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� x2 + qm = 2ryp (joint work with Samir Siksek )
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� x2 + qm = 2ryp (joint work with Samir Siksek )

� Special cases

� Modular approach

� n(n + d) · · · (n + (k − 1)d) = bym
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� x2 + qm = 2ryp (joint work with Samir Siksek )

� Special cases

� Modular approach

� n(n + d) · · · (n + (k − 1)d) = bym

� m = 2, the cases k = 5, 7 (lecture by Rob Tijdeman and lecture

by Shanta Laisram)

� m = 3, lecture by Lajos Hajdu
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� x2 + qm = 2ryp (joint work with Samir Siksek )

� Special cases

� Modular approach

� n(n + d) · · · (n + (k − 1)d) = bym

� m = 2, the cases k = 5, 7 (lecture by Rob Tijdeman and lecture

by Shanta Laisram)

� m = 3, lecture by Lajos Hajdu

� squares and cubes in arithmetic progressions, paper by Nils Bruin,

Kálmán Győry, Lajos Hajdu, Szabolcs Tengely
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� BHV works in many cases
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� BHV works in many cases

� x2 + 2a3b = yp Luca (2002)

� x2 + p2k+1 = 4yn Arif and Al-Ali (2002)

� x2 + 52k = yn Muriefah (2006)
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� BHV works in many cases

� x2 + 2a3b = yp Luca (2002)

� x2 + p2k+1 = 4yn Arif and Al-Ali (2002)

� x2 + 52k = yn Muriefah (2006)

� p = 3, S-integral points on elliptic curves

(
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+ qs = 2r

(
y

q2t

)3
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� BHV works in many cases

� x2 + 2a3b = yp Luca (2002)

� x2 + p2k+1 = 4yn Arif and Al-Ali (2002)

� x2 + 52k = yn Muriefah (2006)

� p = 3, S-integral points on elliptic curves

(
x

q3t

)2

+ qs = 2r

(
y

q2t

)3

� p = 5, algebraic number theory, Thue-equations (lecture by Yann

Bugeaud)
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Lucas sequence: un(α, β) = αn−βn

α−β , p is a primitive divisor of un(α, β)

if p divides un , but does not divide (α − β)2u1u2 · · ·un−1.
Arif and Al-Ali (2002):

x2 + 32k+1 = 4yp

We obtain
x + 3k

√
−3

2
=

(
a + b

√
−3

2

)p

.

Let α = a+b
√
−3

2 , β = a−b
√
−3

2 . We have

un(α, β) =

{
±1 if p 6= 3,

±3 if p = 3.
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x2 + 5k = 2y3,

here S = {5},
(

2x

53t

)2

=

(
2y

52t

)3

− 4 · 5s, s ∈ {0, 1, . . . , 5}

using MAGMA one obtains all the S-integral points on the curve. The

solutions of the original problem:

(x, y) ∈ {(±1, 1), (±7, 3), (±99, 17)}.
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x2 + 32m = 2y3, factor the LHS 3m = (u − v)(u2 + 4uv + v2), hence

there exists k ∈ {0, . . . , m} such that
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x2 + 32m = 2y3, factor the LHS 3m = (u − v)(u2 + 4uv + v2), hence

there exists k ∈ {0, . . . , m} such that

u − v = ±3k,

u2 + 4uv + v2 = ±3m−k.
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x2 + 32m = 2y3, factor the LHS 3m = (u − v)(u2 + 4uv + v2), hence

there exists k ∈ {0, . . . , m} such that

u − v = ±3k,

u2 + 4uv + v2 = ±3m−k.

That is

6v2 ± 6(3k)v + 32k = ±3m−k.

If k = 0 or k = m, then (x, y) = (±1, 1).
If k = m − 1 > 0, then 3 | 2v2 ± 1.
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x2 + 32m = 2y3, factor the LHS 3m = (u − v)(u2 + 4uv + v2), hence

there exists k ∈ {0, . . . , m} such that

u − v = ±3k,

u2 + 4uv + v2 = ±3m−k.

That is

6v2 ± 6(3k)v + 32k = ±3m−k.

If k = 0 or k = m, then (x, y) = (±1, 1).
If k = m − 1 > 0, then 3 | 2v2 ± 1.

u − v = −3m−1,

u2 + 4uv + v2 = −3.
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u =
−ε

2

“

(2 +
√

3)
t−1

+ (2 −
√

3)
t−1

”

,

v =
ε

2

“

(2 +
√

3)
t

+ (2 −
√

3)
t

”

,

where t ∈ N, ε ∈ {−1, 1}.
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ε

2

“

(2 +
√

3)
t

+ (2 −
√

3)
t

”

,

where t ∈ N, ε ∈ {−1, 1}.
1

2

“

(3 +
√

3)(2 +
√

3)
t−1

+ (3 −
√

3)(2 −
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3)
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”

= ±3
m−1
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u =
−ε
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3)
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ε
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“
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3)
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1
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“

(3 +
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3)(2 +
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3)
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+ (3 −
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3)(2 −
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”

= ±3
m−1

.

Recurrence sequence r0 = r1 = 3, rt = 4rt−1 − rt−2, t ≥ 2.
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1
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“

(3 +
√

3)(2 +
√

3)
t−1

+ (3 −
√

3)(2 −
√

3)
t−1

”

= ±3
m−1

.

Recurrence sequence r0 = r1 = 3, rt = 4rt−1 − rt−2, t ≥ 2.

rt ≡ 0 (mod 27) ⇐⇒ t ≡ 5 or 14 (mod 18),

rt ≡ 0 (mod 17) ⇐⇒ t ≡ 5 or 14 (mod 18).
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1

2

“

(3 +
√

3)(2 +
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3)
t−1

+ (3 −
√

3)(2 −
√

3)
t−1

”

= ±3
m−1

.

Recurrence sequence r0 = r1 = 3, rt = 4rt−1 − rt−2, t ≥ 2.

rt ≡ 0 (mod 27) ⇐⇒ t ≡ 5 or 14 (mod 18),

rt ≡ 0 (mod 17) ⇐⇒ t ≡ 5 or 14 (mod 18).

There are two possible cases: m = 2, k = 1 : (x, y) = (13, 5), and

m = 3, k = 2 : (x, y) = (545, 53).
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If r > 1 then x2 + 13m ≡ 2 (mod 4) and 2ryp ≡ 0 (mod 4), a

contradiction.

r = 0 : x2 + 13m = yp, x is even , y odd.

r = 1 : x2 + 13m = 2yp, x is odd , y is odd.
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If r > 1 then x2 + 13m ≡ 2 (mod 4) and 2ryp ≡ 0 (mod 4), a

contradiction.

r = 0 : x2 + 13m = yp, x is even , y odd.

r = 1 : x2 + 13m = 2yp, x is odd , y is odd.

The case r = 0. We have the following two Frey curves (Ivorra and Kraus

(2006), lecture by Ivorra)

E1 : Y 2 = X3 + 2xX2 + ypX,

E2 : Y 2 = X3 + 2xX2 + (x2 − yp)X.
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By Ribet’s level-lowering one gets

Np(E1) = 2s · 13 where s =

{
6 if x ≡ 1 (mod 4),

5 if x ≡ −1 (mod 4),

and

Np(E2) = 2t · 13 where t =

{
5 if x ≡ 1 (mod 4),

6 if x ≡ −1 (mod 4).

There are 6 newforms at level 25 · 13 and 16 at level 26 · 13.
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It is often possible to obtain bound for the exponent p. (Samir’s notes,

section 6). Let E1 ∼p f1 and E2 ∼p f2. Let cl be the l-th coefficient of

f1 and dl be the l-th coefficient of f2. Define

B′
l(f1) = NormK/Q((l + 1)2 − c2

l )
∏

x,y∈Fl

NormK/Q(al(E1) − cl),

and

Bl(f1) =

{
l · B′

l(f1) if f is not rational,

B′
l(f1) if f is rational.

Similarly for f2. We have p | gcd(Bl(f1), Bl(f2)). The above argument

implies that if there exists a solution of x2 + 13m = yp then p ∈ {3, 5}.
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x2 + 13m = 2yp

Here we have the following two Frey curves

E1 : Y 2 = X3 + 2xX2 + 2ypX,

E2 : Y 2 = X3 + 2xX2 + (x2 − 2yp)X,

and Np(E1) = Np(E2) = 27 · 13. There are 28 newforms at level

27 · 13. The previous argument does not provide bound for the exponent p
in this case. There are only a few pairs of newforms for which it happens.



Outline

Special cases

Parameterization

Reducibility

System of equations

Small solutions

Linear forms in two logs

Back to Frey curves

Product of terms in AP

Eliminate tuples

Elliptic curves

Magma computation

Powers in AP

Leiden 2007 tengely@math.klte.hu – slide 11

x2 + 13m = 2yp

Here we have the following two Frey curves

E1 : Y 2 = X3 + 2xX2 + 2ypX,

E2 : Y 2 = X3 + 2xX2 + (x2 − 2yp)X,

and Np(E1) = Np(E2) = 27 · 13. There are 28 newforms at level

27 · 13. The previous argument does not provide bound for the exponent p
in this case. There are only a few pairs of newforms for which it happens.

Rewrite the Frey curves as follows

E1 : Y 2 = X3 + 2xX2 + (x2 + 13m)X,

E2 : Y 2 = X3 + 2xX2 + (−13m)X.

We get congruence conditions for m. We have ord7(13) = 2 and

ord11(13) = 10.
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pair l = 7 l = 11

(4, 7) 0 (mod 2)
(5, 19) 0 (mod 2)
(7, 4) 0 (mod 2)
(8, 12) 0, 2, 4, 6, 8 (mod 10)
(11, 18) 0, 2, 4, 6, 8 (mod 10)
(12, 8) 0, 2, 4, 6, 8 (mod 10)
(18, 11) 0, 2, 4, 6, 8 (mod 10)
(19, 5) 0 (mod 2)

Therefore m ≡ 0 (mod 2).

x2 + 132k = 2yp
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The equation x2 + q2k = 2yp.

δ4 =

{
1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4).

δ8 =

{
1 if p ≡ 1 or 3 (mod 8),

−1 if p ≡ 5 or 7 (mod 8).

y = u2 + v2,

x = ℜ((1 + i)(u + iv)p) =: Fp(u, v),

qk = ℑ((1 + i)(u + iv)p) =: Gp(u, v).
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(u − δ4v) | Fp(u, v),

(u + δ4v) | Gp(u, v).
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(u − δ4v) | Fp(u, v),

(u + δ4v) | Gp(u, v).

Example: p = 5.

F5(u, v) = (u − v)(u4 − 4u3v − 14u2v2 − 4uv3 + v4),

G5(u, v) = (u + v)(u4 + 4u3v − 14u2v2 + 4uv3 + v4).
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There exists s ∈ {0, 1, . . . , k} such that

u + δ4v = qs,

Hp(u, v) = qk−s,
(1)

or

u + δ4v = −qs,

Hp(u, v) = −qk−s,
(2)

where Hp(u, v) =
Gp(u,v)
u+δ4v .
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We have deg Hp(±qs − δ4v, v) = p − 1 and

Hp(±qs − δ4v, v) = ±δ82
p−1
2 pvp−1 + qspĤp(v) + qs(p−1),

where Ĥp ∈ Z[X].
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We have deg Hp(±qs − δ4v, v) = p − 1 and

Hp(±qs − δ4v, v) = ±δ82
p−1
2 pvp−1 + qspĤp(v) + qs(p−1),

where Ĥp ∈ Z[X].
Equations (1) and (2) imply

±δ82
p−1
2 pvp−1 + qspĤp(v) + qs(p−1) = ±qk−s.
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We have deg Hp(±qs − δ4v, v) = p − 1 and

Hp(±qs − δ4v, v) = ±δ82
p−1
2 pvp−1 + qspĤp(v) + qs(p−1),

where Ĥp ∈ Z[X].
Equations (1) and (2) imply

±δ82
p−1
2 pvp−1 + qspĤp(v) + qs(p−1) = ±qk−s.

The following cases are possible
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We have deg Hp(±qs − δ4v, v) = p − 1 and

Hp(±qs − δ4v, v) = ±δ82
p−1
2 pvp−1 + qspĤp(v) + qs(p−1),

where Ĥp ∈ Z[X].
Equations (1) and (2) imply

±δ82
p−1
2 pvp−1 + qspĤp(v) + qs(p−1) = ±qk−s.

The following cases are possible

� p = q, s = k − 1,
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We have deg Hp(±qs − δ4v, v) = p − 1 and

Hp(±qs − δ4v, v) = ±δ82
p−1
2 pvp−1 + qspĤp(v) + qs(p−1),

where Ĥp ∈ Z[X].
Equations (1) and (2) imply

±δ82
p−1
2 pvp−1 + qspĤp(v) + qs(p−1) = ±qk−s.

The following cases are possible

� p = q, s = k − 1,

� p 6= q, s = 0 or s = k.
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All solutions of the equation x2 + q2k = 2yp with 3 ≤ qk ≤ 501 are as
follows

(x, y, q, k, p) ∈
˘

(3, 5, 79, 1, 5), (9, 5, 13, 1, 3), (13, 5, 3, 2, 3), (55, 13, 37, 1, 3),

(79, 5, 3, 1, 5), (99, 17, 5, 1, 3), (161, 25, 73, 1, 3), (249, 5, 307, 1, 7),

(351, 41, 11, 2, 3), (545, 53, 3, 3, 3), (649, 61, 181, 1, 3), (1665, 113, 337, 1, 3),

(2431, 145, 433, 1, 3), (5291, 241, 19, 1, 3), (275561, 3361, 71, 1, 3)
¯

.

It remains to deal with

x2 + 132k = 2yp,

with k ≥ 3.
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Theorem. If x2 + 132k = 2yp admits a relatively prime solution

(x, y) ∈ N2 then we have p ≤ 3203 if u + δ4v = ±13k, k ≥ 3.

We get
13k

2
≤

|u| + |v|
2

≤

s

u2 + v2

2
=

r

y

2
.

We have
˛

˛

˛

˛

˛

x + 13ki

x − 13ki
− 1

˛

˛

˛

˛

˛

=
2 · 13k

p

x2 + 132k
≤

2
√

y

yp/2
=

2

y
p−1

2

,

and

x + 13ki

x − 13ki
=

(1 + i)(u + iv)p

(1 − i)(u − iv)p
= i

„

u + iv

u − iv

«p

.

Finally

˛

˛

˛

˛

i

„

u + iv

u − iv

«p

− 1

˛

˛

˛

˛

≥
1

2

˛

˛

˛

˛

log i

„

u + iv

u − iv

«p˛

˛

˛

˛

.
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Lemma. In case of p > 3 there is no solution of (1) and (2) with s = 0.
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Lemma. In case of p > 3 there is no solution of (1) and (2) with s = 0.

Proof. In case of (1) if s = 0, then u = 1 − δ4v. Observe that by the
definition of Hp

� if v ≡ 0 (mod 13), then Hp(1 − δ4v, v) ≡ 1 (mod 13),

� if v ≡ 1 (mod 13) and p ≡ 1 (mod 4), then Hp(1 − δ4v, v) ≡ 1 (mod 13),

� if v ≡ 1 (mod 13) and p ≡ 3 (mod 4), then Hp(1 − δ4v, v) ≡ ±5 (mod 13),

� if v ≡ 2 (mod 13) and p ≡ 1 (mod 4), then Hp(1 − δ4v, v) ≡ ±1 (mod 13),

� if v ≡ 2 (mod 13) and p ≡ 3 (mod 4), then Hp(1 − δ4v, v) ≡ 7, 8 (mod 13).

� if v ≡ 3 (mod 13) and p ≡ 1 (mod 4), then Hp(1 − δ4v, v) ≡ 1, 9 (mod 13),

� if v ≡ 3 (mod 13) and p ≡ 3 (mod 4), then Hp(1 − δ4v, v) ≡ 6, 12 (mod 13).

� if v ≡ 4 (mod 13) and p ≡ 1 (mod 4), then Hp(1 − δ4v, v) ≡ 1, 7 (mod 13),

� if v ≡ 4 (mod 13) and p ≡ 3 (mod 4), then Hp(1 − δ4v, v) ≡ 7, 8 (mod 13).

� etc.

Thus if p > 3 then Hp(1 − δ4v, v) 6≡ 0 (mod 13). We remark that

u + δ4v = −13k is not possible because

−1 ≡ Hp(−13k − δ4v, v) ≡ 13k(p−1) ≡ 1 (mod p).
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Remaining possibility

u + δ4v = 13k,

Hp(u, v) = 1,

x = Fp(13k − δ4v, v).

Corresponding Frey curves

E1 : Y
2

= X
3

+ 2Fp(13
k − δ4v)X

2
+ (Fp(13

k − δ4v)
2

+ 13
2k

)X,

E2 : Y
2

= X
3

+ 2Fp(13
k − δ4v)X

2
+ (−13

2k
)X.



Back to Frey curves

Outline

Special cases

Parameterization

Reducibility

System of equations

Small solutions

Linear forms in two logs

Back to Frey curves

Product of terms in AP

Eliminate tuples

Elliptic curves

Magma computation

Powers in AP

Leiden 2007 tengely@math.klte.hu – slide 20

Remaining possibility

u + δ4v = 13k,

Hp(u, v) = 1,

x = Fp(13k − δ4v, v).

Corresponding Frey curves

E1 : Y
2

= X
3

+ 2Fp(13
k − δ4v)X

2
+ (Fp(13

k − δ4v)
2

+ 13
2k

)X,

E2 : Y
2

= X
3

+ 2Fp(13
k − δ4v)X

2
+ (−13

2k
)X.

”Good” primes: primes of the form l = np + 1 or primes l for which

ordl(13) is ”small”. Using such primes and the method of Kraus we can

exclude all primes p ∈ {7, . . . , 3203}.
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n(n + d) · · · (n + (k − 1)d) = by2

where gcd(n, d) = 1 and P (b) ≤ k.
We have

n + id = aix
2
i for 0 ≤ i < k.
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n(n + d) · · · (n + (k − 1)d) = by2

where gcd(n, d) = 1 and P (b) ≤ k.
We have

n + id = aix
2
i for 0 ≤ i < k.

Theorem (Hirata-Kohno, Laishram, Shorey,Tijdeman). The above
equation with d > 1, P (b) = k and 7 ≤ k ≤ 100 implies that
(a0, a1, . . . , ak−1) is among the following tuples or their mirror images.

k = 7 : (2, 3, 1, 5, 6, 7, 2), (3, 1, 5, 6, 7, 2, 1), (1, 5, 6, 7, 2, 1, 10),

k = 13 : (3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15),

(1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1),

k = 19 : (1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22),

k = 23 : (5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3),

(6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7).
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The cases k = 5, P (b) = 5 and

k = 7, (2, 3, 1, 5, 6, 7, 2), (3, 1, 5, 6, 7, 2, 1), (1, 5, 6, 7, 2, 1, 10).

Theorem (Bennett). If n and d are coprime nonzero integers, then the

Diophantine equation

n(n + d)(n + 2d)(n + 3d)(n + 4d) = byl

has no solutions in nonzero integers b, y and l with l ≥ 2 and P (b) ≤ 3.

T = {(a0, a1, a2, a3, a4)|ai = 2α3β5γ}.
WLOG 5|a1 or 5|a2.
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� (6,−5, 1, 3, 2).

� Congruence arguments.

� Rank 0 elliptic curves.
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� (6,−5, 1, 3, 2).

� Congruence arguments.

� Rank 0 elliptic curves.

The only possible tuples are

(2, 5, 2,−1,−1), (2, 5,−3,−1,−1), (3, 5,−2,−1,−1), (6, 5, 1, 3, 2).

Using n + 2d = 2x2
2 and n + 3d = −x2

3 we obtain

x2
3 + 3x2

2 = x2
0,

x2
3 + 4x2

2 = 5x2
1,

2x2
3 + 2x2

2 = x2
4.

Remark: Rank(J) = 2.
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After factorization we get

(x3 + ix2)(x3 + 2ix2)(x
2
3 + 3x2

2) = δ�,

where δ ∈ {−3 ± i,−1 ± 3i, 1 ± 3i, 3 ± i}.
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After factorization we get

(x3 + ix2)(x3 + 2ix2)(x
2
3 + 3x2

2) = δ�,

where δ ∈ {−3 ± i,−1 ± 3i, 1 ± 3i, 3 ± i}.
Elliptic Chabauty’s method: implemented in MAGMA by Nils Bruin.

(lecture by Nils Bruin)
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After factorization we get

(x3 + ix2)(x3 + 2ix2)(x
2
3 + 3x2

2) = δ�,

where δ ∈ {−3 ± i,−1 ± 3i, 1 ± 3i, 3 ± i}.
Elliptic Chabauty’s method: implemented in MAGMA by Nils Bruin.

(lecture by Nils Bruin)

� −3 ± i, 3 ± i : RankBound = 0.
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After factorization we get

(x3 + ix2)(x3 + 2ix2)(x
2
3 + 3x2

2) = δ�,

where δ ∈ {−3 ± i,−1 ± 3i, 1 ± 3i, 3 ± i}.
Elliptic Chabauty’s method: implemented in MAGMA by Nils Bruin.

(lecture by Nils Bruin)

� −3 ± i, 3 ± i : RankBound = 0.

� −1 − 3i : RankBound = 1. Using p = 13 we obtain that the only

solution with x3/x2 ∈ Q is -1.
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After factorization we get

(x3 + ix2)(x3 + 2ix2)(x
2
3 + 3x2

2) = δ�,

where δ ∈ {−3 ± i,−1 ± 3i, 1 ± 3i, 3 ± i}.
Elliptic Chabauty’s method: implemented in MAGMA by Nils Bruin.

(lecture by Nils Bruin)

� −3 ± i, 3 ± i : RankBound = 0.

� −1 − 3i : RankBound = 1. Using p = 13 we obtain that the only

solution with x3/x2 ∈ Q is -1.

� −1 + 3i : RankBound = 1. Using again p = 13 it follows that

x3/x2 = 1.
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After factorization we get

(x3 + ix2)(x3 + 2ix2)(x
2
3 + 3x2

2) = δ�,

where δ ∈ {−3 ± i,−1 ± 3i, 1 ± 3i, 3 ± i}.
Elliptic Chabauty’s method: implemented in MAGMA by Nils Bruin.

(lecture by Nils Bruin)

� −3 ± i, 3 ± i : RankBound = 0.

� −1 − 3i : RankBound = 1. Using p = 13 we obtain that the only

solution with x3/x2 ∈ Q is -1.

� −1 + 3i : RankBound = 1. Using again p = 13 it follows that

x3/x2 = 1.

� 1 − 3i : RankBound = 1. Here we have x3/x2 = 1.
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After factorization we get

(x3 + ix2)(x3 + 2ix2)(x
2
3 + 3x2

2) = δ�,

where δ ∈ {−3 ± i,−1 ± 3i, 1 ± 3i, 3 ± i}.
Elliptic Chabauty’s method: implemented in MAGMA by Nils Bruin.

(lecture by Nils Bruin)

� −3 ± i, 3 ± i : RankBound = 0.

� −1 − 3i : RankBound = 1. Using p = 13 we obtain that the only

solution with x3/x2 ∈ Q is -1.

� −1 + 3i : RankBound = 1. Using again p = 13 it follows that

x3/x2 = 1.

� 1 − 3i : RankBound = 1. Here we have x3/x2 = 1.

� 1 + 3i : RankBound = 1. In this case x3/x2 = −1.
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After factorization we get

(x3 + ix2)(x3 + 2ix2)(x
2
3 + 3x2

2) = δ�,

where δ ∈ {−3 ± i,−1 ± 3i, 1 ± 3i, 3 ± i}.
Elliptic Chabauty’s method: implemented in MAGMA by Nils Bruin.

(lecture by Nils Bruin)

� −3 ± i, 3 ± i : RankBound = 0.

� −1 − 3i : RankBound = 1. Using p = 13 we obtain that the only

solution with x3/x2 ∈ Q is -1.

� −1 + 3i : RankBound = 1. Using again p = 13 it follows that

x3/x2 = 1.

� 1 − 3i : RankBound = 1. Here we have x3/x2 = 1.

� 1 + 3i : RankBound = 1. In this case x3/x2 = −1.

The AP is [8, 5, 2,−1,−4], that is n = 8 and d = −3.
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P < x >:= PolynomialRing(Rationals());

N < i >:= NumberField(x
2

+ 1);

R < X >:= PolynomialRing(N);

P1 := ProjectiveSpace(Rationals(), 1);

C := HyperellipticCurve((1 + 3 ∗ i) ∗ (X + i) ∗ (X + 2 ∗ i) ∗ (X
2

+ 3));

E, toE := EllipticCurve(C);

Em, EtoEm := MinimalModel(E);
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P < x >:= PolynomialRing(Rationals());

N < i >:= NumberField(x
2

+ 1);

R < X >:= PolynomialRing(N);

P1 := ProjectiveSpace(Rationals(), 1);

C := HyperellipticCurve((1 + 3 ∗ i) ∗ (X + i) ∗ (X + 2 ∗ i) ∗ (X
2

+ 3));

E, toE := EllipticCurve(C);

Em, EtoEm := MinimalModel(E);

y
2

= x
3

+ i ∗ x
2

+ (5 ∗ i − 7) ∗ x + (4 ∗ i − 6)

umap := map < C− > P1|[C.1, C.3] >;

U := Expand(Inverse(toE ∗ EtoEm) ∗ umap);

success, G, mwmap := PseudoMordellWeilGroup(Em);

NC, V C, RC, CC := Chabauty(mwmap, U, 13);
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P < x >:= PolynomialRing(Rationals());

N < i >:= NumberField(x
2

+ 1);

R < X >:= PolynomialRing(N);

P1 := ProjectiveSpace(Rationals(), 1);

C := HyperellipticCurve((1 + 3 ∗ i) ∗ (X + i) ∗ (X + 2 ∗ i) ∗ (X
2

+ 3));

E, toE := EllipticCurve(C);

Em, EtoEm := MinimalModel(E);

y
2

= x
3

+ i ∗ x
2

+ (5 ∗ i − 7) ∗ x + (4 ∗ i − 6)

umap := map < C− > P1|[C.1, C.3] >;

U := Expand(Inverse(toE ∗ EtoEm) ∗ umap);

success, G, mwmap := PseudoMordellWeilGroup(Em);

NC, V C, RC, CC := Chabauty(mwmap, U, 13);

NC = 2, VC = {G.1 ± G.2}, RC = 2

forall{pr : pr in PrimeDivisors(RC)|IsPSaturated(mwmap, pr)};
{EvaluateByPowerSeries(U, mwmap(gp)) : gp in V C};
{(−1 : 1)}
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Paper by Nils Bruin, Kálmán Győry, Lajos Hajdu, Szabolcs Tengely (2006).

Theorem. Let k ≥ 4 and L ≥ 2. There are only finitely many k-term

integral arithmetic progressions (h0, h1, . . . , hk−1) such that

gcd(h0, h1) = 1 and hi = xli
i with some xi ∈ Z and 2 ≤ li ≤ L for

i = 0, 1, . . . , k − 1.

In case of (l0, l1, l2, l3) = (2, 2, 2, 3)

((u
2 − 2uv − v

2
)f(u, v))

2
, ((u

2
+ v

2
)f(u, v))

2
, ((u

2
+ 2uv − v

2
)f(u, v))

2
, (f(u, v))

3

is an arithmetic progression for any u, v ∈ Z, where

f(u, v) = u4 + 8u3v + 2u2v2 − 8uv3 + v4.
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Let x3
0, x

2
1, x

3
2, x

2
3 be consecutive terms of an arithmetic progression with

gcd(x0, x1, x2, x3) = 1. We have

x2
1 =

x3
0 + x3

2

2
,

x2
3 =

−x3
0 + 3x3

2

2
.

Theorem. Let C be the curve given by

Y 2 = −X6 + 2X3 + 3.

Then C(Q) = {(−1, 0), (1,±2)}.

Solutions are given by

(x0, x1, x2, x3) ∈ {(−2t2, 0, 2t2,±4t3), (t2,±t3, t2,±t3)} for some

t ∈ Z.
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