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Integer sequences

Problem: find intersection of integer sequences
Some well-known sequences:

� perfect powers

� binomial coefficients

� Fibonacci sequence, recurrence sequences

We will consider the equation

Ln =

(
x

5

)
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Related results

� Cohn and independently Wyler: the only squares in the Fibonacci
sequence are F0 = 0,F1 = F2 = 1,F12 = 144.

� Alfred and independently Cohn: perfect squares in the Lucas
sequence.

� Cohn and independently Pethő: perfect squares in the Pell
sequence.

� London and Finkelstein and independently Pethő: the only cubes
in the Fibonacci sequence are F0 = 0,F1 = F2 = 1 and F6 = 8.

� Bugeaud, Mignotte and Siksek: combination of Baker’s method,
modular approach and some classical techniques to show that the
perfect powers in the Fibonacci sequence are 0,1,8 and 144, and
the perfect powers in the Lucas sequence are 1 and 4.

� Szalay: solved the equations Fn, Ln,Pn =
(x

3

)
and Fn, Ln =

(x
4

)
.

� Kovács: solved the equations Pn =
(x

4

)
and Fn = Π4(x).
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Similar combinatorial Diophantine problems

Many results, we mention only a few mathematicians working on this
subject: Bennett, Bilu, Bremner, Bugeaud, Győry, Hajdu, Hanrot,
Kovács, Luca, Mignotte, Olajos, Pethő, Pintér, Rakaczki, Saradha,
Shorey, Siksek, Stewart, Stoll, Stroeker, Szalay, Tijdeman, Tzanakis,
De Weger.
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Main result

We consider the Diophantine equation

Ln =

(
x

5

)
. (1)

Theorem
The only positive solution of equation (1) is (n, x) = (1, 5).
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We will use the following well known property of the sequences Fn

and Ln :
L2

n − 5F 2
n = 4(−1)n.

We have that (
x

5

)2

± 4 = 5F 2
n .

The above equation can be reduced to two genus two curves as
follows

C+ : Y 2 = X 2(X + 15)2(X + 20) + 180000000 (2)

and
C− : Y 2 = X 2(X + 15)2(X + 20)− 180000000, (3)

where Y = 535!Fn and X = 5x2 − 20x .
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Theorem
(a) The integral solutions of equation (2) are

(X ,Y ) ∈ {(25,−15000), (25, 15000)}.

(b) There are no integral solution of equation (3).

To prove the above results we will follow the paper by Bugeaud,
Mignotte, Siksek, Stoll and Tengely. They combined Baker’s method
and the so-called Mordell-Weil sieve to solve(

x

2

)
=

(
y

5

)
and

x2 − x = y5 − y .
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Proof of part (a)

Using MAGMA (procedures based on Stoll’s papers) we obtain that
J(Q)+ is free of rank 1 with Mordell-Weil basis given by

D = (25, 15000)−∞.

Classical Chabauty’s method can be applied.

C+(Q) = {∞, (25,±15000)}.

9 of 17



Proof of part (b)

Using MAGMA we determine a Mordell-Weil basis which is given by

D1 = (ω1,−200ω1) + (ω1,−200ω1)− 2∞,
D2 = (ω2, 120000) + (ω2, 120000)− 2∞,

where ω1 is a root of the polynomial x2 − 5x + 1500 and ω2 is a root
of x2 + 195x + 13500.
Let f = x2(x + 15)2(x + 20)− 180000000 and α be a root of f .
We have

x − α = κξ2,

such that κ ∈ {1, α2 − 5α + 1500, α2 + 195α + 13500, α4 + 190α3 +
14025α2 + 225000α + 20250000}.
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By local arguments it is possible to restrict the set. In our case one
can eliminate

α2 − 5α + 1500, α2 + 195α + 13500

by local computations in Q2 and

α4 + 190α3 + 14025α2 + 225000α + 20250000

by local computations in Q3. It remains to deal with the case κ = 1.
By Baker’s method we get a large upper bound for log |x | :

1.58037× 10285.
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The set of known rational points on the curve (3) is {∞}. Let W be
the image of this set in J(Q)−. Applying the Mordell-Weil sieve
implemented by Bruin and Stoll we obtain that

(C (Q)) ⊆W + BJ(Q)−,

where

B = 26·32·52·72·112·132·19·23·31·41·43·47·61·67·79·83·109·113·127,

that is
B = 678957252681082328769065398948800.

Now we use an extension of the Mordell-Weil sieve due to Samir
Siksek to obtain a very long decreasing sequence of lattices in Z2 to
obtain a lower bound for possible unknown rational points.
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If (x , y) is an unknown integral point, then

log |x | ≥ 7.38833× 101076.

This contradicts the bound for log |x | we obtained by Baker’s method.

Proof of the main theorem
We have that X = 25 and we also have that X = 5x2 − 20x . We
obtain that x ∈ {−1, 5}.

1 = L1 =

(
5

5

)
.
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Balancing numbers

A positive integer n is called a balancing number if
1 + 2 + . . .+ (n − 1) = (n + 1) + (n + 2) + . . .+ (n + k) for some
k ∈ N. The sequence of balancing numbers is denoted by Bm for
m ∈ N.

Theorem
The Diophantine equation

Bm = x(x + 1)(x + 2)(x + 3)(x + 4) m ≥ 0, x ∈ Z

has no solution.
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Related results

� Behera and Panda proved many interesting results,

� Liptai proved that there are neither Fibonacci nor Lucas balancing
numbers,

� Bérczes, Liptai and Pink: further generalization in this direction,

� Kovács, Liptai and Olajos proved some general finiteness results,

� Liptai, Luca, Pintér and Szalay introduced the concept of
(k , l)-power numerical center and obtained certain effective and
ineffective finiteness results
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Liptai proved that the integers Bm satisfy the following equation

z2 − 8y2 = 1

for some integer z . So one has to determine all solution of the
equation

z2 = 8(x(x + 1)(x + 2)(x + 3)(x + 4))2 + 1.

Rewrite the latter equation as follows

z2 = 8(x2 + 4x)2(x2 + 4x + 3)2(x2 + 4x + 4) + 1.

Let X = 2x2 + 8x .
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We obtain that

C : Y 2 = X 2(X + 6)2(X + 8) + 4, (4)

where Y = 2z . It remains to find all integral points on C. The rank of
the Jacobian of C is 2.

Lemma
The only integral solutions to the above equation are

(0,±2), (−6,±2), (−8,±2).
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