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Research problem

Fn =

(
x

5

)
,

where Fn is the Fibonacci sequence: 0, 1, 1, 2, 3, 5, . . .
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Some related results

Kálmán Győry: On the Diophantine equations
(n

2

)
= al and

(n
3

)
= al ,

Mat. Lapok 14 (1963) 322-329.

It was proved that for n > 2 and l > 1 the equation(
n

2

)
= a2l

has no solution. Also some results on the unsolvability of the equation(
n

3

)
= ap

were discussed, where p is an odd prime.
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Kálmán Győry: On the Diophantine equation
(n
k

)
= x l ,

Acta Arith. 80 (1997) 289-295.

In 1951, Erdős proved that the equation
(n
k

)
= x l has no integral

solution with x > 1, l > 1, k ≥ 4 and n ≥ 2k .
Kálmán Győry resolved the remaining cases with k = 2, 3. He showed
that the only solution is (where (k, l) 6= (2, 2))(

50

3

)
= 1402.
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Attila Pethő: The Pell sequence contains only trivial perfect powers,
Sets, graphs and numbers (Budapest, 1991), 561568.
Colloq. Math. Soc. János Bolyai, 60, North-Holland, Amsterdam,
1992.

By extending a result of Ljunggren, Attila Pethő proved that the only
nontrivial solution of the equation

Rn = xq

in integers n, x , q with |x | > 1 and q ≥ 2 is

(n, x , q) = (7, 13, 2).

Here Rn is defined by R0 = 0,R1 = 1 and Rn+2 = 2Rn+1 + Rn for
n ≥ 0.
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Clemens Fuchs, Attila Pethő and Robert Tichy: On the Diophantine
equation Gn(x) = Gm(P(x)) : higher-order recurrences,
Trans. Amer. Math. Soc. 355 (2003) 4657-4681.

(Gn(x))∞n=0

degree d linear recurring sequence defined by

Gn+d(x) = Ad−1(x)Gn+d−1(x) + . . .+ A0(x)Gn(x), for n ≥ 0.

General finiteness conditions depending only on G0, . . . ,Gd−1 ∈ K[x ],
on P ∈ K[x ] and on A0, . . . ,Ad−1 ∈ K[x ] related to the equation

Gn(x) = Gm(P(x)).
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Enrico Bombieri, Andrew Granville and János Pintz: Squares in
arithmetic progressions
Duke Math. J. 66 (1992) 369-385.

Q(N; q, a) : number of squares in the arithmetic progression
qn + a (n = 1, 2, . . . ,N)

Q(N) = max
a,q≥1

Q(N; q, a).

It was conjectured by Erdős and proved by Szemerédi, that
Q(N) = o(N).
Enrico Bombieri, Andrew Granville and János Pintz proved that

Q(N) = O(N2/3(logN)A).

7 of 15



András Sárközy: On multiplicative arithmetic functions satisfying a
linear recursion
Studia Sci. Math. Hungar. 13 (1978) 79104.

Multiplicative arithmetic function: f (mn) = f (m)f (n), gcd(m, n) = 1.
Determine all multiplicative arithmetic function which satisfy a linear
recursion of finite order:

a0f (n) + a1f (n + 1) + . . .+ ak f (n + k) = 0, n = 1, 2, . . .

András Sárközy showed that f (n)/nh is periodic for some integer
h ≥ 0.
Moreover if f (n) 6≡ 0 and f (n) = o(n), then f (n) is a character
modulo m.
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Un = AUn−1 + BUn−2 : binary recurrence sequence.
Determine n, x such that

Un = P(x),

where P is a polynomial.
Many results are in the literature, finiteness results, complete
resolution in special cases
(Alfred, Bilu, Bugeaud, Cohn, Fuchs, Győry, Hajdu, Kovács, Luca,
McDaniel, Mignotte, Ming, Nemes, Pethő, Pintér, Rakaczki, Schinzel,
Shorey, Siksek, Stewart, Szalay, Tichy, Tijdeman)
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2007, workshop in Leiden, Evertse and Tijdeman composed a list of
open problems posed by the participants. Florian Luca posed the
following problem:
show that the equation Fn =

(m
k

)
has only finitely many integer

solutions (n,m, k) with 2 ≤ k ≤ m/2.
Let k = 5.

Fn =

(
x

5

)
,

where Fn is the Fibonacci sequence: 0, 1, 1, 2, 3, 5, . . .
By using the identity L2

n − 5F 2
n = 4(−1)n we get

C+,− : y2 = x2(x + 15)2(x + 20)± 36000000.
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Following the paper by Bugeaud, Mignotte, Siksek, Stoll and Tengely:
upper bound for the integral solutions by Baker’s method (Matveev’s
bound)
lower bound for the integral solutions by Mordell-Weil sieve
(implemented by Bruin and Stoll).

C− : y2 = x2(x + 15)2(x + 20)− 36000000 = f (x).

Using MAGMA procedures based on Stoll’s papers we obtain that
rankJ(Q) = 2 and

D1 = (25, 3000)−∞

D2 =
(
−5
√
−15−75
2 ,−1500

√
−15 + 1500

)
+(

5
√
−15−75

2 , 1500
√
−15 + 1500

)
− 2∞

are generators of the Mordell-Weil group.

11 of 15



Representatives of J(Q)/2J(Q) are 0,D1,D2,D1 + D2,
f (α) = 0.
We have

x − α = κ�

By Baker’s theory we have the following bounds:
repr. κ bound for log x

0 1 9.28× 10279

D1 25− α 4.53× 10599

D2 1500 + 75α + α2 eliminated in Q2

D1 + D2 3900− 81α + α2 eliminated in Q3

By Mordell-Weil sieve we obtain that

(C (Q)) ⊆W + BJ(Q)

where W is the image of the known points {(25,±3000),∞} and
B = 22 · 52 · 7 · 11 · 13 · 17 · 29.
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To obtain B we used the Mordell-Weil sieve with the following primes:

27, 52, 7, 11, 13, 17, 29, 47, 73

, 101, 139, 151, 163, 179, 211, 257, 347,

509, 523, 617, 631, 769, 829, 877, 971,

1327, 1567, 1667, 1747, 1877, 2099, 2273,

2287, 2347, 2521, 2591, 2707, 2953, 3067,

3119, 3229, 3259, 4441, 4651, 4663, 5387,

6277, 6991, 9859, 10781, 10847, 11447, 12071,

14653, 14831, 15973, 17359, 19207.
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φ : Z2 → J(Q) φ(a1, a2) = a1D1 + a2D2,

and (C (Q)) ⊆W + φ(BZ2).

BZ2 = L0 ! L1 ! L2 . . . ! Lk

such that (C (Q)) ⊆W + φ(Lj).
Lower bound obtained this way: 0.69× 10617.
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