

# Integral Points on Families of Elliptic Curves

Szabolcs Tengely

29/01/2009



#### ❖ Algebraic Curves

- ❖ Elliptic Curves
- ❖ Rank 0 curves
- Rank 1 curves
- Rank 2 curves
- ❖ Figurate numbers
- Experiments

Let  $f \in \mathbb{Q}[X, Y], C(R) = \{(x, y) \in R^2 : f(x, y) = 0\}.$ 

- genus at least 1: Siegel (1929) proved that  $C(\mathbb{Z})$  is finite.
- genus at least 2: Faltings (1983) proved that  $C(\mathbb{Q})$  is finite.

curves of genus 1:

$$Y^2 = X^3 + AX + B.$$

curves of genus 2:

$$Y^{2} = b_{6}X^{6} + b_{5}X^{5} + b_{4}X^{4} + b_{3}X^{3} + b_{2}X^{2} + b_{1}X + b_{0}.$$

## **Elliptic Curves**



❖ Algebraic Curves

#### Elliptic Curves

- ♦ Rank 0 curves
- ❖ Rank 1 curves
- Rank 2 curves
- ❖ Figurate numbers
- Experiments

General Weierstrass equation:

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6.$$

Weierstrass equation:

$$E: y^2 = x^3 + Ax + B.$$

Discriminant of  $E: \Delta = -16(4A^3 + 27B^2)$ ,

*j*-invariant of  $E: j = -\frac{1728(4A)^3}{\Lambda}$ .

Mordell-Weil group:  $(E(\mathbb{Q}), +)$ 

$$P \in E(\mathbb{Q}) = T + n_1 P_1 + n_2 P_2 + \ldots + n_r P_r$$

Rank of E: rank(E) = r.



#### Elliptic Curves

- ♦ Rank 0 curves
- ♦ Rank 1 curves
- ❖ Rank 2 curves
- ❖ Figurate numbers
- Experiments

There are only finitely many integral points: Mordell (1922).

Bounds for the solutions: Baker (1968)

$$\max(|x|, |y|) < \exp((10^6 H)^{10^6}).$$

Algorithms to determine integral points: Gebel, Pethő, Zimmer (1994) and independently Stroeker, Tzanakis (1994).



#### Elliptic Curves

- ❖ Rank 0 curves
- ❖ Rank 1 curves
- ♦ Rank 2 curves
- ❖ Figurate numbers
- **❖** Experiments

Improved explicit bounds for the heights of (S-) integer solutions of elliptic equations:

Hajdu and Herendi (1998):

$$\max\{|x|,|y|\} \le \exp\{5 \cdot 10^{64}c_1 \log(c_1)(c_1 + \log(c_2))\}.$$

Improved bounds for special curves.

Draziotis (2006):

Let

$$E: Y^2 = (X - k)f(X)$$

elliptic curve over  $\mathbb{Q}$ , where  $k \in \mathbb{Z}$  and  $f(k) = \pm 1$ .



#### Elliptic Curves

- ❖ Rank 0 curves
- Rank 1 curves
- Rank 2 curves
- ❖ Figurate numbers
- Experiments

Improved explicit bounds for the heights of (S-) integer solutions of elliptic equations:

Hajdu and Herendi (1998):

$$\max\{|x|,|y|\} \le \exp\{5 \cdot 10^{64}c_1 \log(c_1)(c_1 + \log(c_2))\}.$$

Improved bounds for special curves.

Draziotis (2006):

Let

$$E: Y^2 = (X - k)f(X)$$

elliptic curve over  $\mathbb{Q}$ , where  $k \in \mathbb{Z}$  and  $f(k) = \pm 1$ . If  $(x, y) \in E(\mathbb{Z})$  is an integral point, then we have

$$|x| < 11H^2 + 5$$
,

where H is the height of the polynomial (X - k)f(X).



#### Elliptic Curves

- ❖ Rank 0 curves
- ❖ Rank 1 curves
- Rank 2 curves
- ❖ Figurate numbers
- Experiments

A congruent number is an integer that is equal to the area of a rational right triangle.

*n* is congruent 
$$\Rightarrow E_n$$
:  $y^2 = x^3 - n^2x$ , rank $(E_n) > 0$ .

Sometimes it is difficult to find generators of the MW group:

$$Y^2 = X(X - 157)(X + 157).$$



#### Elliptic Curves

- ♦ Rank 0 curves
- Rank 1 curves
- ♦ Rank 2 curves
- ❖ Figurate numbers
- Experiments

A congruent number is an integer that is equal to the area of a rational right triangle.

$$n$$
 is congruent  $\Rightarrow E_n: \quad y^2 = x^3 - n^2x, \quad \operatorname{rank}(E_n) > 0.$ 

Sometimes it is difficult to find generators of the MW group:

$$Y^2 = X(X - 157)(X + 157).$$

A point of infinite order P = (x, y), where:

$$x = \frac{-166136231668185267540804}{2825630694251145858025},$$

$$y = \frac{-167661624456834335404812111469782006}{150201095200135518108761470235125}.$$



#### Elliptic Curves

- ❖ Rank 0 curves
- ❖ Rank 1 curves
- ❖ Rank 2 curves
- ❖ Figurate numbers
- ❖ Experiments

Hasse Principle (Local-to-Global Principle)

- $\exists$  points over  $\mathbb{Q}_{v} \Rightarrow$
- $\exists$  points over  $\mathbb{Q}$ .



#### Elliptic Curves

- ❖ Rank 0 curves
- ♦ Rank 1 curves
- Rank 2 curves
- **❖** Figurate numbers
- Experiments

Hasse Principle (Local-to-Global Principle)

- $\exists$  points over  $\mathbb{Q}_{\nu} \Rightarrow$
- $\exists$  points over  $\mathbb{Q}$ .

Hasse Principle fails:

Probably the most famous example (due to Selmer):

$$3X^3 + 4Y^3 + 5Z^3 = 0.$$



#### Elliptic Curves

- ♦ Rank 0 curves
- ♦ Rank 1 curves
- Rank 2 curves
- ❖ Figurate numbers
- Experiments

Hasse Principle (Local-to-Global Principle)

- $\exists$  points over  $\mathbb{Q}_{\nu} \Rightarrow$
- $\exists$  points over  $\mathbb{Q}$ .

Hasse Principle fails:

Probably the most famous example (due to Selmer):

$$3X^3 + 4Y^3 + 5Z^3 = 0.$$

Example by Lind and Reichart:

$$X^4 - 17Y^4 = 2Z^2$$
.



#### Elliptic Curves

- ❖ Rank 0 curves
- ♦ Rank 1 curves
- ❖ Rank 2 curves
- ❖ Figurate numbers
- ❖ Experiments

Lang's conjecture: There is an absolute constant  $\mathcal{C}$  such that if  $\mathcal{E}$  is given by a minimal (affine) Weierstrass equation, then the number of integral points is at most

 $C^{1+\operatorname{rank}(E)}$ 



- **❖** Algebraic Curves
- Elliptic Curves
- ♦ Rank 0 curves
- ♦ Rank 1 curves
- ❖ Rank 2 curves
- ❖ Figurate numbers
- Experiments

Lang's conjecture: There is an absolute constant  $\mathcal{C}$  such that if  $\mathcal{E}$  is given by a minimal (affine) Weierstrass equation, then the number of integral points is at most

$$C^{1+\operatorname{rank}(E)}$$
.

Silverman: Lang's conjecture is true if  $j(E) \in \mathbb{Z}$ .



#### Elliptic Curves

- ❖ Rank 0 curves
- ♦ Rank 1 curves
- ❖ Rank 2 curves
- ❖ Figurate numbers
- **♦** Experiments

Given rank, small conductor ⇒ many integral points?

$$Y^2 + Y = X^3 + X^2 - 2X,$$

here the rank is 2, the conductor is 389 and there are 20 integral points on the curve.



#### Elliptic Curves

- ♦ Rank 0 curves
- ❖ Rank 1 curves
- Rank 2 curves
- ❖ Figurate numbers
- Experiments

Given rank, small conductor  $\Rightarrow$  many integral points?

$$Y^2 + Y = X^3 + X^2 - 2X,$$

here the rank is 2, the conductor is 389 and there are 20 integral points on the curve.

$$Y^2 + Y = X^3 - 7X + 6$$

here the rank is 3, the conductor is 5077 and there are 36 integral points on the curve.

### Rank 0 curves



- **♦** Algebraic Curves
- ❖ Elliptic Curves

### ❖ Rank 0 curves

- Rank 1 curves
- ❖ Rank 2 curves
- ❖ Figurate numbers
- Experiments

Iskra (1998): Let  $p_1, p_2, \ldots, p_l$  distinct primes :  $p_i \equiv 3 \mod 8$  and  $(p_j/p_i) = -1$  if j < i. Then  $n = p_1p_2 \cdots p_l$  is a non-congruent number.

Example 1.  $E: y^2 = x^3 - (3 \cdot 19)^2 x$ , the rank of E is 0.

Example 2. (Genocchi 1855)  $E_p$ :  $y^2 = x^3 - p^2x$ , where  $p \equiv 3 \mod 8$ , the rank of  $E_p$  is 0.



- **♦** Algebraic Curves
- **❖** Elliptic Curves

### ❖ Rank 0 curves

- ♦ Rank 1 curves
- ❖ Rank 2 curves
- ❖ Figurate numbers
- Experiments

$$E_p: y^2=x^3-p^2x$$
, where  $p\equiv 3 \mod 8$ , the rank of  $E_p$  is 0.

$$x = au^{2},$$

$$x - p = bv^{2},$$

$$x + p = cw^{2},$$

$$abc = \square.$$



- ❖ Algebraic Curves
- **❖** Elliptic Curves

### ❖ Rank 0 curves

- Rank 1 curves
- ❖ Rank 2 curves
- ❖ Figurate numbers
- Experiments

$$E_p: y^2=x^3-p^2x$$
, where  $p\equiv 3 \mod 8$ , the rank of  $E_p$  is 0.

$$x = au^{2},$$

$$x - p = bv^{2},$$

$$x + p = cw^{2},$$

$$abc = \square.$$

One obtains that  $a, b, c \in \{\pm 1, \pm 2, \pm p, \pm 2p\}$ . There are 64 systems of equations.

32 systems have no solution in  $\mathbb{R}$ ,

28 systems have no solution modulo some prime (power),

 $(1, 1, 1); (-1, -p, p); (p, 2, 2p); (-p, -2p, 2) \leftrightarrow torsion points.$ 

Therefore the rank is 0.

## Rank 1 curves



- **❖** Algebraic Curves
- Elliptic Curves
- ❖ Rank 0 curves

#### ❖ Rank 1 curves

- ❖ Rank 2 curves
- ❖ Figurate numbers
- **♦** Experiments

Let

$$E_m: Y^2 = X^3 + mX^2 - (m+3)X + 1.$$

Duquesne (2001): if  $rank(E_m) = 1$ , then the integral points of  $E_m$ :

(0,1) if m is even,

(0,1) and 2(0,1) if m odd.

### Rank 1 curves



- **♦** Algebraic Curves
- Elliptic Curves
- ❖ Rank 0 curves

#### ❖ Rank 1 curves

- Rank 2 curves
- ❖ Figurate numbers
- Experiments

Let

$$E_m: Y^2 = X^3 + mX^2 - (m+3)X + 1.$$

Duquesne (2001): if  $rank(E_m) = 1$ , then the integral points of  $E_m$ :

(0,1) if m is even,

(0,1) and 2(0,1) if m odd.

Let

$$Q_m: Y^2 = X^4 - mX^3 - 6X^2 + mX + 1,$$

where  $m^2 + 16$  is not divisible by and odd square. Duquesne (2007): if  $\operatorname{rank}(Q_m) = 1$ , then  $Q_m(\mathbb{Z}) = \{(0, \pm 1)\}$ .

### Rank 2 curves



- ❖ Algebraic Curves
- ❖ Elliptic Curves
- ❖ Rank 0 curves
- ❖ Rank 1 curves

#### ❖ Rank 2 curves

- ❖ Figurate numbers
- Experiments

Let

$$Q_m: Y^2 = X^4 - mX^3 - 6X^2 + mX + 1,$$

where  $m^2 + 16$  is not divisible by and odd square. Duquesne (2007): if  $m = 6k^2 + 2k - 1$  and  $rank(Q_m) = 2$ , then  $Q_m(\mathbb{Z}) = \{(0, \pm 1), (-3, \pm (2 + 12k))\}.$ 

Generators of the MW group:

$$G_1 = (-4, 2(6k^2 + 2k - 1)),$$
  
 $G_2 = (-2k^2 + 2k - 1, 4(k + 1)(2k^2 - 2k + 1)).$ 

# Figurate numbers



- ❖ Algebraic Curves
- Elliptic Curves
- ❖ Rank 0 curves
- ❖ Rank 1 curves
- ❖ Rank 2 curves
- ❖ Figurate numbers
- Experiments

*q*-gonal numbers:

$$G_{m,g} = \frac{m\{(g-2)m-(g-4)\}}{2}.$$

In cases of  $g \in \{3, 4, 5, 7\}$  all g-gonal numbers were determined in certain recurrence sequences by Cohn, Katayama, Ljunggren, Luo, Prasad, Rao.

# Figurate numbers



- ❖ Algebraic Curves
- Elliptic Curves
- ❖ Rank 0 curves
- ❖ Rank 1 curves
- ❖ Rank 2 curves
- ❖ Figurate numbers
- Experiments

*g*-gonal numbers:

$$G_{m,g} = \frac{m\{(g-2)m-(g-4)\}}{2}.$$

In cases of  $g \in \{3, 4, 5, 7\}$  all g-gonal numbers were determined in certain recurrence sequences by Cohn, Katayama, Ljunggren, Luo, Prasad, Rao. Tengely (2008): if  $g \in \{6, 8, 9, 10, \dots, 20\}$ , then all solutions were computed in the following cases

$$F_n = \mathcal{G}_{m,g}, \quad L_n = \mathcal{G}_{m,g},$$
 $P_n = \mathcal{G}_{m,g}, \quad Q_n = \mathcal{G}_{m,g}$ 

Useful identities:

$$L_n^2 - 5F_n^2 = 4(-1)^n$$
,  
 $Q_n^2 - 2P_n^2 = (-1)^n$ .



- ❖ Algebraic Curves
- ❖ Elliptic Curves
- ❖ Rank 0 curves
- Rank 1 curves
- ❖ Rank 2 curves
- Figurate numbers
- Experiments

One has to compute integral points on the families of genus 1 curves:

$$C_{F_n}^{even}: Y^2 = 5((g-2)X^2 - (g-4)X)^2 + 16,$$

$$C_{F_n}^{odd}: Y^2 = 5((g-2)X^2 - (g-4)X)^2 - 16,$$

$$C_{L_n}^{even}: Y^2 = 5((g-2)X^2 - (g-4)X)^2 - 80,$$

$$C_{L_n}^{odd}: Y^2 = 5((g-2)X^2 - (g-4)X)^2 + 80,$$

$$C_{P_n}^{even}: Y^2 = 2((g-2)X^2 - (g-4)X)^2 + 4,$$

$$C_{P_n}^{odd}: Y^2 = 2((g-2)X^2 - (g-4)X)^2 - 4,$$

$$C_{Q_n}^{even}: Y^2 = 2((g-2)X^2 - (g-4)X)^2 - 8,$$

$$C_{Q_n}^{odd}: Y^2 = 2((g-2)X^2 - (g-4)X)^2 + 8.$$

# **Experiments**



- **♦** Algebraic Curves
- ❖ Elliptic Curves
- ❖ Rank 0 curves
- ❖ Rank 1 curves
- \*Rank 2 curves
- ❖ Figurate numbers
- **♦** Experiments

The equation  $F_n = \mathcal{G}_{m,q} \Rightarrow$ 

$$C_{F_n}^{even}$$
:  $Y^2 = 5((g-2)X^2 - (g-4)X)^2 + 16$ ,  
 $P_e = (0, 4)$   
 $C_{F_n}^{odd}$ :  $Y^2 = 5((g-2)X^2 - (g-4)X)^2 - 16$ ,  
 $P_o = (1, 2)$ .

If 
$$rank(E_{F_n}^{even,odd}) \in \{1, 2\}$$
 and  $16 < g < 100$ , then

$$X \in \{0, \pm 1\}.$$