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[0 Special cases
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z2 + ¢"™ = 2"yP (joint work with Samir Siksek )
[0 Special cases

[0 Modular approach

nn+d)---(n+(k—1)d) = by™

O m = 2, the cases k = 5, 7 (lecture by Rob Tijdeman and lecture

by Shanta Laisram)

0 m = 3, lecture by Lajos Hajdu
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z2 + ¢"™ = 2"yP (joint work with Samir Siksek )
[0 Special cases

[0 Modular approach

nn+d)---(n+(k—1)d) = by™

O m = 2, the cases k = 5, 7 (lecture by Rob Tijdeman and lecture

by Shanta Laisram)

0 m = 3, lecture by Lajos Hajdu

squares and cubes in arithmetic progressions, paper by Nils Bruin,

Kalman Gyory, Lajos Hajdu, Szabolcs Tengely
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BHV works in many cases

O a2+ 223% = yP Luca (2002)

0 22 + p2F+l = 49" Arif and Al-Ali (2002)
0 22 + 52K = ¢™ Muriefah (2006)

p = 3, S-integral points on elliptic curves

2
X Yy
(?) T =2 (q—

:
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BHV works in many cases

O a2+ 223% = yP Luca (2002)
0 22 + p?k+1 = 4y™ Arif and Al-Ali (2002)
0 22 + 52K = ¢™ Muriefah (2006)

p = 3, S-integral points on elliptic curves

(

X

q3t

2
R

Y

q2t

:

p = 5, algebraic number theory, Thue-equations (lecture by Yann

Bugeaud)
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Lucas sequence: u, (o, 3) =

— Y

p is a primitive divisor of u,, (o, (3)

if p divides 1, , but does not divide (v — 3)?u1u2 - - - Up_1.

Arif and Al-Ali (2002):

We obtain

x? + 32T = gyP

r + 3%/—3 B

Let o =

bv/—3
CHLT’ 3

Un (@, B) =

2

+1ifp # 3,
+3ifp = 3.

(

a+ bv—3

2

— % V=3 \We have

)
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ZC2 i 5k _ 2y37
here S = {5},

22\ 2 2y s <
ﬁ = ﬁ —45, 36{0,1,...,5}

using MAGMA one obtains all the S-integral points on the curve. The
solutions of the original problem:

(z,7) € {(£1,1), (£7,3), (£99,17)}.
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r? + 32™ = 293, factor the LHS 3 =
there exists k € {0, ..., m} such that

(u — v)(u? + 4uv + v?), hence
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e

r? 4+ 32™ = 293, factor the LHS 3™
there exists k € {0, ..., m} such that

U — v
u? 4 duv + v?

+3",
+3m—k,

(u — v)(u? + 4uv + v?), hence
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r? + 32™ = 293, factor the LHS 3™ = (u — v)(u® + 4uv + v?), hence
there exists k € {0, ..., m} such that

u—v = :|:3k,
W Ay + 0?2 = £3mk,

That is

602 + 6(3%)v + 32F = £3mF,

If k =0ork =m,then (x,y) = (£1,1).
fk=m —1>0,then3 |20 1.
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U — v
u? 4 duv + v?

That is

u—nv

uw? 4+ duv + v?

r? 4+ 32™ = 293, factor the LHS 3™
there exists k € {0, ..., m} such that

602 + 6(3%)v + 32F = £3mF,

If k =0ork =m,then (x,y) = (£1,1).
fk=m —1>0,then3 |20 1.

(u — v)(u? + 4uv + v?), hence

+3m—k,

m—1
_3 :
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w=— (@+V®' T H@- VR,

v =

~(e+VvE' +@-vE)).

wheret € N,e € {—1,1}.

(B+Vv3)+v3) T+ B - Va2 -v3) ) =437

N | =

Recurrence sequence rg =11 = 3,7t = 4ri_1 — ri_o,t > 2.
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w=— (@+V®' T H@- VR,

vzg((uﬁ)w(z—ﬁ)t),

wheret € N,e € {—1,1}.

N | =

(B+Vv3)+v3) T+ B - Va2 -v3) ) =437

Recurrence sequence rg =11 = 3,7t = 4ri_1 — ri_o,t > 2.

re =0
re =0

(mod 27) <=t =50r14
(mod 17) <=t =5o0r14

(mod 18),
(mod 18).
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w=— (@+V®' T H@- VR,

v =

~(e+VvE' +@-vE)).

wheret € N,e € {—1,1}.

N | =

(B+Vv3)+v3) T+ B - Va2 -v3) ) =437

Recurrence sequence rg =11 = 3,7t = 4ri_1 — ri_o,t > 2.

re =0 (mod 27) <=t =50r14
re =0 (mod 17) <=t = 5o0r14

(mod 18),
(mod 18).

There are two possible cases: m =2,k =1: (z,y) = (13,5), and

m=3,k=2:(x,y) = (545,53).
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r=20:

r=1:

e

fr > 1then 2 4+ 13™ = 2 (mod 4) and 2"y? =0 (mod 4), a
contradiction.

2 +13™ = 4P, xiseven,y odd.
2 +13™ = 2P, xisodd,y is odd.
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fr > 1then 2 4+ 13™ = 2 (mod 4) and 2"y? =0 (mod 4), a
contradiction.

r=0: a*413™ =4¢P, xiseven,y odd.
r=1: z*4+13™=2y", zisodd,y is odd.

The case r = (. We have the following two Frey curves (lvorra and Kraus
(2006), lecture by Ivorra)

Ei: Y?=X’+2:X?+¢"X,
Ey: Y?=X342cX%+ (2% —9yP)X.
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By Ribet’s level-lowering one gets

Gifxr =1 d 4
Np(El) = 2° .13 where s = T (HlO )7
Sifr=—1 (mod4),
and
Sifx =1 d 4
NP(EQ) — 2t - 13 where t = T (HlO )7
6ifz=—1 (mod 4).

There are 6 newforms at level 2° - 13 and 16 at level 2° - 13.
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It is often possible to obtain bound for the exponent p. (Samir’s notes,
section 6). Let E; ~,, f1 and Ey ~,, fa. Let ¢; be the [-th coefficient of
f1 and d; be the [-th coefficient of f». Define

By(f1) = Normyg((1+1)* = ¢f) | Normg g(ai(Er) — ar),
x,yel
and
|- Bj(f1) if f is not rational,

Bi(f1) = Bi(f1) if f is rational.

Similarly for fo. We have p | ged(B;(f1), Bi(f2)). The above argument
implies that if there exists a solution of 2% 4+ 13™ = yP then p € {3,5}.
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z? 4+ 13™ = 2P
Here we have the following two Frey curves

Ei: Y?=X4+2:X°+2PX,
Ey: Y?=X342cX*+ (2% — 29" X,
and N,(E1) = N,(E2) = 27 - 13. There are 28 newforms at level

27 . 13. The previous argument does not provide bound for the exponent p
in this case. There are only a few pairs of newforms for which it happens.
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z? 4+ 13™ = 2P
Here we have the following two Frey curves
Ey: Y?=X°+22X*+ 27X,
Ey: Y?=X342cX*+ (2% — 29" X,

and N,(E1) = N,(E2) = 27 - 13. There are 28 newforms at level

27 . 13. The previous argument does not provide bound for the exponent p
in this case. There are only a few pairs of newforms for which it happens.
Rewrite the Frey curves as follows

Ei: Y?=X422X%+ (22 +13")X,
Ey: Y?=X422X%+(-13")X.

We get congruence conditions for 1m. We have ord;(13) = 2 and
Ol’d11(13) = 10.
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0 (mod 2)

pair [ =7 [ =11

(4,7) 0 (mod 2)

(5,19) | 0 (mod 2)

(7,4) 0 (mod 2)

(8,12) 0,2,4,6,8 (mod 10)
(11,18) 0,2,4,6,8 (mod 10)
(12, 8) 0,2,4,6,8 (mod 10)
(18,11) 0,2,4,6,8 (mod 10)
(

Therefore m = 0 (mod 2).

x? + 13%F = 2yP
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27

G
s

The equation 22 + ¢2F = 2yP.

04

lifp=1 (mod 4),
—1lifp=3 (mod 4).

lifp=1or3 (mod 8),
—1lifp=50r7 (mod 8).

+ i) (u + v)P) =: Fp(u,v),

1+1i)(u+iv)P) = Gp(u,v).
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(u—54v) | Fp(uvv)a
(u+d4v) | Gp(u,v).

Example: p = 5.

=

s

=
|

(u — v)(u* — 4uv — 14uv? — duv® 4+ v?),

Gs(u,v) = (u+ v)(u* + 4udv — 14u?0? + duv® + ).
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e :

L

There exists s € {0, 1,...,k} such that

U+ 547) — q87
Hy(u,v) = ¢,

or
U+ 547) — _q87
Hp(ua U) — _qk—s’
_ Gp(u,v)
where H,(u,v) = vl

(1)

(2)
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We have deg H,(£q¢® — d4v,v) = p — 1 and

Hy(£q° — 610,0) = +£652°F poP ™! + ¢*pH,(v) + ¢*PY,

where ﬁlp € Z[X].
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We have deg H,(£q¢® — d4v,v) = p — 1 and
s _ p—1l 51 S. 17 s(p—1)
H,(+q° — d4v,v) = £632 2 pvP™ " + ¢°pH,(v) + ¢ :

where I/-\Ip € Z[X].
Equations (1) and (2) imply

+852"7 poP ! + ¢*pHy(v) + ¢*PV = 45
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We have deg H,(£q¢® — d4v,v) = p — 1 and

Hy(£q° — 610,0) = +£652°F poP ™! + ¢*pH,(v) + ¢*PY,

where I/-\Ip € Z[X].
Equations (1) and (2) imply

+852"7 poP ! + ¢*pHy(v) + ¢*PV = 45

The following cases are possible
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We have deg H,(£q¢® — d4v,v) = p — 1 and

Hy(£q° — 610,0) = +£652°F poP ™! + ¢*pH,(v) + ¢*PY,

where I/-\Ip € Z[X].
Equations (1) and (2) imply

+852"7 poP ! + ¢*pHy(v) + ¢*PV = 45

The following cases are possible

B p=gqgs=k—1,
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We have deg H,(£q¢® — d4v,v) = p — 1 and

Hy(£q° — 610,0) = +£652°F poP ™! + ¢*pH,(v) + ¢*PY,

where I/-\Ip € Z[X].
Equations (1) and (2) imply

+852"7 poP ! + ¢*pHy(v) + ¢*PV = 45

The following cases are possible
B p=gqgs=k—1,
B p#£qg,s=0ors=k.
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All solutions of the equation 22 + ¢2* = 2yP with 3 < ¢*¥ < 501 are as
follows

(x,v,q,k,p) € {(3,5,79,1,5),(9,5,13,1,3), (13,5, 3,2, 3), (55, 13, 37, 1, 3),
(79,5,3,1,5),(99,17,5, 1, 3), (161, 25,73, 1, 3), (249, 5, 307, 1, 7),

(351,41, 11, 2, 3), (545,53, 3, 3, 3), (649, 61, 181, 1, 3), (1665, 113, 337, 1, 3),
(2431, 145,433, 1, 3), (5291, 241, 19, 1, 3), (275561, 3361, 71, 1, 3) }.

It remains to deal with
x? + 13%F = 2yP,

with & > 3.
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Theorem. If 22 + 13%F = 2yP admits a relatively prime solution
(z,y) € N? then we have p < 3203 if u + d4v = £13%, k > 3.

Special cases

Parameterization : We get
: k

Reducibility : 137 _ Jult ol _ ju24e Y
System of equations E 2 2 B 2 2

We have
Small solutions
Linear forms in two logs - x 4+ 13F; ‘ 2 .13k 2./ 2

. = 1
x — 13k4 Va2 + 132k T yp/2 ypT

Back to Frey curves
Product of terms in AP § and
Eliminate tuples
Elliptic curves . z + 13%4 (14 4)(u + iv)P ' (u 4 iv)p
Magma computation v —13ki (1 —d)(u—iv)?  \u—idv/)
Powers in AP

Finally

u + v\ P 1
() -1z
U — v 2
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Lemma. In case of p > 3 there is no solution of (1) and (2) with s = 0.

Proof. In case of (1) if s = 0, thenu = 1 — d4v. Observe that by the

definition of Hp

M iiv=o0 (mod 13), then Hp (1 — d4v,v) =1 (mod 13),

ifv =1 (mod 13)andp =
ifv =1 (mod 13)and p =
ifv =2 (mod 13)andp =
ifv =2 (mod 13)andp =
ifv =3 (mod 13)andp =
ifv =3 (mod 13)andp =
ifv =4 (mod 13)andp =

ifv =4 (mod 13)andp =

etc.

1

3

1

3

1

3

1

3

(mod 4), then Hp (1 — d4v,v) =1 (mod 13),
(mod 4),then Hy (1 — d4v,v) = £5 (mod 13),
(mod 4), then Hp (1 — d4v,v) = £1 (mod 13),
(mod 4), then Hp (1 — d4v,v) = 7,8 (mod 13).
(mod 4),then Hy (1 — d4v,v) = 1,9 (mod 13),
(mod 4), then Hp (1 — d4v,v) = 6,12 (mod 13).
(mod 4), then Hp (1 — d4v,v) = 1,7 (mod 13),

(mod 4),then Hy (1 — d4v,v) = 7,8 (mod 13).

Thus if p > 3 then H,(1 — d4v,v) 0 (mod 13). We remark that
u 4+ d4v = —13F is not possible because

—1 = H,(—13% — §4v,v) = 13*P=D =1 (mod

pg. O
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u+ o0 = 13",
Hy(u,v) =1,
r = F,(13F — §,0,0).

Corresponding Frey curves

Br: Y2 =Xx%42F,013" —540) X% + (Fp(13F — 54v)% + 13%F) X,

By: Y2 =Xx342F,13" —540)x% + (-13*F)X.
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Remaining possibility

u+ o0 = 13",
Hy(u,v) =1,
r = F,(13F — §,0,0).

Corresponding Frey curves

Br: Y2 =Xx%42F,013" —540) X% + (Fp(13F — 54v)% + 13%F) X,

By: Y2 =Xx342F,13" —540)x% + (-13*F)X.

"Good” primes: primes of the form [ = np + 1 or primes [ for which
ord;(13) is "small”. Using such primes and the method of Kraus we can
exclude all primes p € {7,...,3203}.
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VRN

n(n+d)--(n+ (k—1)d) = by

where gcd(n,d) = 1 and P(b) < k.
We have

n+id:aix?for0§i<k.
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n(n+d)--(n+ (k—1)d) = by

where gcd(n,d) = 1 and P(b) < k.
We have

n+id:aix?for0§i<k.

Theorem (Hirata-Kohno, Laishram, Shorey, TijJdeman). The above
equation with d > 1, P(b) = k and 7 < k < 100 implies that
(ao, Aty - - -, ak_l) IS among the following tuples or their mirror images.

k="T: (2,3,1,5,6,7,2),(3,1,5,6,7,2,1),(1,5,6,7,2,1, 10),
k=13: (3,1,5,6,7,2,1,10, 11, 3, 13, 14, 15),
(1,5,6,7,2,1,10,11, 3,13, 14, 15, 1),
k=19 : (1,5,6,7,2,1,10,11, 3,13, 14, 15,1, 17,2, 19, 5, 21, 22),
k= 23: (5,6,7,2,1,10,11, 3,13, 14, 15,1, 17,2, 19, 5, 21, 22, 23, 6, 1, 26, 3),

(6,7,2,1,10,11,3,13,14,15,1,17,2, 19,5, 21,22, 23,6, 1, 26, 3, 7).
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The cases k = 5, P(b) = 5 and
k=17,(2,3,1,5,6,7,2),(3,1,5,6,7,2,1),(1,5,6,7,2,1,10).

Theorem (Bennett). If n and d are coprime nonzero integers, then the
Diophantine equation

n(n + d)(n + 2d)(n + 3d)(n + 4d) = by’

has no solutions in nonzero integers b, y and [ with [ > 2 and P(b) < 3.

1T = {(ao,al,ag,ag,a4)|ai — 2063657}.

WLOG 5|a; or 5|as.
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m (6,-5,1,3,2).
B Congruence arguments.

B Rank O elliptic curves.
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m (6,-5,1,3,2).

B Congruence arguments.

B Rank O elliptic curves.

The only possible tuples are

(2,5,2,—1,-1), (2,5,

_3’

_]_’

~1),(3,5,—2,—1,—1),(6,5,1,3,2).

Using n + 2d = 25 and n + 3d = —x3 we obtain

x5 + 325 = o}
r3 4 4xs = bx

2u3 + 225 = x

Remark: Rank(J) = 2.

I

2
1>
2
4.
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VRN

After factorization we get

(23 4 ix9) (23 + 2iz2) (23 + 323) = 60,

where § € {—3 £, —1+3i,1+3i,3+4}.
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After factorization we get

(23 4 ix9) (23 + 2iz2) (23 + 323) = 60,

where § € {—3 £, —1+3i,1+3i,3+4}.

Elliptic Chabauty’s method: implemented in MAGMA by Nils Bruin.

(lecture by Nils Bruin)
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(23 4 ix9) (23 + 2iz2) (23 + 323) = 60,
Parameterization .
Reducibility where § € {—3 ti,—1x3,1x30,3x Z}
ysemetequtiens 2 Elliptic Chabauty’s method: implemented in MAGMA by Nils Bruin.
. (lecture by Nils Bruin)

Small solutions
L]
Linear forms in two logs «
L]

B —3+1,3%7:RankBound = 0.

Back to Frey curves

Product of terms in AP . _1 R 32 : RankBound — ]‘ USing p — ]‘3 we Obtain that the Only
Eliminate tuples ; solution with 563/562 c Q Is -1.

Elliptic curves
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Powers in AP

Leiden 2007 tengely@math.klte.hu — slide 24



Elliptic curves

Outline

Special cases

Parameterization
Reducibility

System of equations

Small solutions

L]
Linear forms in two logs «
L]

Back to Frey curves
Product of terms in AP
Eliminate tuples
Elliptic curves

Magma computation

Powers in AP

Leiden 2007

After factorization we get

(23 4 ix9) (23 + 2iz2) (23 + 323) = 60,

where 6 € {—-3+14,—1+3¢,1+3¢,3 L4}
Elliptic Chabauty’s method: implemented in MAGMA by Nils Bruin.
(lecture by Nils Bruin)

—3 £ 1,3 =7 : RankBound = 0.

—1 — 37 : RankBound = 1. Using p = 13 we obtain that the only
solution with x3/x2 € Q is -1.

—1 + 372 : RankBound = 1. Using again p = 13 it follows that
373/372 = 1.
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After factorization we get

(23 4 ix9) (23 + 2iz2) (23 + 323) = 60,

where 6 € {—-3+14,—1+3¢,1+3¢,3 L4}
Elliptic Chabauty’s method: implemented in MAGMA by Nils Bruin.
(lecture by Nils Bruin)

—3 £ 1,3 =7 : RankBound = 0.

—1 — 37 : RankBound = 1. Using p = 13 we obtain that the only
solution with x3/x2 € Q is -1.

—1 + 372 : RankBound = 1. Using again p = 13 it follows that
373/372 = 1.

1 — 3¢ : RankBound = 1. Here we have x3/x2 = 1.
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After factorization we get

(23 4 ix9) (23 + 2iz2) (23 + 323) = 60,

where 6 € {—-3+14,—1+3¢,1+3¢,3 L4}
Elliptic Chabauty’s method: implemented in MAGMA by Nils Bruin.
(lecture by Nils Bruin)

—3 £ 1,3 =7 : RankBound = 0.

—1 — 37 : RankBound = 1. Using p = 13 we obtain that the only
solution with x3/x2 € Q is -1.

—1 + 372 : RankBound = 1. Using again p = 13 it follows that
373/372 = 1.

1 — 3¢ : RankBound = 1. Here we have x3/x2 = 1.

1 + 3¢ : RankBound = 1. In this case x3/x2 = —1.
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After factorization we get
(23 4 ix9) (23 + 2iz2) (23 + 323) = 60,

where 6 € {—-3+14,—1+3¢,1+3¢,3 L4}

Elliptic Chabauty’s method: implemented in MAGMA by Nils Bruin.
(lecture by Nils Bruin)

B —3+1,3%7:RankBound = 0.

B —1— 37:RankBound = 1. Using p = 13 we obtain that the only
solution with x3/x2 € Q is -1.

B —1+ 3¢ :RankBound = 1. Using again p = 13 it follows that
373/372 = 1.

B 1 — 3¢:RankBound = 1. Here we have x3/xy = 1.

B 1+ 3¢:RankBound = 1. In this case z3/xo = —1.

The AP is [8,5,2,—1,—4], thatisn = 8 and d = —3.
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N <1 >:= NumberField(:ch + 1);
R < X >:= PolynomialRing(N);

Parameterization P1 := ProjectiveSpace(Rationals(),1);

Reducibilit
educibility C := HyperellipticCurve((1 + 3 % 4) * (X + 1) * (X + 2 %14) * (X2 + 3));

E,toE := EllipticCurve(C);
Em, EtoEm := MinimalModel(E);

y2:x3—|—i*x2—|—(5*i—7)*x—|—(4*i—6)

umap := map < C— > P1|[C.1,C.3] >;

System of equations

Small solutions

Linear forms in two logs
U := Ezxzpand(Inverse(toE x EtoEm) *« umap);
Back to Frey curves

success, G, mwmap := PseudoM ordellWeil Group(Em);
NC,VC,RC,CC := Chabauty(mwmap, U, 13);
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P < x >:= PolynomialRing(Rationals());

N <i>:= NumberField(:ch + 1);

R < X >:= PolynomialRing(N);

P1 := ProjectiveSpace(Rationals(),1);

C := HyperellipticCurve((1 + 3 *1) * (X +4) % (X 4+ 2 * 1) * (X2 + 3));
E,toE := EllipticCurve(C);

Em, EtoEm := MinimalModel(E);

y2:x3—|—i*x2—|—(5*i—7)*x—|—(4*i—6)

umap := map < C— > P1|[C.1,C.3] >;

U := Ezxzpand(Inverse(toE x EtoEm) *« umap);

success, G, mwmap := PseudoM ordellWeil Group(Em);
NC,VC,RC,CC := Chabauty(mwmap, U, 13);

NC =2,VC = {G.1+ G.2},RC = 2

forall{pr : pr in PrimeDivisors(RC)|IsPSaturated(mwmap, pr)};
{EvaluateByPowerSeries(U, mwmap(gp)) : gp in VC};

{(=1:1)}
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Paper by Nils Bruin, Kalman Gyory, Lajos Hajdu, Szabolcs Tengely (2006).

Theorem. Let k > 4 and L > 2. There are only finitely many k-term
integral arithmetic progressions (hg, h1, ..., hi_1) such that
gcd(hg, h1) = 1and h; = xi" with some z; € Zand 2 < [; < L for
i=01,... k—1.

In case of (lg,11,12,13) = (2,2,2,3)

(u? = 2uv — v2) f(u, v))?, (W2 + %) F(u, v)Z, (2 + 2uv — v2) f(u, v))?, (f(u, v))>

is an arithmetic progression for any u, v € Z, where
flu,v) = ut + 8uv + 2u?v? — S8uv? + v,

tengely@math.klte.hu — slide 26



Outline

Special cases

Parameterization
Reducibility

System of equations

Small solutions

Linear forms in two logs «

Back to Frey curves
Product of terms in AP
Eliminate tuples
Elliptic curves

Magma computation

Powers in AP

Leiden 2007

3 .2
Ly, Lo, L3

Let x%,
gcd(xg, r1, 9, r3) = 1. We have

oz + o3

2 Y

—x} + 33
5 :

Theorem. Let C be the curve given by

Y

Then C(Q) = {(—1,0), (1, £2)}.

Solutions are given by
(z0, 71, 2, x3) € {(—2t2,0,2t%, £4t3), (2, £t3, 2, £t3)} for some
t e Z.

be consecutive terms of an arithmetic progression with

2 - X% 49x3 13,
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