdeman [15] completely solved
(1) with 3 ≤ k < 110.
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Now assume for this paragraph that l ≥ 3. Many authors have con-
sidered the more general equation

(2) f(x, k, d) = byl,

where b > 0 and the greatest prime factor of b does not exceed k.
Saradha [22] proved that (2) has no solution with k ≥ 4. Győry [11]
studied the cases k = 2, 3, he determined all solutions. Győry, Hajdu
and Saradha [12] proved that the product of four or five consecutive
terms of an arithmetical progression of integers cannot be a perfect
power, provided that the initial term is coprime to the difference. Ha-
jdu, Tengely and Tijdeman [13] proved that the product of k coprime
integers in arithmetic progression cannot be a cube when 2 < k < 39.
Győry, Hajdu and Pintér proved that for any positive integers x, d and k
with gcd(x, d) = 1 and 3 < k < 35, the product x(x+d) · · · (x+(k−1)d)
cannot be a perfect power.

Erdős and Graham [6] asked if the Diophantine equation

r∏
i=1

f(xi, ki, 1) = y2

has, for fixed r ≥ 1 and {k1, k2, . . . , kr} with ki ≥ 4 for i = 1, 2, . . . , r,
at most finitely many solutions in positive integers (x1, x2, . . . , xr, y)
with xi + ki ≤ xi+1 for 1 ≤ i ≤ r − 1. Ska lba [25] provided a bound
for the smallest solution and estimated the number of solutions below
a given bound. Ulas [27] answered the above question of Erdős and
Graham in the negative when either r = ki = 4, or r ≥ 6 and ki = 4.
Bauer and Bennett [1] extended this result to the cases r = 3 and
r = 5. Bennett and Van Luijk [3] constructed an infinite family of
r ≥ 5 non-overlapping blocks of five consecutive integers such that
their product is always a perfect square. Luca and Walsh [17] studied
the case (r, ki) = (2, 4).

In this paper we study the Diophantine equation

(3)
x(x+ 1)(x+ 2)(x+ 3)

(x+ a)(x+ b)
= y2,

where a, b ∈ Z, a 6= b are parameters. We provide bounds for the size
of solutions and an algorithm to determine all solutions (x, y) ∈ Z2.
The method of proof is based on Runge’s method [10, 14, 20, 21, 24,
26, 28]. In 2008, Sankaranarayanan and Saradha established improved
upper bounds for the size of the solutions of the Diophantine equations
F (x) = ym and F (x) = G(y), for which Runge’s method can be applied.
They generalized the method to obtain bounds for the solutions of
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equations of the form P (x)/Q(x) = ym. Based on this latter result we
provide bounds for the solutions of equation (3).

Theorem 1. (I) If (x, y) ∈ Z2 is a solution of (3) with a ≡ b (mod 2),
then

|x| ≤ max{|A2|, |A1|1/2, |A0|1/3, |B2|, |B1|1/2, |B0|1/3, |
1

4
(a+ b− 6)2ab|},

where

A2 =
3

4
a2 +

1

2
ab+

3

4
b2 − 2 a− 2 b+ 7

A1 = −1

4
a3 +

1

4
a2b+

1

4
ab2 + 2 a2 − 1

4
b3 + 2 b2 − 4 a− 4 b+ 6

A0 = −1

4
(a+ b− 4)2ab

B2 =
3

4
a2 +

1

2
ab+

3

4
b2 − 4 a− 4 b− 5

B1 = −1

4
a3 +

1

4
a2b+

1

4
ab2 + 4 a2 − 1

4
b3 + 4 b2 − 16 a− 16 b+ 6

B0 = −1

4
(a+ b− 8)2ab.

(II) If (x, y) ∈ Z2 is a solution of (3) with a 6≡ b (mod 2), then

|x| ≤ 2 max{|C2|, |C1|1/2, |C0|1/3, |D2|, |D1|1/2, |D0|1/3},

where

C2 =
3

4
a2 +

1

2
ab+

3

4
b2 − 7

2
a− 7

2
b− 5

4

C1 = −1

4
a3 +

1

4
a2b+

1

4
ab2 +

7

2
a2 − 1

4
b3 +

7

2
b2 − 49

4
a− 49

4
b+ 6

C0 = −1

4
(a+ b− 7)2ab

D2 =
3

4
a2 +

1

2
ab+

3

4
b2 − 5

2
a− 5

2
b+

19

4

D1 = −1

4
a3 +

1

4
a2b+

1

4
ab2 +

5

2
a2 − 1

4
b3 +

5

2
b2 − 25

4
a− 25

4
b+ 6

D0 = −1

4
(a+ b− 5)2ab.

We apply the above theorem to determine all integral solutions of
(3) with a, b ∈ {−4,−3,−2,−1, 4, 5, 6, 7}, a 6= b.
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Corollary 1. All solutions (x, y) ∈ Z2, y 6= 0 of (3) with a, b ∈
{−4,−3,−2,−1, 4, 5, 6, 7}, a 6= b are as follows

a = −4, b = −3, (x, y) ∈ {(−6, 2), (1, 2)}
a = −4, b = 5, (x, y) ∈ {(−6, 6)}
a = −2, b = 7, (x, y) ∈ {(3, 6)}
a = 6, b = 7, (x, y) ∈ {(−4, 2), (3, 2)}.

2. proof of the results

In the proof we will use the following result of Fujiwara [9].

Lemma 1. Given p(z) =
∑n

i=0 aiz
i, an 6= 0. Then

max{|ζ| : p(ζ) = 0} ≤ 2 max

{∣∣∣∣an−1

an

∣∣∣∣ , ∣∣∣∣an−2

an

∣∣∣∣1/2 , . . . , ∣∣∣∣a0an
∣∣∣∣1/n
}
.

Proof of Theorem. The polynomial part of the Puiseux expansion of(
x(x+ 1)(x+ 2)(x+ 3)

(x+ a)(x+ b)

)1/2

is x + 3 − a+b
2
. (I) First we deal with the case a ≡ b (mod 2) that is,

when a+b
2

is an integer. We have that

x(x+ 1)(x+ 2)(x+ 3)− (x+ a)(x+ b)

(
x+ 2− a+ b

2

)2

=

2x3 + A2x
2 + A1x+ A0 =: fA(x)

and

x(x+ 1)(x+ 2)(x+ 3)− (x+ a)(x+ b)

(
x+ 4− a+ b

2

)2

=

−2x3 +B2x
2 +B1x+B0 =: fB(x).

If follows from Lemma 1 that fA(x) 6= 0 if

|x| > max{|A2|, |A1|1/2, |A0|1/3} =: rA.

Similarly, one has that fB(x) 6= 0 if

|x| > max{|B2|, |B1|1/2, |B0|1/3} =: rB.

Therefore fA(x)fB(x) < 0, if |x| > max{rA, rB}. We obtain that either(
x+ 4− a+ b

2

)2

<
x(x+ 1)(x+ 2)(x+ 3)

(x+ a)(x+ b)
<

(
x+ 2− a+ b

2

)2
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or(
x+ 2− a+ b

2

)2

<
x(x+ 1)(x+ 2)(x+ 3)

(x+ a)(x+ b)
<

(
x+ 4− a+ b

2

)2

.

Since x(x+1)(x+2)(x+3)
(x+a)(x+b)

= y2, we get that y2 =
(
x+ 3− a+b

2

)2
in both

cases. Thus x is a root of a quadratic polynomial x(x+ 1)(x+ 2)(x+

3)− (x+ a)(x+ b)
(
x+ 3− a+b

2

)2
. The constant term of this quadratic

polynomial is −1
4

(a+ b− 6)2ab, hence

|x| ≤ |1
4

(a+ b− 6)2ab|.

(II) Now we consider the case a 6≡ b (mod 2). We have that

x(x+ 1)(x+ 2)(x+ 3)− (x+ a)(x+ b)

(
x+ 3− a+ b− 1

2

)2

=

−x3 + C2x
2 + C1x+ C0 =: fC(x)

and

x(x+ 1)(x+ 2)(x+ 3)− (x+ a)(x+ b)

(
x+ 3− a+ b+ 1

2

)2

=

x3 +D2x
2 +D1x+D0 =: fD(x).

Lemma 1 implies that fC(x) 6= 0 if

|x| > 2 max{|C2|, |C1|1/2, |C0|1/3} =: rC

and fD(x) 6= 0 if

|x| > 2 max{|D2|, |D1|1/2, |D0|1/3} =: rD.

It is clear that fC(x)fD(x) < 0, if |x| > max{rC , rD}. One gets that
either(
x+ 3− a+ b− 1

2

)2

<
x(x+ 1)(x+ 2)(x+ 3)

(x+ a)(x+ b)
<

(
x+ 3− a+ b+ 1

2

)2

or(
x+ 3− a+ b+ 1

2

)2

<
x(x+ 1)(x+ 2)(x+ 3)

(x+ a)(x+ b)
<

(
x+ 3− a+ b− 1

2

)2

.

In both cases we get a contradiction, since x(x+1)(x+2)(x+3)
(x+a)(x+b)

= y2 and

there cannot be a square between consecutive squares. Thus |x| ≤
max{rC , rD}. �
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We wrote a Magma [4] code to solve equation (3). If a ≡ b (mod 2),
then we used the bound

|x| ≤ max{|A2|, |A1|1/2, |A0|1/3, |B2|, |B1|1/2, |B0|1/3}

and we determined the roots of the quadratic equation x(x + 1)(x +

2)(x + 3)− (x + a)(x + b)
(
x+ 3− a+b

2

)2
. Some details of the compu-

tations are given in the following table. We only indicate those cases
where there is a solution with y 6= 0.

a b bound for |x|
-4 -3 96
-4 5 46
-2 7 50
6 7 114
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[12] K. Győry, L. Hajdu, and N. Saradha. On the Diophantine equation n(n +
d) · · · (n + (k − 1)d) = byl. Canad. Math. Bull., 47(3):373–388, 2004.

[13] L. Hajdu, Sz. Tengely, and R. Tijdeman. Cubes in products of terms in arith-
metic progression. Publ. Math. Debrecen, 74(1-2):215–232, 2009.



ON A GENERALIZATION OF A PROBLEM OF ERDŐS AND GRAHAM 7
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