
TRIANGLES WITH TWO INTEGRAL SIDES

SZ. TENGELY

Abstract. We study some Diophantine problems related to triangles with
two given integral sides. We solve two problems posed by Zoltán Bertalan and
we also provide some generalization.

1. introduction

There are many Diophantine problems arising from studying certain properties
of triangles. Most people know the theorem on the lengths of sides of right angled
triangles named after Pythagoras. That is a2 + b2 = c2.

An integer n ≥ 1 is called congruent if it is the area of a right triangle with
rational sides. Using tools from modern arithmetic theory of elliptic curves and
modular forms Tunnell [10] found necessary condition for n to be a congruent num-
ber. Suppose that n is a squarefree positive integer which is a congruent number.

(a) If n is odd, then the number of integer triples (x, y, z) satisfying the equation
n = 2x2 + y2 + 8z2 is just twice the number of integer triples (x, y, z)
satisfying n = 2x2 + y2 + 32z2.

(b) If n is even, then the number of integer triples (x, y, z) satisfying the equa-
tion n

2 = 4x2 + y2 + 8z2 is just twice the number of integer triples (x, y, z)
satisfying n

2 = 4x2 + y2 + 32z2.

A Heronian triangle is a triangle having the property that the lengths of its sides
and its area are positive integers. There are several open problems concerning the
existence of Heronian triangles with certain properties. It is not known whether
there exist Heronian triangles having the property that the lengths of all their
medians are positive integers [6], and it is not known whether there exist Hero-
nian triangles having the property that the lengths of all their sides are Fibonacci
numbers [7]. Gaál, Járási and Luca [5] proved that there are only finitely many
Heronian triangles whose sides a, b, c ∈ S and are reduced, that is gcd(a, b, c) = 1,
where S denotes the set of integers divisible only by some fixed primes.

Petulante and Kaja [9] gave arguments for parametrizing all integer-sided trian-
gles that contain a specified angle with rational cosine. It is equivalent to deter-
mining a rational parametrization of the conic u2 − 2αuv + v2 = 1, where α is the
rational cosine.

The present paper is motivated by the following two problems due to Zoltán
Bertalan.

(i) How to choose x and y such that the distances of the clock hands at 2
o’clock and 3 o’clock are integers?

(ii) How to choose x and y such that the distances of the clock hands at 2
o’clock and 4 o’clock are integers?

We generalize and reformulate the above questions as follows. For given 0 <
α, β < π we are looking for pairs of triangles in which the length of the sides

2000 Mathematics Subject Classification. Primary 11D61; Secondary 11Y50.
Key words and phrases. Diophantine equations, Elliptic curves.
Research supported in part by the Magyary Zoltán Higher Educational Public Foundation.

1



2 SZ. TENGELY

(zα, zβ) opposite the angles α, β are from some given number field Q(θ) and the
length of the other two sides (x, y) are rational integers. Let ϕ1 = cos(α) and
ϕ2 = cos(β).

By means of the law of cosine we obtain the following systems of equations

x2 − 2ϕ1xy + y2 = z2
α,

x2 − 2ϕ2xy + y2 = z2
β ,

After multiplying these equations and dividing by y4 we get
Cα,β : X4 − 2(ϕ1 + ϕ2)X

3 + (4ϕ1ϕ2 + 2)X2 − 2(ϕ1 + ϕ2)X + 1 = Y 2,

where X = x/y and Y = zαzβ/y2. Suppose ϕ1, ϕ2 ∈ Q(θ) for some algebraic
number θ. Clearly, the hyperelliptic curve Cα,β has a rational point (X, Y ) = (0, 1),
so it is isomorphic to an elliptic curve Eα,β . The rational points of an elliptic curve
form a finitely generated group. We are looking for points on Eα,β for which the first
coordinate of its preimage is rational. If Eα,β is defined over Q and the rank is 0,
then there are only finitely many solutions, if the rank is greater than 0, then there
are infinitely many solutions. If the elliptic curve Eα,β is defined over some number
field of degree at least two, then one can apply the so-called elliptic Chabauty
method (see [2, 3] and the references given there) to determine all solutions with
the required property.

2. curves defined over Q

2.1. (α, β) = (π/3, π/2). The system of equations in this case is

x2 − xy + y2 = z2
π/3,

x2 + y2 = z2
π/2.

The related hyperelliptic curve is Cπ/3,π/2.

Theorem 1. There are infinitely many rational points on Cπ/3,π/2.

Proof. In this case the free rank is 1, as it is given in Cremona’s table of elliptic
curves [4] (curve 192A1). Therefore there are infinitely many rational points on
Cπ/3,π/2. ¤
Corollary. Problem (i) has infinitely many solutions.

Few solutions are given in the following table.

x y zπ/3 zπ/2

8 15 13 17
1768 2415 2993 3637

10130640 8109409 9286489 12976609
498993199440 136318711969 517278459169 579309170089
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2.2. (α, β) = (π/2, 2π/3). The system of equations in this case is

x2 + y2 = z2
π/2,

x2 + xy + y2 = z2
2π/3.

The hyperelliptic curve Cπ/2,2π/3 is isomorphic to Cπ/3,π/2, therefore there are in-
finitely many rational points on Cπ/2,2π/3.

2.3. (α, β) = (π/3, 2π/3). We have

x2 − xy + y2 = z2
π/3,

x2 + xy + y2 = z2
2π/3.

After multiplying these equations we get

(1) x4 + x2y2 + y4 = (zπ/3z2π/3)2.

Theorem 2. If (x, y) is a solution of (1) such that gcd(x, y) = 1, then xy = 0.

Proof. See [8] at page 19. ¤

Corollary. Problem (ii) has no solution.

In the following sections we use the so-called elliptic Chabauty’s method (see
[2], [3]) to determine all points on the curves Cα,β for which X is rational. The
algorithm is implemented by N. Bruin in MAGMA [1], so here we indicate the
main steps only, the actual computations can be carried out by MAGMA. The
MAGMA code clock.m which were used is given below. It requires three inputs,
a, b as members of some number fields and p a prime number.

3. curves defined over Q(
√

2)

3.1. (α, β) = (π/4, π/2). The hyperelliptic curve Cπ/4,π/2 is isomorphic to

Eπ/4,π/2 : v2 = u3 − u2 − 3u− 1.

The rank of Eπ/4,π/2 over Q(
√

2) is 1, which is less than the degree of Q(
√

2).
Applying elliptic Chabauty (the procedure ”Chabauty” of MAGMA) with p = 7,
we obtain that (X, Y ) = (0,±1) are the only affine points on Cπ/4,π/2 with rational
first coordinates. Since X = x/y we get that there does not exist appropriate
triangles in this case.

3.2. (α, β) = (π/4, π/3). The hyperelliptic curve Cπ/4,π/3 is isomorphic to

Eπ/4,π/3 : v2 = u3 + (
√

2− 1)u2 − 2u−
√

2.

The rank of Eπ/4,π/2 over Q(
√

2) is 1 and applying elliptic Chabauty’s method again
with p = 7, we obtain that (X,Y ) = (0,±1) are the only affine points on Cπ/4,π/3

with rational first coordinates. As in the previous case we obtain that there does
not exist triangles satisfying the appropriate conditions.

4. curves defined over Q(
√

3) and Q(
√

5)

In the following tables we summarize some details of the computations, that is
the pair (α, β), the equations of the elliptic curves Eα,β , the rank of the Mordell-
Weil group of these curves over the appropriate number field (Q(

√
3) or Q(

√
5)),

the rational first coordinates of the affine points and the primes we used.
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Algorithm 1 MAGMA code clock.m

clock:=function(a,b,p)
P1:=ProjectiveSpace(Rationals(),1);
K1:=Parent(a);
K2:=Parent(b);
if IsIntegral(a) then

K1:=RationalField();
end if ;
if IsIntegral(b) then

K2:=RationalField();
end if ;
if Degree(K1)*Degree(K2) eq 1 then

K:=RationalField();
else

if Degree(K1) gt 1 and Degree(K2) gt 1 then
K:=CompositeFields(K1,K2)[1];

else
if Degree(K1) eq 1 then

K:=K2;
else

K:=K1;
end if ;

end if ;
end if ;
P<X>:=PolynomialRing(K);
ka:=K!a;
kb:=K!b;
C:=HyperellipticCurve(X4 − 2 ∗ (ka + kb) ∗X3 + (4 ∗ ka ∗ kb + 2) ∗X2 − 2 ∗
(ka + kb) ∗X + 1);
pt:=C![0,1];
E,CtoE:=EllipticCurve(C,pt);
Em,EtoEm:=MinimalModel(E);
umap:=map<C->P1|[C.1,C.3]>;
U:=Expand(Inverse(CtoE*EtoEm)*umap);
RB:=RankBound(Em);
print Em,RB;
if RB ne 0 then

success,G,mwmap:=PseudoMordellWeilGroup(Em);
NC,VC,RC,CC:=Chabauty(mwmap,U,p);
print success,NC,#VC,RC;
if NC eq #VC then

print {EvaluateByPowerSeries(U,mwmap(gp)): gp in VC};
print forall{pr: pr in PrimeDivisors(RC)|IsPSaturated(mwmap,pr)};

end if ;
else

success,G,mwmap:=PseudoMordellWeilGroup(Em);
print #G,#TorsionSubgroup(Em);
print {EvaluateByPowerSeries(U,mwmap(gp)): gp in G};

end if ;
return K,C;
end function;
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(α, β) Eα,β Rank X p
(π/6, π/2) v2 = u3 − u2 − 2u 1 {0,±1} 5
(π/6, π/3) v2 = u3 + (

√
3− 1)u2 − u + (−√3 + 1) 1 {0} 7

(π/5, π/2) v2 = u3 − u2 + 1/2(
√

5− 7)u + 1/2(
√

5− 3) 1 {0} 13
(π/5, π/3) v2 = u3 + 1/2(

√
5− 1)u2 + 1/2(

√
5− 5)u− 1 1 {0, 1} 13

(π/5, 2π/5) v2 = u3 − 2u− 1 1 {0} 7
(π/5, 4π/5) v2 = u3 + 1/2(−√5 + 1)u2 − 4u + (2

√
5− 2) 0 {0} -

In case of (α, β) = (π/5, π/3) we get the following family of triangles given by the
length of the sides

(x, y, zα) =

(
t, t,

−1 +
√

5
2

t

)
and (x, y, zβ) = (t, t, t),

where t ∈ N.
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