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Let f ∈ Q[X, Y ], C (R) = {(x, y) ∈ R2 : f(x, y) = 0}.

● genus at least 1: Siegel (1929) proved that C (Z) is finite.

● genus at least 2: Faltings (1983) proved that C (Q) is finite.

curves of genus 1:

Y 2 = X3 + AX + B.

curves of genus 2:

Y 2 = b6X6 + b5X5 + b4X4 + b3X3 + b2X2 + b1X + b0.
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General Weierstrass equation:

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6.

Weierstrass equation:

E : y2 = x3 + Ax + B.

Discriminant of E : ∆ = −16(4A3 + 27B2),

j-invariant of E : j = −1728(4A)3

∆ .

Mordell-Weil group: (E(Q), +)

P ∈ E(Q) = T + n1P1 + n2P2 + . . . + nrPr,

Rank of E : rank(E) = r.
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There are only finitely many integral points: Mordell (1922).

Bounds for the solutions: Baker (1968)

max(|x|, |y|) < exp((106H)106
).

Algorithms to determine integral points:
Gebel, Pethő, Zimmer (1994) and independently
Stroeker, Tzanakis (1994).
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Improved explicit bounds for the heights of (S-)integer solutions
of elliptic equations:
Hajdu and Herendi (1998):

max{|x|, |y|} ≤ exp{5 · 1064c1 log(c1)(c1 + log(c2))}.

Improved bounds for special curves.

Draziotis (2006):
Let

E : Y 2 = (X − k)f(X )

elliptic curve over Q, where k ∈ Z and f(k) = ±1.
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Improved explicit bounds for the heights of (S-)integer solutions
of elliptic equations:
Hajdu and Herendi (1998):

max{|x|, |y|} ≤ exp{5 · 1064c1 log(c1)(c1 + log(c2))}.

Improved bounds for special curves.

Draziotis (2006):
Let

E : Y 2 = (X − k)f(X )

elliptic curve over Q, where k ∈ Z and f(k) = ±1. If
(x, y) ∈ E(Z) is an integral point, then we have

|x| < 11H2 + 5,

where H is the height of the polynomial (X − k)f(X ).
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A congruent number is an integer that is equal to the area of a
rational right triangle.

n is congruent ⇒ En : y2 = x3 − n2x, rank(En) > 0.

Sometimes it is difficult to find generators of the MW group:

Y 2 = X (X − 157)(X + 157).
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A congruent number is an integer that is equal to the area of a
rational right triangle.

n is congruent ⇒ En : y2 = x3 − n2x, rank(En) > 0.

Sometimes it is difficult to find generators of the MW group:

Y 2 = X (X − 157)(X + 157).

A point of infinite order P = (x, y), where:

x =
−166136231668185267540804

2825630694251145858025
,

y =
−167661624456834335404812111469782006

150201095200135518108761470235125
.
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Hasse Principle (Local-to-Global Principle)
∃ points over Qv ⇒
∃ points over Q.
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Hasse Principle (Local-to-Global Principle)
∃ points over Qv ⇒
∃ points over Q.

Hasse Principle fails:

Probably the most famous example (due to Selmer):

3X3 + 4Y 3 + 5Z3 = 0.
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Hasse Principle (Local-to-Global Principle)
∃ points over Qv ⇒
∃ points over Q.

Hasse Principle fails:

Probably the most famous example (due to Selmer):

3X3 + 4Y 3 + 5Z3 = 0.

Example by Lind and Reichart:

X4 − 17Y 4 = 2Z2.
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Lang’s conjecture: There is an absolute constant C such that if
E is given by a minimal (affine) Weierstrass equation, then the
number of integral points is at most

C1+rank(E).
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Lang’s conjecture: There is an absolute constant C such that if
E is given by a minimal (affine) Weierstrass equation, then the
number of integral points is at most

C1+rank(E).

Silverman: Lang’s conjecture is true if j(E) ∈ Z.
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Given rank, small conductor ⇒ many integral points?

Y 2 + Y = X3 + X2 − 2X,

here the rank is 2, the conductor is 389 and there are 20
integral points on the curve.
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Given rank, small conductor ⇒ many integral points?

Y 2 + Y = X3 + X2 − 2X,

here the rank is 2, the conductor is 389 and there are 20
integral points on the curve.

Y 2 + Y = X3 − 7X + 6,

here the rank is 3, the conductor is 5077 and there are 36
integral points on the curve.
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Iskra (1998): Let p1, p2, . . . , pl distinct primes : pi ≡ 3 mod 8
and (pj/pi) = −1 if j < i. Then n = p1p2 · · · pl is a
non-congruent number.

Example 1. E : y2 = x3 − (3 · 19)2x, the rank of E is 0.

Example 2. (Genocchi 1855) Ep : y2 = x3 − p2x, where
p ≡ 3 mod 8, the rank of Ep is 0.
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Ep : y2 = x3 − p2x, where p ≡ 3 mod 8, the rank of Ep is 0.

x = au2,

x − p = bv2,

x + p = cw2,

abc = �.
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Ep : y2 = x3 − p2x, where p ≡ 3 mod 8, the rank of Ep is 0.

x = au2,

x − p = bv2,

x + p = cw2,

abc = �.

One obtains that a, b, c ∈ {±1, ±2, ±p, ±2p}. There are 64
systems of equations.
32 systems have no solution in R,

28 systems have no solution modulo some prime (power),
(1, 1, 1); (−1, −p, p); (p, 2, 2p); (−p, −2p, 2) ↔ torsion points.
Therefore the rank is 0.
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Let
Em : Y 2 = X3 + mX2 − (m + 3)X + 1.

Duquesne (2001): if rank(Em) = 1, then the integral points of
Em :

(0, 1) if m is even,

(0, 1) and 2(0, 1) if m odd.
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Let
Em : Y 2 = X3 + mX2 − (m + 3)X + 1.

Duquesne (2001): if rank(Em) = 1, then the integral points of
Em :

(0, 1) if m is even,

(0, 1) and 2(0, 1) if m odd.

Let
Qm : Y 2 = X4 − mX3 − 6X2 + mX + 1,

where m2 + 16 is not divisible by and odd square. Duquesne
(2007): if rank(Qm) = 1, then Qm(Z) = {(0, ±1)}.
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Let
Qm : Y 2 = X4 − mX3 − 6X2 + mX + 1,

where m2 + 16 is not divisible by and odd square. Duquesne
(2007): if m = 6k2 + 2k − 1 and rank(Qm) = 2, then
Qm(Z) = {(0, ±1), (−3, ±(2 + 12k))}.

Generators of the MW group:

G1 = (−4, 2(6k2 + 2k − 1)),

G2 = (−2k2 + 2k − 1, 4(k + 1)(2k2 − 2k + 1)).
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g-gonal numbers:

Gm,g =
m{(g − 2)m − (g − 4)}

2
.

In cases of g ∈ {3, 4, 5, 7} all g-gonal numbers were
determined in certain recurrence sequences by Cohn,
Katayama, Ljunggren, Luo, Prasad, Rao.
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g-gonal numbers:

Gm,g =
m{(g − 2)m − (g − 4)}

2
.

In cases of g ∈ {3, 4, 5, 7} all g-gonal numbers were
determined in certain recurrence sequences by Cohn,
Katayama, Ljunggren, Luo, Prasad, Rao.

Tengely (2008): if g ∈ {6, 8, 9, 10, . . . , 20}, then all solutions
were computed in the following cases

Fn = Gm,g, Ln = Gm,g,

Pn = Gm,g, Qn = Gm,g

Useful identities:

L2
n − 5F 2

n = 4(−1)n,

Q2
n − 2P2

n = (−1)n.
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One has to compute integral points on the families of genus 1
curves:

Ceven
Fn

: Y 2 = 5((g − 2)X2 − (g − 4)X )2 + 16,

Codd
Fn

: Y 2 = 5((g − 2)X2 − (g − 4)X )2 − 16,

Ceven
Ln

: Y 2 = 5((g − 2)X2 − (g − 4)X )2 − 80,

Codd
Ln

: Y 2 = 5((g − 2)X2 − (g − 4)X )2 + 80,

Ceven
Pn

: Y 2 = 2((g − 2)X2 − (g − 4)X )2 + 4,

Codd
Pn

: Y 2 = 2((g − 2)X2 − (g − 4)X )2 − 4,

Ceven
Qn

: Y 2 = 2((g − 2)X2 − (g − 4)X )2 − 8,

Codd
Qn

: Y 2 = 2((g − 2)X2 − (g − 4)X )2 + 8.
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The equation Fn = Gm,g ⇒

Ceven
Fn

: Y 2 = 5((g − 2)X2 − (g − 4)X )2 + 16,

Pe = (0, 4)

Codd
Fn

: Y 2 = 5((g − 2)X2 − (g − 4)X )2 − 16,

Po = (1, 2).

If rank(E
even,odd
Fn

) ∈ {1, 2} and 16 < g < 100, then

X ∈ {0, ±1}.
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