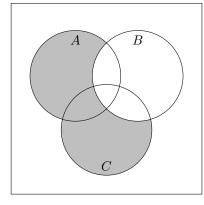
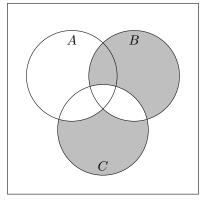
Discrete Mathematics

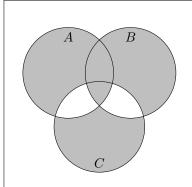
November 2025

Exercise 1. Use set notation to describe the shaded areas:

(2 point)







Exercise 2. Draw a Venn diagram for the following sets:

 $A \cup B \cup C = \{6, 8, 9, 10, 12, 14, 15, 30\}$

A contains even numbers,

B contains numbers divisible by 3,

C contains numbers divisible by 5.

(1 point)

Exercise 3. Provide three sets A, B and C which satisfy the following cardinality conditions

$$|A \cap B \cap C| = 1$$
,

$$|A \cap B| = 2, \quad |A \cap C| = 3, \quad |B \cap C| = 3,$$

$$|A| = 5, \quad |B| = 6, \quad |C| = 6.$$

(1 point)

Exercise 4. (a) How many solutions does the equation $x_1 + x_2 + x_3 + x_4 = 3$ have, where x_1, x_2, x_3, x_4 are integers such that $x_i \ge -i + 2$?

(b) How many solutions does the equation $x_1 + x_2 + x_3 + x_4 + x_5 = 3$ have, where x_1, x_2, x_3, x_4, x_5 are integers such that $x_i \ge -i - 1$? (2 point)

Exercise 5. (a) How many eight digit numbers can be formed from the digits 1,1,1,2,2,2,1,1?

(b) How many seven digit numbers can be formed from the digits 0,1,1,1,2,2,1?

(2 points)

Exercise 6. Use the Euclidean algorithm to find gcd(a,b) and compute integers x and y for which

$$ax + by = \gcd(a, b)$$
:

$$a = 1501, b = 1007.$$
 (2 points)

Exercise 7. a. Determine the decimal representation of the following numbers.

b. Determine the appropriate representations of the following numbers.

$$2123_{10} = \dots 3$$

$$2123_{10} = \dots \qquad (2 points)$$

Exercise 8. Expand the following expressions using the binomial theorem.

(1)
$$(-xy+2x-3y)^2$$
,

(2)
$$\left(2x - \frac{x}{2y}\right)^3$$
.

(2 points)

Exercise 9. Prove that $n^2 - 1$ is divisible by 8 for all odd positive integers n.

(2 points)

Exercise 10. Prove that $17n^3 + 103n$ is divisible by 6 for all positive integers n. (2 points)

Exercise 11. Find the value of k for which $k\binom{12}{k}$ is largest. (2 points)

Exercise 12. Describe all values of n and k for which

$$\binom{n}{k+1} = 12 \binom{n}{k}.$$

(2 points)

Exercise 13. Suppose a_n is a sequence such that $a_{n+2} = a_{n+1} - a_n$ for all $n \ge 1$. Given that $a_{19} = 5$ and $a_{23} = -1$, find a_1 .

Exercise 14. What is the solution of the recurrence relation $a_n = a_{n-1} + 2a_{n-2}, n \ge 2$ and $a_0 = 2, a_1 = 7$? (3 points)

Exercise 15. Let $a_0 = -2$, $a_1 = 1$ and $a_n = 3a_{n-1} - 2a_{n-2}$ if $n \ge 2$. Prove that $a_n = 3 \cdot 2^n - 5$. (3 points)

Exercise 16. Find a closed formula for a_n , where

(3 points)

$$a_0 = 3,$$

$$a_1 = 0,$$

$$a_2 = 14,$$

$$a_n = 7a_{n-2} + 6a_{n-3}, \quad \text{if } n \ge 3.$$

Exercise 17. Define a sequence a_1, a_2, \ldots by $a_1 = 5/2$ and $a_{n+1} = a_n^2 - 2$ for $n \ge 1$. Give an explicit formula for a_n and prove it. (3 points)

Exercise 18. Provide a bound N for n such that the equation is solvable in non-negative integers if $n \ge N$:

$$13x + 19y = n.$$

(3 points)

Exercise 19. Let the sequence T_n defined by $T_1 = T_2 = T_3 = 1$ and $T_n = T_{n-1} + T_{n-2} + T_{n-3}$ for $n \ge 4$. Prove that

$$T_n < 2^n, n \in \mathbb{N}.$$

(3 points)

Exercise 20. Let $a_n = m + dn$ for some integers m, d. Given that

$$\frac{a_i-a_j}{a_k}+\frac{a_k-a_i}{a_j}+\frac{a_j-a_k}{a_i}=0,$$

compute the possible values of d.

(3 points)

Exercise 21. Prove that if k is odd, then 2^{n+2} divides

$$k^{2^n} - 1$$

for all natural numbers n.

(3 points)

Exercise 22. Let F_n be the sequence of Fibonacci numbers. Show that for all positive integers m

$$\sum_{j=1}^{m} F_j F_{j+1} = F_{m+1}^2 - \frac{1}{2} (1 + (-1)^m).$$

(3 points)

Exercise 23. Let F_n be the sequence of Fibonacci numbers. Show that for all positive integers m

$$\sum_{j=1}^{m} \frac{F_{j-1}}{2^j} = 1 - \frac{F_{m+2}}{2^m}.$$

(3 points)