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Outline of talk

Powers in arithmetic progressions

ani + b = x`i for i = 1, 2, . . . ,N,

joint work with Lajos Hajdu.

Binomial near collisions(
n

k

)
=

(
m

l

)
+ d ,

joint work with Gallegos-Ruiz, Katsipis and Ulas.
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Consecutive terms - squares

Consider consecutive terms in arithmetic progressions:

b = x20 , b + a = x21 , b + 2a = x22 → x20 + x22 = 2x21 .

Infinitely many solutions:

x0 = p2 − 2q2, x1 = p2 − 2pq + 2q2, x2 = −p2 + 4pq − 2q2.

Fermat claimed and Euler proved that that four distinct squares

cannot form an arithmetic progression.

b(b+a)(b+2a)(b+3a) = c2 → E : y2 = x3+11x2+36x +36
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Consecutive terms - higher powers

Darmon and Merel (1997): apart from trivial cases, there do not

exist three-term arithmetic progressions consisting of n-th powers,

provided n ≥ 3.

Let

x l11 , . . . , x
lt
t

be a primitive arithmetic progression in Z with 2 ≤ li ≤ L

(i = 1, . . . , t).

Hajdu (2004): t is bounded by some constant c(L) depending only

on L.
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Consecutive terms - higher powers

Bruin, Győry, Hajdu and Tengely (2006): proved that for any t ≥ 4

and L ≥ 3 there are only finitely many primitive arithmetic

progressions.

Hajdu and Tengely (2009): considered the cases when the set of

exponents is given by {2, n}, {2, 5} and {3, n}, and (excluding the

trivial cases) they showed that the length of the progression is at

most six, four and four, respectively.
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Consecutive terms - higher powers

Lemma (Hajdu-Tengely)

Let α = 5
√

2 and put K = Q(α). Then the equations

C1 : α4X 4 + α3X 3 + α2X 2 + αX + 1 = (α− 1)Y 2 (1)

and

C2 : α4X 4−α3X 3 +α2X 2−αX + 1 = (α4−α3 +α2−α+ 1)Y 2 (2)

in X ∈ Q, Y ∈ K have the only solutions

(X ,Y ) = (1,±(α4+α3+α2+α+1)),

(
−1

3
,±3α4 + 5α3 − α2 + 3α + 5

9

)
and (X ,Y ) = (1,±1), respectively.
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Consecutive terms - higher powers

Siksek and Stoll (2010): The only arithmetic progression in

coprime integers of the form (a2, b2, c2, d5) is (1, 1, 1, 1).

Hajdu-Tengely+Siksek-Stoll:

Theorem

There are no non-constant primitive arithmetic progressions with

li ∈ {2, 5} and k ≥ 4.

6



Consecutive terms - higher powers

Primitivity is crucial!:

a2, b2, c2, d → ((p2−2pq−q2)2, (p2+q2)2, (p2+2pq−q2)2, d),

infinitely many progressions.

((d2(p2 − 2pq − q2))2, (d2(p2 + q2))2, (d2(p2 + 2pq − q2))2, d5),

infinitely many progressions of the form (A2,B2,C 2,D5).
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Consecutive terms - in number fields

We have

12, 52, 72, 73

and

72, 132, 172, 409, 232,

a four- and five-term arithmetic progressions over Q(
√

73) and

Q(
√

409).

Gonzáles-Jiménez and Steuding (2010), Xarles (2012),

Gonzáles-Jiménez and Xarles (2013): they provided bounds and

effective results over quadratic and higher order number fields.
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Arithmetic progressions

k :

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

24k + 1 :

1, 25, 49, 73, 97, 121, 145, 169, 193, 217, 241, 265, 289, 313, 337, 361

Squares in k

1, 4, 9, 16

Squares in 24k + 1

1, 25, 49, 121, 169, 289, 361

Write Pa,b;N(`) for the number of `-th powers among the first N

terms b, . . . , a(N − 1) + b of the arithmetic progression ax + b

(x ≥ 0, a > 0). Let PN(`) be the maximum of these values taken

over all arithmetic progressions ax + b.
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Large sets without arithmetic progressions

Theorem (Behrend (1946))

r(n) : the maximum number of integers not exceeding n which

do not contain an arithmetic progression of 3 terms. One has

that r(n) > n1−c/ log(n)
1/2
.

Theorem (Gyarmati and Ruzsa (2012))

Q(n) : maximum number of the cardinalities of subsets

A ⊆ {1, 2, . . . , n} for which the equation x2 + y2 = 2z2 has no

nontrivial solution in A. One has that Q(n) ≥ cn/
√

log log n.
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Arithmetic progressions

Theorem (Szemerédi)

For every positive integer k and real number 0 < δ ≤ 1, there

exists an integer S(k , δ) such that for any integer N ≥ S(k , δ),

any subset A ⊂ {1, 2, . . . ,N} of cardinality at least δN contains

at least one arithmetic progression

a, a + n, a + 2n, . . . , a + (k − 1)n

of length k, where a, n are positive integers.

Theorem (Szemerédi)

For any constant δ > 0, if N is sufficiently large, then

PN(2) < δN.
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Arithmetic progressions

Theorem (Bombieri, Granville and Pintz (1992))

There are at most c1N
2/3(logN)c2 squares in any arithmetic

progression a + iq, i = 1, . . . ,N, q 6= 0.

Five squares instead of four+genus 5 curves+Falting’s theorem.

Theorem (Bombieri and Zannier (2002))

There are at most c3N
3/5(logN)c4 squares in any arithmetic

progression a + iq, i = 1, . . . ,N, q 6= 0.

Based on B-G-P, using genus 1 curves.

Rudin conjecture: for N ≥ 6 we have

PN(2) = P24,1;N(2) ≈
√

8N/3.

Remark: P24,1;5(2) = 3 and P120,49;5(2) = 4.

12



Arithmetic progressions

Theorem (Bombieri, Granville and Pintz (1992))

There are at most c1N
2/3(logN)c2 squares in any arithmetic

progression a + iq, i = 1, . . . ,N, q 6= 0.

Five squares instead of four+genus 5 curves+Falting’s theorem.

Theorem (Bombieri and Zannier (2002))

There are at most c3N
3/5(logN)c4 squares in any arithmetic

progression a + iq, i = 1, . . . ,N, q 6= 0.

Based on B-G-P, using genus 1 curves.

Rudin conjecture: for N ≥ 6 we have

PN(2) = P24,1;N(2) ≈
√

8N/3.

Remark: P24,1;5(2) = 3 and P120,49;5(2) = 4.

12



Arithmetic progressions

Theorem (Bombieri, Granville and Pintz (1992))

There are at most c1N
2/3(logN)c2 squares in any arithmetic

progression a + iq, i = 1, . . . ,N, q 6= 0.

Five squares instead of four+genus 5 curves+Falting’s theorem.

Theorem (Bombieri and Zannier (2002))

There are at most c3N
3/5(logN)c4 squares in any arithmetic

progression a + iq, i = 1, . . . ,N, q 6= 0.

Based on B-G-P, using genus 1 curves.

Rudin conjecture: for N ≥ 6 we have

PN(2) = P24,1;N(2) ≈
√

8N/3.

Remark: P24,1;5(2) = 3 and P120,49;5(2) = 4.

12



Arithmetic progressions

Theorem (Bombieri, Granville and Pintz (1992))

There are at most c1N
2/3(logN)c2 squares in any arithmetic

progression a + iq, i = 1, . . . ,N, q 6= 0.

Five squares instead of four+genus 5 curves+Falting’s theorem.

Theorem (Bombieri and Zannier (2002))

There are at most c3N
3/5(logN)c4 squares in any arithmetic

progression a + iq, i = 1, . . . ,N, q 6= 0.

Based on B-G-P, using genus 1 curves.

Rudin conjecture: for N ≥ 6 we have

PN(2) = P24,1;N(2) ≈
√

8N/3.

Remark: P24,1;5(2) = 3 and P120,49;5(2) = 4.

12



Computations

Gonzáles-Jiménez and Xarles (2014): they proved that the

arithmetic progression 24n + 1 is the only one, up to equivalence,

that contains PN(2) squares for the values of N such that PN(2)

increases in the interval 7 ≤ N ≤ 52 (these are given by

N = 8, 13, 16, 23, 27, 36, 41 and 52).

Tools:

• Elliptic curves,

• Parametrization of points on conics,

• Elliptic Chabauty’s method (developed by Bruin, Flynn and

Wetherell).
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Computations

In the given range they computed all the arithmetic progressions

such that

PN(2) = Pa,b;N(2),

except in cases of the 5-tuples

• {0, 1, 2, 6, 10}, {0, 3, 5, 6, 10},
• {0, 2, 4, 5, 11}, {0, 2, 5, 7, 11},
• {0, 1, 5, 8, 11}, {0, 1, 6, 8, 11}.
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New results

How to handle the remaining 5-tuples? Instead of working with

genus 5 curves and quadratic number fields we try to deal with

genus 2 curves and quartic number fields.

For example in case of the tuple {0, 1, 2, 6, 10} we have

b = x20 ,

x + b = x21 ,

2x + b = x22 ,

6x + b = x23 ,

10x + b = x24 .
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Genus 2 curves

We may parametrize all variables using xi , xj for any

i , j ∈ {0, 1, 2, 3, 4}, i 6= j to obtain

y2 = f (xi , xj),

where f is homogeneous degree 6 polynomial. We have

(i , j) ∈ {(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)},

so we may obtain 10 genus 2 curves.
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Genus 2 curves

i j f (xi , xj)

0 1 −
(
9 x20 − 10 x21

)(
5 x20 − 6 x21

)(
x20 − 2 x21

)
0 2 1

2

(
4 x20 − 5 x22

)(
2 x20 − 3 x22

)(
x20 + x22

)
0 3 − 1

54

(
5 x20 + x23

)(
2 x20 + x23

)(
2 x20 − 5 x23

)
0 4 1

250

(
9 x20 + x24

)(
4 x20 + x24

)(
2 x20 + 3 x24

)
1 2

(
8 x21 − 9 x22

)(
4 x21 − 5 x22

)(
2 x21 − x22

)
1 3 − 1

125

(
6 x21 − x23

)(
4 x21 + x23

)(
4 x21 − 9 x23

)
1 4 1

729

(
10 x21 − x24

)(
8 x21 + x24

)(
4 x21 + 5 x24

)
2 3 −1

8

(
5 x22 − x23

)(
3 x22 − x23

)(
x22 − 2 x23

)
2 4 1

64

(
9 x22 − x24

)(
5 x22 − x24

)(
x22 + x24

)
3 4 1

8

(
9 x23 − 5 x24

)(
5 x23 − 3 x24

)(
2 x23 − x24

)
17



Genus 2 curves

Our choice: i = 2, j = 4 :

y20 =
1

64

(
9 x22 − x24

)(
5 x22 − x24

)(
x22 + x24

)
,

it can be written as follows

C : y2 = x6 − 13x4 + 31x2 + 45.

Based on Stoll’s papers one computes that the rank of the

Jacobian is 2, therefore classical Chabauty’s method cannot be

applied to determine the set of rational points.
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Elliptic Chabauty’s method

Put K = Q(α), where α4 − 8α2 + 36 = 0. Over the number field

K we have

y2 = f1(x)f2(x),

where deg f1 = 2, deg f2 = 4 and

f1(x) = x2 +
1

6
(α3 − 8α)x +

1

2
(−α2 + 4),

f2(x) = x4 +
1

6
(−α3 + 8α)x3 +

1

2
(−α2 − 14)x2 +

+
1

2
(3α3 − 24α)x +

1

2
(9α2 − 36).
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Elliptic Chabauty’s method

We can write that

y21 = δf1(x) and y22 = δf2(x),

where δ is an element of a finite set, in our case a set of cardinality

32. In all cases the equation y22 = δf2(x) defines an elliptic curve

over K with Mordell-Weil rank 0,1 or 2. So the rank is less than

the degree of K , therefore elliptic curve Chabauty’s method can be

applied.
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Elliptic Chabauty’s method

The case of δ = 1/12(α3 − 2α). The curve y22 = δf2(x) has the
model

E : Y 2 = X 3 +
1

4
(3α3 + α2 − 24α + 50)X 2 +

+
1

4
(25α3 − 30α2 − 218α + 408)X +

1

2
(33α3 − 90α2 − 210α + 648).

The torsion subgroup of the Mordell-Weil group of E has 4

elements and the rank of the Mordell-Weil group is 2. The points

coming from this case on C are

(±3, 0), (−2,±5), (2,±5).
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Working asymptotically

Fix any exponent ` ≥ 2. Let a be a positive integer (the difference

of our progression), b be an integer, and put

Sa,b(`) = lim
N→∞

|{x : ax + b is an `-th power, 0 ≤ x < N}|√̀
N

.

We let

Sa(`) = max
b∈Z

Sa,b(`).

Note that clearly, Sa,b(`) does not actually depend on b, only on

the residue class of b modulo a.

(24k − 23 ∼ 24k + 1 ∼ 24k + 25).
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Working asymptotically

Set

S(`) = max
a∈N

Sa(`).

It is not that obvious that this maximum also exists. Let ` ≥ 2 and

let ax + b be an arithmetic progression. By an `-transformation of

this progression we mean an arithmetic progression of the shape

(az`)x + (b + ta)z`,

where z is a positive integer and t is an arbitrary integer.
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Main result

Theorem (Part 1)

S(`) exists for any ` ≥ 2 and we have

S(`) =


√

8
3 , if ` = 2,∏

p prime, p−1|`,
log p

log p−log(p−1)
>`

(p − 1)p
1
`
−1, otherwise.
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Main result

Theorem (Part 2)

Further, for the arithmetic progression ax + b we have Sa,b(`) = S(`) if

and only if it is an `-transformation of

a∗x + b∗

with

a∗ =



24, if ` = 2,

5 or 80, if ` = 4,∏
p prime, p−1|`,

log p
log p−log(p−1)>`

p, otherwise,

and

b∗ =

{
0, if a∗ = 1,

1, otherwise.
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Remark

Note that clearly, we could take b∗ = 1 for a∗ = 1 as well. Our

choice for b∗ in the theorem in this case is just to keep the

convention 0 ≤ b∗ < a∗.

Observe that for ` odd, the products in the statement are empty,

so we have

S(`) = a∗ = 1

in this case. That is, for odd values of `, the ’best’ progression (in

the above sense) is the trivial one x , or any of its

`-transformations. On the other hand, there are infinitely many

even values of ` with S(`) > 1 and a∗ > 1. For example, taking

` = p − 1 with any odd prime p, a simple calculation shows that

p | a∗ and S(`) ≥ `(`+ 1)
1
`
−1 > 1.
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Special case: ` = 4

In case of ` = 4 none of the two ’best’ progressions is ’better’ then

the other. In fact, though

|P5,1;N(4)− P80,1;N(4)| ≤ 1

for any N,

P5,1;N(4)− P80,1;N(4)

changes sign infinitely often.

P5,1;N(4) 1 2 2 3 3 3 4 4 5 6 6 7 7 7

P80,1;N(4) 1 1 2 2 3 4 4 5 5 5 6 6 7 8
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Problems

Problem 1

Is it true that

lim
`→∞

S(`) = 1 ?

Problem 2

For fixed ` ≥ 2, for any arithmetic progression ax + b and N ≥ 1 set

Pa,b;N(`) = |{x : ax + b is an `-th power, 0 ≤ x < N}|.

Is it true that there exists an N0 such that for any N > N0

max
a>0, b≥0

Pa,b;N(`) = Pa∗,b∗;N(`)

holds? Here for the special case ` = 4 we use the convention that

Pa∗,b∗;N(4) = max(P5,1;N(4),P80,1;N(4)).
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Problems

Problem 3

Use the notation from Problem 2, and for ` odd and N ≥ 1 let b× be

the largest `-th power being at most (N − 1)/2, that is

b× =

⌊√̀
N − 1

2

⌋
.

Is it true that for any odd ` there exists an N0 such that for any N > N0

max
a>0, b∈Z

Pa,b;N(`) = P1,−b×;N(`)

holds?
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Sketch of the proof

Lemma (Niven, Zuckerman and Montgomery)

Let ` and n be positive integers greater than one, and write U`(n)

for the number of `-th roots of unity modulo n. Further, let νp(`)

denote the exponent of a prime p in the factorization of `.

i) We have U`(2) = 1, and if ` is odd, then U`(2α) = 1 for any

α ≥ 1. If ` is even, then we have U`(2α) = 2min(ν2(`)+1,α−1)

for any α ≥ 2.

ii) Let p be an odd prime. Then for any α ≥ 1 we have

U`(p
α) = pmin(νp(`),α−1) gcd(`, p − 1).
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Sketch of the proof

The total number of `-th powers between the first term b and the

N-th term a(N − 1) + b of the progression ax + b (x ≥ 0) is

clearly
√̀
aN + o(1). The question is that how many of these

(roughly)
√̀
aN `-th powers belong to the progression ax + b, for a

given b. Obviously, any `-th power belongs to some progression

ax + b with 0 ≤ b < a.

Clearly, those `-th powers u` will belong to the progression ax + b

for which

u` ≡ b (mod a).
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Sketch of the proof

That is, we should find the b for which

Ma,b(`) := |{u : 0 ≤ u < a, u` ≡ b (mod a)}|

is maximal. Write

Ma(`) = max
0≤b<a

Ma,b(`)

for this maximum.
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Sketch of the proof

Sa(`) and Ma(`) are multiplicative in a : if a = a1a2 with

gcd(a1, a2) = 1, then

Ma(`) = Ma1(`)Ma2(`), Sa(`) = Sa1(`)Sa2(`).

We may restrict our attention to arithmetic progressions ax + b

with a = pα and

Spα,b(`) ≥ 1.
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Sketch of the proof

For any b with 0 ≤ b < pα, by the definition of Mpα,b(`) there

exist integers

0 ≤ u1 < · · · < uMpα,b(`) < pα

such that

u`1 ≡ · · · ≡ u`Mpα,b(`)
≡ b (mod pα).
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Sketch of the proof

We only consider the case with p - b.

Multiplying the sequence of congruences with u−`1 modulo pα, we

see that Mpα,b(`) = Mpα,1(`). So for any b with p - b Lemma

N-Z-M shows that

Spα,b(`) =


2α( 1

`−1), if p = 2 and ` is odd,

2min(ν2(`)+1,α−1) · 2α( 1
`−1), if p = 2 and ` is even,

pmin(νp(`),α−1) gcd(`, p − 1) · pα( 1
`−1), if p is an odd prime.
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Sketch of the proof

Take p = 2. We have that ` is even, α > 1 and

min(ν2(`) + 1, α− 1) + α

(
1

`
− 1

)
≥ 0.

If

ν2(`) + 1 ≥ α− 1

then on the one hand

` ≥ 2α−2,

and on the other hand, by the inequality

α ≥ `.

Hence we get that

(pα, `) = (4, 2), (8, 2), (16, 4).
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Sketch of the proof

Otherwise, if

ν2(`) + 1 < α− 1

then as the inequality implies

ν2(`) +
α

`
≥ α− 1,

we get α > `. As ` ≥ 2ν2(`) this gives

ν2(`) <
logα

log 2
.

It follows that

(pα, `) = (16, 2).
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Computations - cubes

How to determine the ’best’ progressions?

There exists integers n0, n1, n2, n3 with

0 ≤ n0 < n1 < n2 < n3 < N such that

ani + b = x3i (i = 0, 1, 2, 3) (3)

with some integers x0, x1, x2, x3. The system (3) yields four genus

one curves of the form

(nj − ni )X
3 + (ni − nk)Y 3 + (nk − nj)Z

3 = 0, (4)

where 0 ≤ i < j < k ≤ 3.
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Computations - cubes

We get three genus one curves as follows:

C1 : n1x
3
2 − n2x

3
1 + (n2 − n1)x30 = 0,

C2 : n1x
3
3 − n3x

3
1 + (n3 − n1)x30 = 0,

C3 : n2x
3
3 − n3x

3
2 + (n3 − n2)x30 = 0.

Define morphisms

ζ0 : (x0 : x1 : x2 : x3) → (ζx0 : x1 : x2 : x3),

ζ1 : (x0 : x1 : x2 : x3) → (x0 : ζx1 : x2 : x3),

ζ2 : (x0 : x1 : x2 : x3) → (x0 : x1 : ζx2 : x3),

ζ3 : (x0 : x1 : x2 : x3) → (x0 : x1 : x2 : ζx3),

where ζ denotes a primitive cube root of unity. We will use

subgroups of the form Hi ,j = 〈ζ0ζi , ζ0ζj〉 with 1 ≤ i < j ≤ 3.
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Computations - cubes

For example, if we take the first two genus one curves C1 and C2

defined above with the subgroup H1,2 = 〈ζ0ζ1, ζ0ζ2〉, then the

corresponding quotient is isomorphic to the genus two hyperelliptic

curve given by

C 1,2
H1,2

: y2 = ((n2 − n1)(n3 − n1)n3)2x6 +

+2((n3 − n1)n3)2(2n1n2 − n1n3 − n2n3)x3 + ((n3 − n1)n23)2.

We note that (1, (n3 − n1)(n1 + n2 − n3)n3) is a point on C 1,2
H1,2

.
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Computations - cubes - example

We provide some details for (n0, n1, n2, n3) = (0, 1, 3, 8). We

obtain the three genus one curves

C1 : x32 − 3x31 + 2x30 = 0,

C2 : x33 − 8x31 + 7x30 = 0,

C3 : 3x33 − 8x32 + 5x30 = 0.

We get the hyperelliptic curve

C 1,2
H1,2

: y2 = 12544x6 − 163072x3 + 200704,

which is isomorphic to

C ′ : y2 = 784x6 − 10192x3 + 12544.
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Computations - cubes - example

We get that the rank of the Jacobian of the curve is one and

Jac(C ′)(Q) = 〈(x2,−112, 2), (x , 28x3+112, 2), (x−1, 28x3−84, 2)〉,

where the first two generators are of order three and the last

generates the free part. A standard application of Chabauty’s

method yields that the only affine rational points on C ′ are given

by

{(0,±112), (1,±56)}.

These points do not give rise to non-constant arithmetic

progressions.
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Computations - fourth powers

Let (n0, n1, n2) with 0 ≤ n0 < n1 < n2 ≤ N be such that

ani + b = x4i (i = 0, 1, 2). (5)

If n0, n1, n2 is an arithmetic progression, then we get

x40 + x42 = 2x41 .

However, a classical result of Dénes implies that x0 = x1 = x2, a

contradiction.
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Computations - fourth powers - example

If (n0, n1, n2) = (0, 1, 3) then we get

3x41 − 2x40 = x42 .

The pairwise coprime integral solutions of the above equation can

be parametrized by standard arguments. In our case we get

rx20 = −2p2 − 2pq + q2,

rx21 = 2p2 + q2,

rx22 = 2p2 − 4pq − q2,

where p, q, r ∈ Z and r | 12. From the second equation we

immediately get that r > 0.
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Computations - fourth powers - example

If r ∈ {1, 3, 4, 12}, then the equation

rx22 = 2p2 − 4pq − q2 = 6p2 − (2p + q)2

has only the trivial solution (p, q, x2) = (0, 0, 0).

Further, if r = 2 then the equation

rx20 = −2p2 − 2pq + q2 = (q − p)2 − 3p2

has only the trivial solution.
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Computations - fourth powers - example

So we are left with r = 6 as the only possibility. In this case

multiplying the three equations above, after dividing by q6 and

writing x = p/q, y = 36x0x1x2 we obtain the genus two

hyperelliptic curve

D : y2 = −48x6 + 48x5 + 120x4 + 60x2 − 12x − 6.
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Computations - fourth powers - example

We get that

Jac(D)(Q) = 〈(x2+
1

2
, 0, 2), (x2+x−1

2
, 0, 2), (x2+x+

1

4
, 12x+

3

2
, 2)〉,

where the first two elements are of order two and the last one

generates the free part. Classical Chabauty’s method implies that

D(Q) = {(−1

2
,±9

2
)}.

This gives rise to the trivial solution with (x40 , x
4
1 , x

4
2 ) = (1, 1, 1).
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Binomial coefficients

Consider the equation (
n

k

)
=

(
m

l

)
+ d .

There are many nice results related to d = 0 and

(k , l) = (2, 3), (2, 4), (2, 6), (2, 8), (3, 4), (3, 6), (4, 6), (4, 8).

Elliptic curves appear all in the above cases.
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Cases with d = 0

(
16

2

)
=

(
10

3

)
,

(
56

2

)
=

(
22

3

)
,

(
120

2

)
=

(
36

3

)
,(

21

2

)
=

(
10

4

)
,

(
153

2

)
=

(
19

5

)
,

(
78

2

)
=

(
15

5

)
=

(
14

6

)
,(

221

2

)
=

(
17

8

)
,

(
F2i+2F2i+3

F2iF2i+3

)
=

(
F2i+2F2i+3 − 1

F2iF2i+3 + 1

)
for i = 1, 2, . . . ,

where Fn is the nth Fibonacci number. The infinite family of

solutions involving Fibonacci numbers was found by Lind and

Singmaster.
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Cases with d 6= 0

In 2017 Blokhuis, Brouwer and de Weger determined all non-trivial
solutions with d = 1 in almost all elliptic curve cases.

n k m l

11 2 8 3

60 2 23 3

160403633 2 425779 3

6 3 7 2

7 3 9 2

16 3 34 2

27 3 77 2

29 3 86 2

34 3 21 4

n k m l

19630 3 1587767 2

12 4 32 2

93 4 2417 2

10 5 23 2

22 5 230 2

62 5 3598 2

135 5 26333 2

139 5 28358 2

28 11 6554 2
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Cases with d as a variable

If d is not fixed Blokhuis, Brouwer and de Weger also obtained

some interesting infinite families, an example is given by(
12x2 − 12x + 3

3

)
+

(
x

2

)
=

(
24x3 − 36x2 + 15x − 1

2

)
.

In 2019, Katsipis completely resolved the case with (k, l) = (8, 2)

and he also determined the integral solutions if

(k, l), (l , k) = (3, 6) and d = 1.

51



Gallegos-Ruiz, Katsipis, Ulas and Tengely

Let

Cd : y2 = 15x(x − 1)(x − 2)(x − 3)(x − 4) + 152(8d + 1)

and write Jd := Jac(Cd). The curve Cd is isomorphic to the curve

defined by the equation
(y
2

)
=
(x
5

)
+ d . We computed upper

bounds for the numbers rd = rankJd(Q) using the Magma

procedure RankBound.
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Ranks of curves

We obtained the following data

i the value of d such that rd ≤ i

0 −45,−40,−39,−37,−34,−10,−9,−4, 8, 25, 26, 40, 47

1 −47,−36,−33,−31,−28,−26,−25,−22,−14,−13,−8,−5,−2, 5,

11, 17, 20, 29, 32, 41, 50

2 −50,−46,−41,−38,−32,−30,−29,−24,−23,−19,−16,−7, 4, 13

14, 23, 30, 31, 38, 43, 44

3 −48,−44,−43,−42,−35,−21,−20,−15,−11,−3,−1, 2, 7, 16, 18

19, 33, 35, 39, 42, 48

4 −49,−27,−18,−17,−12,−6, 9, 12, 22, 24, 34, 37, 46, 49

5 27, 36

6 0, 1, 3, 6, 10, 15, 45

7 21, 28
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Rank 8 curve

We also looked for high rank Jacobians for further values of d of
the form

(w
2

)
. For d = 66 =

(12
2

)
we obtained the equality r66 = 8 :

< x − 3,−345 >,< x − 1,−345 >,< x − 4, 345 >,< x, 345 >,

< x + 3, 285 >,< x + 4, 135 >,< x − 11, 975 >,< x2 + x + 30,−30x + 165 > .

Problem

Prove that the only solutions in positive integers of the equation(y
2

)
=
(x
5

)
+ 66 are

(x , y) =(1, 23), (2, 23), (3, 23), (4, 23), (11, 65), (28, 887),

(7935, 1447264765), (7939, 1449089815).
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Large solutions

The large points are explained by the fact that on the curve C(w2)
we have the following solutions

x = 3 · 5 · (2w − 1)2,

y = 75(720w4 − 1440w3 + 1020w2 − 300w + 31)(2w − 1) and

x = 3 · 5 · (2w − 1)2 + 4,

y = 75(720w4 − 1440w3 + 1140w2 − 420w + 61)(2w − 1).
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Large rank

We obtain the following divisors on J(w2)(Q)

< x, 30w − 15, 1 >,

< x − 1, 30w − 15, 1 >,

< x − 2, 30w − 15, 1 >,

< x − 3, 30w − 15, 1 >,

< x − 4, 30w − 15, 1 >,

< x − 60w2 + 60w − 15, 108000w5 − 270000w4 + 261000w3 − 121500w2 + 27150w − 2325, 1 >,

< x − 60w2 + 60w − 19, 108000w5 − 270000w4 + 279000w3 − 148500w2 + 40650w − 4575, 1 > .

w = 9, 11→ rank = 5

w = 3, 4, 5, 6, 10→ rank = 6

w = 7, 8→ rank = 7
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Numerical experiment

We computed the set

Dk :=

{(
n

k

)
−
(
m

k

)
: k < m < n ≤ 104

}
.

As one may expect, in case k = 3 the number of duplicates is large.

Problem

For each N ∈ N there exists dN ∈ N such that the equation(n
3

)
−
(m
3

)
= dN has at least N positive integer solutions.
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Dk for k = 5 and 6

For k = 5 we found 4 values of d which appeared at least 2 times

in D5 :

d = 146438643 (n,m) = (117, 78), (133, 118),

d = 153852348 (n,m) = (118, 78), (133, 117),

d = 817514347 (n,m) = (160, 53), (209, 197),

d = 2346409884 (n,m) = (197, 53), (209, 160).

For k = 6 we also found 4 values of d which appeared at least 2

times in D6 :

d = 3819816 (n,m) = (40, 18), (57, 56),

d = 32449872 (n,m) = (56, 18), (57, 40),

d = 66273157776 (n,m) = (193, 66), (252, 243),

d = 268624373556 (n,m) = (243, 66), (252, 193).
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Genus 2 cases

Among the solutions given by Blokhuis, Brouwer and de Weger

there are some with (k , l) = (2, 5) e.g.:(
10

5

)
+ 1 =

(
23

2

)
,

(
22

5

)
+ 1 =

(
230

2

)
,

(
62

5

)
+ 1 =

(
3598

2

)
in these cases the problem can be reduced to genus 2 curves.
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Genus 2 cases

Gallegos-Ruiz,Katsipis,Ulas and T.

All integral solutions (n,m) of equation
(n
k

)
=
(m
l

)
+ d with

d ∈ {−3, . . . , 3}, k = 2, l = 5 are as follows.

d solutions

−3 [(3, 6)]

−2 []

−1 [(11, 8)]

0 [(2, 5), (4, 6), (7, 7), (78, 15), (153, 19)]

1 [(23, 10), (230, 22), (3598, 62), (26333, 135), (28358, 139)]

2 [(3, 5)]

3 [(31, 11), (94, 16), (346888, 375), (356263, 379)]
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About the proof

In case of d = 3 the hyperelliptic curve is given by

y2 = 15x(x − 1)(x − 2)(x − 3)(x − 4) + 752

and the rank of the Jacobian is 6. A Mordell-Weil basis is as

follows (in Mumford representation)

D1 =< x − 4,−75 >,D2 =< x − 3, 75 >,

D3 =< x − 1,−75 >,D4 =< x , 75 >,

D5 =< x2 − 7x + 30, 195 >,D6 =< x2 − 3x + 20,−30x − 45 > .
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About the proof

We apply Baker’s method to get a large upper bound for log |x |, in

this case we obtain

log |x | ≤ 1.028× 10612.

Every integral point on the curve can be expressed in the form

P −∞ =
6∑

i=1

niDi

with ||(n1, n2, n3, n4, n5, n6)|| ≤ 1.92× 10306.
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Hyperelliptic logarithm method

We choose to compute the period matrix and the hyperelliptic
logarithms with 1500 digits of precision. The hyperelliptic
logarithms of the divisors Di are given by

ϕ(D1) = (0.087945 . . . + i0.112834 . . . ,−0.473844 . . .− i0.741784 . . .) ∈ C2
,

ϕ(D2) = (0.114612 . . . + i0.112834 . . . ,−0.420527 . . .− i0.741784 . . .) ∈ C2
,

ϕ(D3) = (−0.044486 . . . + i1.333456 . . . ,−0.416321 . . . + i5.329970 . . .) ∈ C2
,

ϕ(D4) = (0.127905 . . . + i0.112834 . . . ,−0.413878 . . .− i0.741784 . . .) ∈ C2
,

ϕ(D5) = (−0.118415 . . . + i0.037611 . . . ,−0.857076 . . .− i0.247261 . . .) ∈ C2
,

ϕ(D6) = (0.128537 . . . + i0.075223 . . . ,−0.173077 . . .− i0.494522 . . .) ∈ C2
.
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Hyperelliptic logarithm method

Setting K = 101300 we get a new bound 125.87 for

||(n1, n2, n3, n4, n5, n6)||. We repeat the reduction process with

K = 1018 that yields a better bound, namely 15.99. Three more

steps with K = 1015,K = 1013 and K = 6× 1011 provide the

bounds 14.85, 14.1 and 13.8. It remains to compute all possible

expressions of the form

n1D1 + . . .+ n6D6

with ||(n1, n2, n3, n4, n5, n6)|| ≤ 13.8. We performed a parallel

computation to enumerate linear combinations coming from

integral points on a machine having 12 cores. The computation

took 3 hours and 23 minutes.
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Solutions

We obtained the following non-trivial solutions with n ≥ 5(
11

5

)
+ 3 =

(
31

2

)
,(

16

5

)
+ 3 =

(
94

2

)
,(

375

5

)
+ 3 =

(
346888

2

)
,(

379

5

)
+ 3 =

(
356263

2

)
.
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Genus 3 cases

In case of the equation
(n
2

)
=
(m
7

)
+ d one obtains genus 3 curves.

Stoll proved that the rank of the Jacobian is 9 if d = 0. For other
values of d in the range {−3, . . . , 3} many of the genus 3
hyperelliptic curves have high ranks as well. Balakrishnan et. al.
developed an algorithm to deal with genus 3 hyperelliptic curves
defined over Q whose Jacobians have Mordell-Weil rank 1. If
d = −2, then the equation is isomorphic to the curve

Y 2 = 70X 7 − 1470X 6 + 12250X 5 − 51450X 4 + 113680X 3 − 123480X 2 + 50400X − 661500

and using Magma (with SetClassGroupBounds("GRH") to speed

up computation) we get that the rank of the Jacobian is 1. The

affine points are (8,±1470), hence we have the solution(4
2

)
=
(8
7

)
− 2.
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