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Introduction

We are interested in f ∈ k(x) that are decomposable as rational
functions, i.e. for which

f (x) = g(h(x))

with g , h ∈ k(x), deg g , deg h ≥ 2 holds.
Such a decomposition is only unique up to a linear fractional
transformation

λ =
ax + b

cx + d

with ad − bc = ±1, since we may always replace g(x) by g(λ(x)) and
h(x) by λ−1(h(x)) without affecting the equation f (x) = g(h(x)).
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Related results

Schinzel conjectured that if for fixed g the polynomial g(h(x)) has at
most l non-constant terms, then the number of terms of h is bounded
only in terms of l .

A more general form of this conjecture was proved by Zannier in
2008. He proved that if one starts with a positive integer l , then one
can describe effectively all decompositions of polynomials f ∈ k[x ]
having at most l non-constant terms if one excludes the inner
function h being of the exceptional shape axn + b, a, b ∈ k, n ∈ N.
This description was ”algorithmic”.
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In this talk we are interested in rational functions

f =
P

Q

with a bounded number of zeros and poles (i.e. the number of
distinct roots of P,Q in a reduced expression of f is bounded).

We assume that the number of zeros and poles are fixed, whereas the
actual values of the zeros and poles and their multiplicities are
considered as variables.
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Theorem by Fuchs and Pethő

Let n be a positive integer. Then there exists a positive integer
J ≤ 2nn2n and, for every i ∈ {1, . . . , J}, an affine algebraic variety Vi
defined over Q and with Vi ⊂ An+ti for some 2 ≤ ti ≤ n, such that:
(i) If f , g , h ∈ k(x) with f (x) = g(h(x)) and with deg g , deg h ≥ 2, g
not of the shape (λ(x))m,m ∈ N, λ ∈ PGL2(k), and f has at most n
zeros and poles altogether, then there exists for some i ∈ {1, . . . , J} a
point P = (α1, . . . , αn, β1, . . . , βti ) ∈ Vi (k),
a vector (k1, . . . , kti ) ∈ Zti with k1 + k2 + . . .+ kti = 0 or not
depending on Vi , a partition of {1, . . . , n} in ti + 1 disjoint sets
S∞, Sβ1 , . . . ,Sβti with S∞ = ∅ if k1 + k2 + · · ·+ kti = 0,
and a vector (l1, . . . , ln) ∈ {0, 1, . . . , n − 1}n, also both depending
only on Vi , such that
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f (x) =

ti∏
j=1

(wj/w∞)kj , g(x) =

ti∏
j=1

(x − βj)kj ,

and

h(x) =


βj +

wj

w∞
(j = 1, . . . , ti ), if k1 + k2 + · · ·+ kti 6= 0,

βj1wj2
−βj2wj1

wj2
−wj1

(1 ≤ j1 < j2 ≤ ti ), otherwise,

where

wj =
∏

m∈Sβj

(x − αm)lm , j = 1, . . . , ti ,

w∞ =
∏

m∈S∞

(x − αm)lm .

Moreover, we have deg h ≤ (n − 1)/(ti − 1) ≤ n − 1.
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(ii) Conversely for given data P ∈ Vi (k), (k1, . . . , kti ), (l1, . . . , ln),
S∞, Sβ1 . . . ,Sβti , as described in (i) one defines by the same equations
rational functions f , g , h with f having at most n zeros and poles
altogether for which f (x) = g(h(x)) holds.

(iii) The integer J and equations defining the varieties Vi are
effectively computable only in terms of n.
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Tools from the theory of valuation

The Mason-Stothers (1984) theorem says: Let f , g ∈ k(x), not
both constant and let S be any set of valuations of k(x) containing
all the zeros and poles in P1(k) of f and g. Then we have
max{deg f , deg g} ≤ |S | − 2. Best possible.

More generally Zannier (1995) proved: Let S is any set of valuations
of k(x) containing all the zeros and poles in P1(k) of g1, . . . , gm. If
g1, . . . , gm ∈ k(x) span a k-vector space of dimension µ < m and any
µ of the gi are linearly independent over k, then

−
∑
v∈M

min{v(g1), . . . , v(gm)} ≤ 1

m − µ

(
µ

2

)
(|S | − 2).
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Since k is algebraically closed we can write

f (x) =
n∏

i=1

(x − αi )
fi

with pairwise distinct αi ∈ k and fi ∈ Z for i = 1, . . . , n.
Similarly we get

g(x) =
t∏

j=1

(x − βj)kj

with pairwise distinct βj ∈ k and kj ∈ Z for j = 1, . . . , t and t ∈ N.
Thus we have

n∏
i=1

(x − αi )
fi = f (x) = g(h(x)) =

t∏
j=1

(h(x)− βj)kj .

We now distinguish two cases depending on k1 + k2 + · · ·+ kt 6= 0 or
not; observe that this condition is equivalent to v∞(g) 6= 0 or not.
We shall write h(x) = p(x)/q(x) with p, q ∈ k[x ], p, q coprime.
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The case k1 + k2 + · · ·+ kt 6= 0

There is a subset S∞ of the set {1, . . . , n} such that the αm for
m ∈ S∞ are precisely the poles in A1(k) of h, i.e.

q(x) =
∏

m∈S∞

(x − αm)lm , lm ∈ N.

Furthermore h and h(x)− βj have the same number of poles counted
by multiplicity, which means that their degrees are equal.

There is a partition of the set {1, . . . , n}\S∞ in t disjoint subsets
Sβ1 , . . . ,Sβt such that

h(x) = βj +
1

q(x)

∏
m∈Sβj

(x − αm)lm ,

where lm ∈ N satisfies lmkj = fm for m ∈ Sβj , j = 1, . . . , t.
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Since we assume that g is not of the shape (λ(x))m it follows that
t ≥ 2. Let 1 ≤ i < j ≤ t be given. We have at least two different
representations of h and thus we get

βi +
1

q(x)

∏
r∈Sβi

(x − αr )lr = βj +
1

q(x)

∏
s∈Sβj

(x − αs)ls

or equivalently β(ui − uj) = 1, where β = 1/(βj − βi ) and

ui =
1

q(x)

∏
r∈Sβi

(x − αr )lr =
wi

w∞
.
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Actually, the ui are S-units for the set of valuations
S = {vα1 , . . . , vαn , v∞} ⊂ M corresponding to α1, . . . , αn ∈ k and∞.
In fact ui and uj have also no zeros in A1(k) in common and they
have all exactly the same poles (also with multiplicities), namely
αm,m ∈ S∞ and possibly ∞.
The Mason-Stothers theorem implies that

lm ≤ n − 1 for all m = 1, . . . , n.

We point out that the number of variables and the exponents depend
only on n. Since f (x) = g(h(x)) is given at this point, there are
k-rational points on this algebraic variety and one of them
corresponds to (α1, . . . , αn, β1, . . . , βt) coming from f and g .
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The case k1 + k2 + · · ·+ kt = 0

Here we have
n∏

i=1

(x − αi )
fi =

t∏
j=1

(
p(x)

q(x)
− βj

)kj

=
t∏

j=1

(p(x)− βjq(x))kj .

There is a partition of the set {1, . . . , n} in t disjoint subsets
Sβ1 , . . . ,Sβt such that

(p(x)− βjq(x))kj =
∏

m∈Sβj

(x − αm)fm .

Thus kj divides fm for all m ∈ Sβj , j = 1, . . . , t. On putting
lm = fm/kj for m ∈ Sβj we obtain

p(x)− βjq(x) =
∏

m∈Sβj

(x − αm)lm , j = 1, . . . , t.
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Let us choose 1 ≤ j1 < j2 < j3 ≤ t. From the corresponding three
equations the so called Siegel identity vj1,j2,j3 + vj3,j1,j2 + vj2,j3,j1 = 0
follows, where

vj1,j2,j3 = (βj1 − βj2)
∏

m∈Sβj3

(x − αm)lm .

The quantities vj1,j2,j3 are non-constant rational functions and they are
S-units. Observe that by taking j1 = 1, j2 = i , j4 = j with
1 ≤ i < j ≤ t the Siegel identity can be rewritten as

βj − β1

βj − βi
wi

w1
+
β1 − βi
βj − βi

wj

w1
= 1.
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An algorithm to compute solutions

1) Let S∞, Sβ1 , . . . ,Sβt be a partition of {1, 2, . . . , n}.
2) For the partition and a vector (l1, . . . , ln) ∈ {1, 2, . . . , n}n compute
the corresponding variety V = {v1, . . . , vr}, where vi is a polynomial
in α1, . . . , αn, β1, . . . , βt . Here we used Groebner basis technique.
3) To remove contradictory systems we compute
Φ =

∏
i 6=j(αi − αj)

∏
i 6=j(βi − βj).

4) For all vi compute

ui1 =
vi

gcd(vi ,Φ)
,

and
uik =

uik−1

gcd(uik−1
,Φ)

,

until gcd(uik−1
,Φ) = 1.
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We performed the algorithm for n = 3 and n = 4 and obtained a
complete list of all decomposable rational functions with number of
singularities at most three or four. We have several sporadic examples
for n > 4 too, but the number of partitions to be considered grows
very fast, and we do not understand yet how to exclude very early the
contradictory systems.
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The case t = 2, n = 3 and S∞ 6= ∅
There are two types of systems here, in the first class one obtains
solutions having two parameters, in the second class one has solutions
having three parameters. There are 18 systems which yield families
with two parameters.
As an example consider the system from the sixth row, that is
(S∞,Sβ1 , Sβ2) = ({3}, {1}, {2}) and (l1, l2, l3) = (2, 1, 2). Here we
obtain the following system of equations

α1 − α3 + 1/2 = 0,

α2 − α3 + 1/4 = 0,

β1 − β2 + 1 = 0.
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Therefore one gets the parametric solution
(α3 − 1/2, α3 − 1/4, α3, β2 − 1, β2) and

f (x) =
(x − α3 + 1/2)2(x − α3 + 1/4)

(x − α3)4
,

g(x) = (x − β2 + 1)(x − β2),

h(x) = β2 − 1 +
(x − α3 + 1/2)2

(x − α3)2
.
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There are 6 systems which yield families with three parameters.

(S∞, Sβ1
, Sβ2

), (l1, l2, l3) System of equations Solution (α1, α2, α3, β1, β2)

({3}, {2}, {1}) α1 − α2 + 1/2β1 − 1/2β2 = 0 (−α2 + 2α3, α2, α3, 4α2 − 4α3 + β2, β2)
(2, 2, 1) α2 − α3 − 1/4β1 + 1/4β2 = 0
({1}, {3}, {2}) α1 − α3 + 1/4β1 − 1/4β2 = 0 (α1,−α3 + 2α1, α3,−4α1 + 4α3 + β2, β2)
(1, 2, 2) α2 − α3 + 1/2β1 − 1/2β2 = 0
({2}, {3}, {1}) α1 − α3 + 1/2β1 − 1/2β2 = 0 (2α2 − α3, α2, α3,−4α2 + 4α3 + β2, β2)
(2, 1, 2) α2 − α3 + 1/4β1 − 1/4β2 = 0
({1}, {2}, {3}) α1 − α3 − 1/4β1 + 1/4β2 = 0 (α1,−α3 + 2α1, α3, 4α1 − 4α3 + β2, β2)
(1, 2, 2) α2 − α3 − 1/2β1 + 1/2β2 = 0
({3}, {1}, {2}) α1 − α2 − 1/2β1 + 1/2β2 = 0 (−α2 + 2α3, α2, α3,−4α2 + 4α3 + β2, β2)
(2, 2, 1) α2 − α3 + 1/4β1 − 1/4β2 = 0
({2}, {1}, {3}) α1 − α3 − 1/2β1 + 1/2β2 = 0 (2α2 − α3, α2, α3, 4α2 − 4α3 + β2, β2)
(2, 1, 2) α2 − α3 − 1/4β1 + 1/4β2 = 0
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Consider (S∞,Sβ1 , Sβ2) = ({1}, {2}, {3}), (l1, l2, l3) = (1, 2, 2) and

α1 − α3 − 1/4β1 + 1/4β2 = 0,

α2 − α3 − 1/2β1 + 1/2β2 = 0.

Thus

f (x) =
(x − α3)2(x − 2α1 + α3)2

(x − α1)2
,

g(x) = (x − 4α1 + 4α3 − β2)(x − β2),

h(x) = β2 +
(x − α3)2

x − α1
.
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The case t = 3, n = 3 and S∞ = ∅
In total there are six parametrizations here, these are indicated in the
table below.

(Sβ1
, Sβ2

, Sβ3
, ), (l1, l2, l3) System of equations Solution (α1, α2, α3, β1, β2, β3)

({1}, {3}, {2}) α1β2 − α1β3 + α2β1 − α2β2 − α3β1 + α3β3 = 0 (−α2β1−α2β2−α3β1+α3β3
β2−β3

,

(1, 1, 1) α2, α3, β1, β2, β3)

({2}, {1}, {3}) α1β1 − α1β3 − α2β2 + α2β3 − α3β1 + α3β2 = 0 (
α2β2−α2β3+α3β1−α3β2

β1−β3
,

(1, 1, 1) α2, α3, β1, β2, β3)

({3}, {1}, {2}) α1β1 − α1β3 − α2β1 + α2β2 − α3β2 + α3β3 = 0 (
α2β1−α2β2+α3β2−α3β3

β1−β3
,

(1, 1, 1) α2, α3, β1, β2, β3)

({1}, {2}, {3}) α1β2 − α1β3 − α2β1 + α2β3 + α3β1 − α3β2 = 0 (
α2β1−α2β3−α3β1+α3β2

β2−β3
,

(1, 1, 1) α2, α3, β1, β2, β3)

({3}, {2}, {1}) α1β1 − α1β2 − α2β1 + α2β3 + α3β2 − α3β3 = 0 (
α2β1−α2β3−α3β2+α3β3

β1−β2
,

(1, 1, 1) α2, α3, β1, β2, β3)

({2}, {3}, {1}) α1β1 − α1β2 + α2β2 − α2β3 − α3β1 + α3β3 = 0 (−α2β2−α2β3−α3β1+α3β3
β1−β2

,

(1, 1, 1) α2, α3, β1, β2, β3)
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As an illustration we provide an example corresponding to the
parametrization indicated in the fourth row, that is
(Sβ1 ,Sβ2 ,Sβ3) = ({1}, {2}, {3}) and (l1, l2, l3) = (1, 1, 1). Now let
(α2, α3, β1, β2, β3) = (2, 1,−1, 1, 0) and k1 = k2 = 1, k3 = −2. One
has that α1 = 0 and

f (x) =
(x − 2)x

(x − 1)2
,

g(x) =
(x − 1)(x + 1)

x2
,

h(x) = x − 1.
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The case t = 2, n = 4 and S∞ 6= ∅
There are 264 systems to deal with. We will treat only a few
representative examples.
Systems containing two polynomials.
If (S∞,Sβ1 , Sβ2) = ({4}, {1, 2}, {3}) and (l1, l2, l3, l4) = (1, 1, 2, 1),
then we have

α1 + α2 − 2α3 − β1 + β2 = 0

α
2
2 − 2α2α3 − α2β1 + α2β2 + α

2
3 + α4β1 − α4β2 = 0.

Since αi 6= αj and βi 6= βj if i 6= j , we have that

α1 = −α2 + 2α3 + β1 − β2,

α4 = α2 −
(α2 − α3)2

β1 − β2

.
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For example, if we consider the solution
(α1, α2, α3, α4, β1, β2) = (−2, 1, 0, 2, 0, 1), then we get

f (x) =
(x − 1)x2(x + 2)

(x − 2)2
,

g(x) = (x − 1)x ,

h(x) =
(x − 1)(x + 2)

x − 2
.
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Systems containing three polynomials.
If (S∞,Sβ1 , Sβ2) = ({1}, {2, 3}, {4}) and (l1, l2, l3, l4) = (1, 2, 1, 3),
then we get

α1 + 1/3α3 − 4/3α4 = 0

α2 + 1/2α3 − 3/2α4 = 0

α
2
3 − 2α3α4 + α

2
4 − 4/3β1 + 4/3β2 = 0.

Thus one obtains the parametrization

α1 = −1/3α3 + 4/3α4,

α2 = −1/2α3 + 3/2α4,

β1 = 3/4α2
3 − 3/2α3α4 + 3/4α2

4 + β2.

Let us take (α1, α2, α3, α4, β1, β2) = (−1/3,−1/2, 1, 0, 1, 1/4), then
we have

f (x) =
(x − 1)x3(x + 1/2)2

(x + 1/3)2
,

g(x) = (x − 1)(x − 1/4),

h(x) =
1

4
+

x3

x + 1/3
.

25 of 31



Systems containing four polynomials.
Consider the case (S∞,Sβ1 ,Sβ2) = ({1}, {2, 3}, {4}) and
(l1, l2, l3, l4) = (3, 1, 1, 3). One gets the system

α1 − α4 − 1/3 = 0

α2 + α3 − 2α4 − 1/3 = 0

α
2
3 − 2α3α4 − 1/3α3 + α

2
4 + 1/3α4 + 1/27 = 0

β1 − β2 − 1 = 0.

The parametrization is as follows
α1 = α4 + 1/3,

α2 = α4 ∓
√
−3

18
+

1

6
,

α3 = α4 ±
√
−3

18
+

1

6
,

β1 = β2 + 1.

As an example we take (α1, α2, α3, α4, β1, β2) = (1/6,−
√
−3/18,

√
−3/18,−1/6, 1, 0),

then we obtain

f (x) =
(x −

√
−3/18)(x +

√
−3/18)(x + 1/6)3

(x − 1/6)6
,

g(x) = (x − 1)x,

h(x) =
(x + 1/6)3

(x − 1/6)3
.
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Systems containing five polynomials.
If (S∞,Sβ1 , Sβ2) = ({1}, {2, 3}, {4}) and (l1, l2, l3, l4) = (3, 1, 2, 2),
then we have

α1 − 1/3α2 − 2/3α3 − 1/3 = 0

α
2
2 − 2α2α4 + 2α2 + 8α2

3 − 16α3α4 + 6α3 + 9α2
4 − 8α4 + 1 = 0

α2 + 7/2α3 − 9/2α4 + 1 = 0

α3 − α4 + 8/27 = 0

β1 − β2 + 1 = 0.

As a concrete example we deal with the case
(α1, α2, α3, α4, β1, β2) = (4/27, 1/27,−8/27, 0, 0, 1). It easily follows
that

f (x) =
(x − 1/27)x2(x + 8/27)2

(x − 4/27)6
,

g(x) = (x − 1)x,

h(x) = 1 +
x2

(x − 4/27)3
.
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The case t = 3, n = 4 and S∞ 6= ∅
We could not eliminate 24 systems directly by our approach, but it
turned out that in any possible solution either αi = αj for some i 6= j ,
or βi = βj for some i 6= j . Let us consider a concrete example out of
the 24 systems. If (S∞,Sβ1 ,Sβ2 , Sβ3) = ({2}, {1}, {3}, {4}) and
(l1, l2, l3, l4) = (2, 2, 2, 1), then we have

α1 − α4 + 1/4 = 0,

α2 − α4 − 1/4 = 0,

α3 − α4 + 1/4 = 0,

β1 − β3 + 1 = 0,

β2 − β3 + 1 = 0.

The last two equations yield that β1 = β2, a contradiction.
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The case t = 3, n = 4 and S∞ = ∅
There are 6 systems having two polynomials in the Groebner basis,
one of these is as follows: (Sβ1 , Sβ2 ,Sβ3) = ({1, 3}, {4}, {2}) and
(l1, l2, l3, l4) = (1, 2, 1, 2).
As an example consider the case (α2, α3, α4, β1, β3) = (0, 1, 3, 0, 1).
We obtain that α1 = −3 and β2 = 4. Let k1 = k2 = 1 and k3 = −2.
We get that

f (x) =
(x − 3)2(x − 1)(x + 3)

x4
,

g(x) =
(x − 4)x

(x − 1)2
,

h(x) =
(x − 1)(x + 3)

2x − 3
.
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There are 18 systems having three polynomials in the Groebner basis,
one of these is as follows: (Sβ1 , Sβ2 ,Sβ3) = ({1}, {2, 3}, {4}) and
(l1, l2, l3, l4) = (2, 1, 1, 2).
Now we consider the example with (α2, α3, α4, β1, β2) = (0, 1, 3, 0, 1).
We have that α1 = 2/3 and β3 = −8. Let k1 = k2 = 1 and k3 = −2.
We have that

f (x) =
(x − 2/3)2(x − 1)x

(x − 2)4
,

g(x) =
(x − 1)x

(x + 8)2
,

h(x) =
(3x − 2)2

−3x + 4
.
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The case t = 4, n = 4 and S∞ = ∅
Here we have 24 systems to solve. Since one has 24 very similar
systems, we will deal with one of these only. Let
(Sβ1 ,Sβ2 ,Sβ3 , Sβ4) = ({1}, {2}, {3}, {4}) and
(l1, l2, l3, l4) = (1, 1, 1, 1).
Now let (α3, α4, β1, β2, β3, β4) = (0, 1, 3, 2, 1, 0) and
k1 = k2 = 1, k3 = k4 = −1. One obtains that

f (x) =
(x + 1)(x + 2)

(x − 1)x
,

g(x) =
(x − 3)(x − 2)

(x − 1)x
,

h(x) = −x + 1.
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