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Legyen f ∈ Q [X, Y ], C (R) = {(x, y) ∈ R2 : f(x, y) = 0}.

● génusz legalább 1: Siegel (1929) igazolta, hogy C (Z) véges.

● génusz legalább 2: Faltings (1983) bebizonyította, hogy
C (Q ) véges.

1 génuszú görbék:

Y 2 = X3 + a1X + a2.

2 génuszú görbék:

Y 2 = b6X6 + b5X5 + b4X4 + b3X3 + b2X2 + b1X + b0.
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Véges sok megoldás létezik: Mordell (1922).
Korlát a megoldásokra: Baker (1968)

max(|x|, |y|) < exp((106H)106 ).

Algoritmusok az egész pontok meghatározására:
Stroeker, Tzanakis (1994),
Gebel, Pethő, Zimmer (1998).
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Nehezen meghatározható generátorok:

Y 2 = X (X − 157)(X + 157).
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Nehezen meghatározható generátorok:

Y 2 = X (X − 157)(X + 157).

Végtelen rendű pont P = (x, y), ahol:

x = −166136231668185267540804
2825630694251145858025 ,

y = −167661624456834335404812111469782006
150201095200135518108761470235125 .
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Lokálisan minden p esetén létezik megoldás, de nincs globális
megoldás.

3X3 + 4Y 3 + 5Z3 = 0.
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Lokálisan minden p esetén létezik megoldás, de nincs globális
megoldás.

3X3 + 4Y 3 + 5Z3 = 0.

Rang, konduktor és egész pontok.

Y 2 + Y = X3 + X2 − 2X,

a görbe rangja 2 és 20 egész pont van rajta.
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Lokálisan minden p esetén létezik megoldás, de nincs globális
megoldás.

3X3 + 4Y 3 + 5Z3 = 0.

Rang, konduktor és egész pontok.

Y 2 + Y = X3 + X2 − 2X,

a görbe rangja 2 és 20 egész pont van rajta.

Y 2 + Y = X3 − 7X + 6,

a görbe rangja 3 és 36 egész pont van rajta.
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Egész pontok elliptikus görbe családokon. Legyen

Em : Y 2 = X3 + mX2 − (m + 3)X + 1.

Duquesne (2001): ha Em rangja 1, akkor Em egész pontjai a
következők

(0, 1) ha m páros,
(0, 1) és 2(0, 1) ha m páratlan.



❖ Algebrai görbék
❖ Elliptikus görbék
❖ g-gonális számok
❖ Egy kimaradó eset
elliptikus görbéi
❖ Hiperelliptikus
görbék

Számelméleti Szeminárium tengely@math.klte.hu – slide 6

Egész pontok elliptikus görbe családokon. Legyen

Em : Y 2 = X3 + mX2 − (m + 3)X + 1.

Duquesne (2001): ha Em rangja 1, akkor Em egész pontjai a
következők

(0, 1) ha m páros,
(0, 1) és 2(0, 1) ha m páratlan.

Legyen

Qm : Y 2 = X4 − mX3 − 6X2 + mX + 1,

ahol m2 + 16 nem osztható páratlan négyzetszámmal. Duquesne
(2007): ha Qm rangja 1, akkor Qm egész pontjai (0, ±1).
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Speciális elliptikus görbék esetében az általános korlát
élesítése:
Draziotis (2006):
Legyen

E : Y 2 = (X − k)f(X )
elliptikus görbe Q felett, ahol k ∈ Z és f(k) = ±1.

Z



❖ Algebrai görbék
❖ Elliptikus görbék
❖ g-gonális számok
❖ Egy kimaradó eset
elliptikus görbéi
❖ Hiperelliptikus
görbék

Számelméleti Szeminárium tengely@math.klte.hu – slide 7

Speciális elliptikus görbék esetében az általános korlát
élesítése:
Draziotis (2006):
Legyen

E : Y 2 = (X − k)f(X )
elliptikus görbe Q felett, ahol k ∈ Z és f(k) = ±1. Ekkor
bármely (x, y) ∈ E(Z) pontra

|x| < 11H2 + 5,

ahol H az (X − k)f(X ) polinom magassága.
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Definíció:
Gm,g = m{(g − 2)m − (g − 4)}

2 .

Rekurzív sorozatokban található g-gonális számok vizsgálata
g ∈ {3, 4, 5, 7} esetében: J.H.E Cohn, Katayama, Ljunggren,
Luo, Prasad, Rao.
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Definíció:
Gm,g = m{(g − 2)m − (g − 4)}

2 .

Rekurzív sorozatokban található g-gonális számok vizsgálata
g ∈ {3, 4, 5, 7} esetében: J.H.E Cohn, Katayama, Ljunggren,
Luo, Prasad, Rao.
Tengely (2008): g ∈ {6, 8, 9, 10, . . . , 20} esetében

Fn = Gm,g, Ln = Gm,g,

Pn = Gm,g, Qn = Gm,g

egyenletek megoldásainak meghatározása.
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A következő görbék vizsgálatára vezet:
Ceven

Fn
: Y 2 = 5((g − 2)X2 − (g − 4)X )2 + 16,

Codd
Fn

: Y 2 = 5((g − 2)X2 − (g − 4)X )2 − 16,

Ceven
Ln

: Y 2 = 5((g − 2)X2 − (g − 4)X )2 − 80,

Codd
Ln

: Y 2 = 5((g − 2)X2 − (g − 4)X )2 + 80,

Ceven
Pn

: Y 2 = 2((g − 2)X2 − (g − 4)X )2 + 4,

Codd
Pn

: Y 2 = 2((g − 2)X2 − (g − 4)X )2 − 4,

Ceven
Qn

: Y 2 = 2((g − 2)X2 − (g − 4)X )2 − 8,

Codd
Qn

: Y 2 = 2((g − 2)X2 − (g − 4)X )2 + 8.
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További tervek.
Görbe családok vizsgálata:
például (0, 4) ∈ Ceven

Fn
(Q ), (1, 2) ∈ Ceven

Fn
(Q ).

Q
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További tervek.
Görbe családok vizsgálata:
például (0, 4) ∈ Ceven

Fn
(Q ), (1, 2) ∈ Ceven

Fn
(Q ).

"Pontatlan" görbék esete:

Ceven
Ln

: Y 2 = 5((g − 2)X2 − (g − 4)X )2 − 80,

ha g ∈ {8, 9, 11, 13, 14, 16, 19}, akkor nincs megoldás Q 5-ben.
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További tervek.
Görbe családok vizsgálata:
például (0, 4) ∈ Ceven

Fn
(Q ), (1, 2) ∈ Ceven

Fn
(Q ).

"Pontatlan" görbék esete:

Ceven
Ln

: Y 2 = 5((g − 2)X2 − (g − 4)X )2 − 80,

ha g ∈ {8, 9, 11, 13, 14, 16, 19}, akkor nincs megoldás Q 5-ben.
A g = 12 eset:

Y 2 = 500X4 − 800X3 + 320X2 − 80.
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Bennett (2008):
Az (xk − 1)(yk − 1) = (zk − 1), |z| ≥ 2, k ≥ 3 egyenlet
megoldásai a következők: (x, y, z, k) = (−1, 4, −5, 3) és
(4, −1, −5, 3).
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Bennett (2008):
Az (xk − 1)(yk − 1) = (zk − 1), |z| ≥ 2, k ≥ 3 egyenlet
megoldásai a következők: (x, y, z, k) = (−1, 4, −5, 3) és
(4, −1, −5, 3).
Az (xk − 1)(yk − 1) = (zk − 1)2 egyenletnek nincs megoldása, ha
|z| ≥ 2, k ≥ 4 és x 6= ±y.
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Bennett (2008):
Az (xk − 1)(yk − 1) = (zk − 1), |z| ≥ 2, k ≥ 3 egyenlet
megoldásai a következők: (x, y, z, k) = (−1, 4, −5, 3) és
(4, −1, −5, 3).
Az (xk − 1)(yk − 1) = (zk − 1)2 egyenletnek nincs megoldása, ha
|z| ≥ 2, k ≥ 4 és x 6= ±y.

Az (x3 − 1)(y3 − 1) = u2 egyenlet esetében Elkies a következő
megoldásokat határozta meg:

(x, y, u) = (−20, −362, 616077), (−6, −26, 1953),
(−1, −23, 156), (0, −2, 3), (2, 4, 21),
(2, 22, 273), (3, 313, 28236), (4, 22, 819).

Véges sok megoldása létezik csak az egyenletnek?
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x3 − 1 = dy2
1,

y3 − 1 = dy2
2.

Elegendő az
Ed : Y 2 = X3 − d3

görbéket vizsgálni ("quadratic twists"). Amennyiben a görbén
található 3 "megfelelő" egész pont, akkor az eredeti probléma
egy megoldásához jutunk. Az egyik egész pont mindig adott:
T = (d, 0).
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x3 − 1 = dy2
1,

y3 − 1 = dy2
2.

Elegendő az
Ed : Y 2 = X3 − d3

görbéket vizsgálni ("quadratic twists"). Amennyiben a görbén
található 3 "megfelelő" egész pont, akkor az eredeti probléma
egy megoldásához jutunk. Az egyik egész pont mindig adott:
T = (d, 0). Ismert megoldásoknál
d ∈ {−889, −217, −2, −1, 7, 26}.
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Legyen P = (dx, d2y). Ekkor P + T esetében

x(P + T ) = d

(
1 + 3

x − 1
)

.

Ez akkor lesz "megfelelő" egész pont x-koordinátája, ha
x ∈ {−2, 0, 2, 4}.
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Legyen P = (dx, d2y). Ekkor P + T esetében

x(P + T ) = d

(
1 + 3

x − 1
)

.

Ez akkor lesz "megfelelő" egész pont x-koordinátája, ha
x ∈ {−2, 0, 2, 4}.

A 2P pont esetében

x(2P) = d
x4 + 8x

4(x3 − 1) .

Ez akkor lesz "megfelelő" egész pont x-koordinátája, ha
x ∈ {−2, 0}.
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Legyen P = (dx, d2y). Ekkor P + T esetében

x(P + T ) = d

(
1 + 3

x − 1
)

.

Ez akkor lesz "megfelelő" egész pont x-koordinátája, ha
x ∈ {−2, 0, 2, 4}.

A 2P pont esetében

x(2P) = d
x4 + 8x

4(x3 − 1) .

Ez akkor lesz "megfelelő" egész pont x-koordinátája, ha
x ∈ {−2, 0}.

Stratégia: megmutatni, hogy (dx, d2y) = mR + nT csak kis m

értékekre lehetséges. Az ismert megoldások esetében m ≤ 2.
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Y p − Y = Xq − X, 2 ≤ p < q.

Fielder, Alford (1998): pozitív megoldások
(3, 2, 2, 3), (6, 2, 2, 5), (15, 2, 6, 3), (16, 2, 3, 5),
(13, 3, 3, 7), (91, 2, 2, 13), (280, 2, 5, 7), (4930, 2, 30, 5).
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Y p − Y = Xq − X, 2 ≤ p < q.

Fielder, Alford (1998): pozitív megoldások
(3, 2, 2, 3), (6, 2, 2, 5), (15, 2, 6, 3), (16, 2, 3, 5),
(13, 3, 3, 7), (91, 2, 2, 13), (280, 2, 5, 7), (4930, 2, 30, 5).

További eredmények:
Mordell (1963): p = 2, q = 3 eset,
Mignotte és Pethő (1999): végességi eredmények, teljes
megoldás p = 2, q > 2 esetben, feltéve, hogy y teljes hatványa
valamilyen prímnek.
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(
n

k

)
=

(
m

l

)
,

k, l, m, n ∈ N és 2 ≤ k ≤ n
2 , 2 ≤ l ≤ m

2 .
Ismert megoldások:

(16
2

)
=

(10
3

)
,

(56
2

)
=

(22
3

)
,

(120
2

)
=

(36
3

)
,

(21
2

)
=

(10
4

)
,

(153
2

)
=

(19
5

)
,

(78
2

)
=

(15
5

)
=

(14
6

)
,

(221
2

)
=

(17
8

)
,

(
F2i+2F2i+3
F2iF2i+3

)
=

(
F2i+2F2i+3 − 1
F2iF2i+3 + 1

)
ahol i = 1, 2, . . . ,
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(
n

k

)
=

(
m

l

)
,

k, l, m, n ∈ N és 2 ≤ k ≤ n
2 , 2 ≤ l ≤ m

2 .
Ismert megoldások:

(16
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)
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)
,
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=
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=
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=
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)
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)
=

(17
8

)
,

(
F2i+2F2i+3
F2iF2i+3

)
=

(
F2i+2F2i+3 − 1
F2iF2i+3 + 1

)
ahol i = 1, 2, . . . ,

Lind (1968), Singmaster (1975): Fibonacci sorozattal megadott
megoldás családok. De Weger (1997): (

n
k

)
≤ 1030 vagy

n ≤ 1000 esetében nincs több nem triviális megoldás.
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Mordell (1963), Avanesov (1966/1967), Pintér (1995), De Weger
(1996), Stroeker és De Weger (1999): teljes megoldások

(k, l) ∈ {(2, 3), (2, 4), (2, 6), (2, 8), (3, 4), (3, 6), (4, 6)}

esetében. Ezek a problémák Thue egyenletekre vagy elliptikus
görbékre vezetnek.
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Mordell (1963), Avanesov (1966/1967), Pintér (1995), De Weger
(1996), Stroeker és De Weger (1999): teljes megoldások

(k, l) ∈ {(2, 3), (2, 4), (2, 6), (2, 8), (3, 4), (3, 6), (4, 6)}

esetében. Ezek a problémák Thue egyenletekre vagy elliptikus
görbékre vezetnek.
Általános végességi eredmények:
Kiss (1988): k = 2 és l adott páratlan prím.
Brindza (1991): k = 2 és l ≥ 3.

Egy kis kihívás:
(

y

2
)

=
(

x

5
)

.
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Bugeaud, Mignotte, Siksek, Stoll, Tengely (2008):

C : Y 2 − Y = X5 − X

összes egész megoldása:

(X, Y ) = (−1, 0), (−1, 1), (0, 0), (0, 1), (1, 0), (1, 1), (2, −5),
(2, 6), (3, −15), (3, 16), (30, −4929), (30, 4930).

J(Q ) Mordell-Weil csoportjának a rangja 3.
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● Mivel F (X, Y ) = Y 2 − Y − X5 + X esetében F (0, 0) = 0,

Runge-módszerrel meghatározhatók az adott legnagyobb
közös osztóval rendelkező megoldások.

Q
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● Mivel F (X, Y ) = Y 2 − Y − X5 + X esetében F (0, 0) = 0,

Runge-módszerrel meghatározhatók az adott legnagyobb
közös osztóval rendelkező megoldások.

● Chabauty módszere nem alkalmazható, mert J(Q )
Mordell-Weil csoportjának a rangja nagyobb, mint a görbe
génusza.



❖ Algebrai görbék
❖ Elliptikus görbék
❖ g-gonális számok
❖ Egy kimaradó eset
elliptikus görbéi
❖ Hiperelliptikus
görbék

Számelméleti Szeminárium tengely@math.klte.hu – slide 18

● Mivel F (X, Y ) = Y 2 − Y − X5 + X esetében F (0, 0) = 0,

Runge-módszerrel meghatározhatók az adott legnagyobb
közös osztóval rendelkező megoldások.

● Chabauty módszere nem alkalmazható, mert J(Q )
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● Elliptikus Chabauty módszer esetében számtest felett kell a
Mordell-Weil csoport rangját meghatározni.
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Mordell-Weil csoportjának a rangja nagyobb, mint a görbe
génusza.

● Elliptikus Chabauty módszer esetében számtest felett kell a
Mordell-Weil csoport rangját meghatározni.

● S-egység egyenletek, Baker módszer + LLL algoritmus: a
fellépő számtestek foka nagy.
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● S-egység egyenletek, Baker módszer + LLL algoritmus: a
fellépő számtestek foka nagy.

● S-egység egyenletek + Skolem módszere: a fellépő
számtestek foka nagy.
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● Mivel F (X, Y ) = Y 2 − Y − X5 + X esetében F (0, 0) = 0,

Runge-módszerrel meghatározhatók az adott legnagyobb
közös osztóval rendelkező megoldások.

● Chabauty módszere nem alkalmazható, mert J(Q )
Mordell-Weil csoportjának a rangja nagyobb, mint a görbe
génusza.

● Elliptikus Chabauty módszer esetében számtest felett kell a
Mordell-Weil csoport rangját meghatározni.

● S-egység egyenletek, Baker módszer + LLL algoritmus: a
fellépő számtestek foka nagy.

● S-egység egyenletek + Skolem módszere: a fellépő
számtestek foka nagy.

● Demjanenko-Manin módszer: független leképezések
kellenek elliptikus görbére.
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Transzformált alak:

C : 2y2 = x5 − 16x + 8,

Q
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Transzformált alak:

C : 2y2 = x5 − 16x + 8,

Mordell-Weil bázis J(Q )-ban:

D1 = (0, 2) − ∞, D2 = (2, 2) − ∞, D3 = (−2, 2) − ∞.

Ekkor x − α = κξ2, ahol κ ∈
{1, −2α, 4−2α, −4−2α, −2α +α2, 2α +α2, −4+α2, 8α −2α3}.
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Bruin, Stoll: Mordell-Weil szita

(C (Q )) ⊆ W + BJ(Q ),
ahol W az ismert racionális pontok képe és

B = 28 · 34 · 53 · 73 · 112 · 132 · 172 · 19 · 23 · 29 · 312 ·
∏

37≤p≤149
p 6=107

p

Legyen L0 = BZ3 és

φ : Z3 → J(Q ), φ(a1, . . . , ar) =
∑

aiDi,
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Ekkor
(C (Q )) ⊂ W + φ(BZ3).

Rácsok csökkenő lánca:

BZ3 = L0 ) L1 ) L2 ) · · · ) Lk ,

úgy, hogy
(C (Q )) ⊂ W + φ(Lj ).

Az így meghatározott rács indexe: 3.32 × 103240,

az ebben a rácsban található legrövidebb vektor hossza:
1.156 × 101080.

Amennyiben létezne P ∈ C (Q ) ismeretlen pont, akkor

log x(P) ≥ 0.95 × 102159,

ellentmondás, mert a felső korlát 5.1 × 10565.
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