Powers in arithmetic progressions

Alfréd Rényi Institute of Mathematics
Number Theory Seminar

Szabolcs Tengely
15.10.2019.

University of Debrecen
Outline of talk

Powers in arithmetic progressions

\[an_i + b = x_i^\ell \text{ for } i = 1, 2, \ldots, N, \]

joint work with Lajos Hajdu.

Binomial near collisions

\[\binom{n}{k} = \binom{m}{l} + d, \]

joint work with Gallegos-Ruiz, Katsipis and Ulas.
Consider consecutive terms in arithmetic progressions:

\[b = x_0^2, \quad b + a = x_1^2, \quad b + 2a = x_2^2 \quad \rightarrow \quad x_0^2 + x_2^2 = 2x_1^2. \]
Consider consecutive terms in arithmetic progressions:

\[b = x_0^2, \quad b + a = x_1^2, \quad b + 2a = x_2^2 \quad \rightarrow \quad x_0^2 + x_2^2 = 2x_1^2. \]

Infinitely many solutions:

\[x_0 = p^2 - 2q^2, \quad x_1 = p^2 - 2pq + 2q^2, \quad x_2 = -p^2 + 4pq - 2q^2. \]
Consecutive terms - squares

Consider consecutive terms in arithmetic progressions:

\[b = x_0^2, \quad b + a = x_1^2, \quad b + 2a = x_2^2 \rightarrow x_0^2 + x_2^2 = 2x_1^2. \]

Infinitely many solutions:

\[x_0 = p^2 - 2q^2, \quad x_1 = p^2 - 2pq + 2q^2, \quad x_2 = -p^2 + 4pq - 2q^2. \]

Fermat claimed and Euler proved that four distinct squares cannot form an arithmetic progression.

\[b(b+a)(b+2a)(b+3a) = c^2 \rightarrow E : y^2 = x^3 + 11x^2 + 36x + 36 \]
Darmon and Merel (1997): apart from trivial cases, there do not exist three-term arithmetic progressions consisting of n-th powers, provided $n \geq 3$.

Let

$$x_1^{l_1}, \ldots, x_t^{l_t}$$

be a primitive arithmetic progression in \mathbb{Z} with $2 \leq l_i \leq L$ ($i = 1, \ldots, t$).

Hajdu (2004): t is bounded by some constant $c(L)$ depending only on L.
Consecutive terms - higher powers

Bruin, Győry, Hajdu and Tengely (2006): proved that for any $t \geq 4$ and $L \geq 3$ there are only finitely many primitive arithmetic progressions.

Hajdu and Tengely (2009): considered the cases when the set of exponents is given by $\{2, n\}$, $\{2, 5\}$ and $\{3, n\}$, and (excluding the trivial cases) they showed that the length of the progression is at most six, four and four, respectively.
Lemma (Hajdu-Tengely)

Let \(\alpha = \sqrt[5]{2} \) and put \(K = \mathbb{Q}(\alpha) \). Then the equations

\[
C_1 : \quad \alpha^4 X^4 + \alpha^3 X^3 + \alpha^2 X^2 + \alpha X + 1 = (\alpha - 1) Y^2 \tag{1}
\]

and

\[
C_2 : \quad \alpha^4 X^4 - \alpha^3 X^3 + \alpha^2 X^2 - \alpha X + 1 = (\alpha^4 - \alpha^3 + \alpha^2 - \alpha + 1) Y^2 \tag{2}
\]

in \(X \in \mathbb{Q}, \; Y \in K \) have the only solutions

\[
(X, Y) = (1, \pm(\alpha^4 + \alpha^3 + \alpha^2 + \alpha + 1)), \quad \left(-\frac{1}{3}, \pm\frac{3\alpha^4 + 5\alpha^3 - \alpha^2 + 3\alpha + 5}{9}\right)
\]

and \((X, Y) = (1, \pm1) \), respectively.
Consecutive terms - higher powers

Siksek and Stoll (2010): The only arithmetic progression in coprime integers of the form \((a^2, b^2, c^2, d^5)\) is \((1, 1, 1, 1)\).

Hajdu-Tengely+Siksek-Stoll:

Theorem

There are no non-constant primitive arithmetic progressions with \(l_i \in \{2, 5\}\) and \(k \geq 4\).
Primitivity is crucial!:

$a^2, b^2, c^2, d \rightarrow ((p^2 - 2pq - q^2)^2, (p^2 + q^2)^2, (p^2 + 2pq - q^2)^2, d)$,

infinitely many progressions.
Consecutive terms - higher powers

Primitivity is crucial!:

\[a^2, b^2, c^2, d \rightarrow ((p^2 - 2pq - q^2)^2, (p^2 + q^2)^2, (p^2 + 2pq - q^2)^2, d), \]

infinitely many progressions.

\[((d^2(p^2 - 2pq - q^2))^2, (d^2(p^2 + q^2))^2, (d^2(p^2 + 2pq - q^2))^2, d^5), \]

infinitely many progressions of the form \((A^2, B^2, C^2, D^5) \).
We have

\[1^2, 5^2, 7^2, 73 \]

and

\[7^2, 13^2, 17^2, 409, 23^2, \]

a four- and five-term arithmetic progressions over \(\mathbb{Q}(\sqrt{73}) \) and \(\mathbb{Q}(\sqrt{409}) \).

Gonzáles-Jiménez and Steuding (2010), Xarles (2012), Gonzáles-Jiménez and Xarles (2013): they provided bounds and effective results over quadratic and higher order number fields.
Arithmetic progressions

<table>
<thead>
<tr>
<th>k :</th>
<th>1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>$24k + 1$:</td>
<td>1, 25, 49, 73, 97, 121, 145, 169, 193, 217, 241, 265, 289, 313, 337, 361</td>
</tr>
</tbody>
</table>
Arithmetic progressions

| k : | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 |
| $24k + 1$: | 1, 25, 49, 73, 97, 121, 145, 169, 193, 217, 241, 265, 289, 313, 337, 361 |

Squares in k

| 1, 4, 9, 16 |

Squares in $24k + 1$

| 1, 25, 49, 121, 169, 289, 361 |
Arithmetic progressions

\[
k : \\
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
\]

\[
24k + 1 :
\\
1, 25, 49, 73, 97, 121, 145, 169, 193, 217, 241, 265, 289, 313, 337, 361
\]

Squares in \(k \)
1, 4, 9, 16

Squares in \(24k + 1 \)
1, 25, 49, 121, 169, 289, 361

Write \(P_{a,b;N}(\ell) \) for the number of \(\ell \)-th powers among the first \(N \) terms \(b, \ldots, a(N - 1) + b \) of the arithmetic progression \(ax + b \) (\(x \geq 0, a > 0 \)). Let \(P_N(\ell) \) be the maximum of these values taken over all arithmetic progressions \(ax + b \).
Theorem (Behrend (1946))

\[r(n) : \text{the maximum number of integers not exceeding } n \text{ which do not contain an arithmetic progression of 3 terms. One has that } r(n) > n^{1 - c/\log(n)^{1/2}}. \]
Theorem (Behrend (1946))

\(r(n) : \) the maximum number of integers not exceeding \(n \) which do not contain an arithmetic progression of 3 terms. One has that \(r(n) > n^{1-c/\log(n)^{1/2}} \).

Theorem (Gyarmati and Ruzsa (2012))

\(Q(n) : \) maximum number of the cardinalities of subsets \(A \subseteq \{1, 2, \ldots, n\} \) for which the equation \(x^2 + y^2 = 2z^2 \) has no nontrivial solution in \(A \). One has that \(Q(n) \geq cn/\sqrt{\log \log n} \).
Theorem (Szemerédi)

For every positive integer \(k \) and real number \(0 < \delta \leq 1 \), there exists an integer \(S(k, \delta) \) such that for any integer \(N \geq S(k, \delta) \), any subset \(A \subset \{1, 2, \ldots, N\} \) of cardinality at least \(\delta N \) contains at least one arithmetic progression

\[
a, a + n, a + 2n, \ldots, a + (k - 1)n
\]
of length \(k \), where \(a, n \) are positive integers.

Theorem (Szemerédi)

For any constant \(\delta > 0 \), if \(N \) is sufficiently large, then
\[
P_N(2) < \delta N.
\]
Theorem (Bombieri, Granville and Pintz (1992))

There are at most $c_1 N^{2/3} (\log N)^{c_2}$ squares in any arithmetic progression $a + iq, i = 1, \ldots, N, q \neq 0$.

Remark: $P_{24,1;5}(2) = 3$ and $P_{120,49;5}(2) = 4$.

Based on B-G-P, using genus 1 curves.
Theorem (Bombieri, Granville and Pintz (1992))

There are at most $c_1 N^{2/3} (\log N)^{c_2}$ squares in any arithmetic progression $a + iq, \ i = 1, \ldots, N, q \neq 0$.

Five squares instead of four +genus 5 curves +Falting's theorem.
Arithmetic progressions

Theorem (Bombieri, Granville and Pintz (1992))

There are at most \(c_1 N^{2/3} (\log N)^{c_2} \) squares in any arithmetic progression \(a + iq, i = 1, \ldots, N, q \neq 0 \).

Five squares instead of four + genus 5 curves + Falting’s theorem.

Theorem (Bombieri and Zannier (2002))

There are at most \(c_3 N^{3/5} (\log N)^{c_4} \) squares in any arithmetic progression \(a + iq, i = 1, \ldots, N, q \neq 0 \).
Arithmetic progressions

Theorem (Bombieri, Granville and Pintz (1992))

There are at most \(c_1 N^{2/3} (\log N)^{c_2}\) *squares in any arithmetic progression* \(a + iq, i = 1, \ldots, N, q \neq 0\).*

Five squares instead of four + genus 5 curves + Falting’s theorem.

Theorem (Bombieri and Zannier (2002))

There are at most \(c_3 N^{3/5} (\log N)^{c_4}\) *squares in any arithmetic progression* \(a + iq, i = 1, \ldots, N, q \neq 0\).*

Based on B-G-P, using genus 1 curves.

Rudin conjecture: for \(N \geq 6\) we have

\[P_N(2) = P_{24,1;N}(2) \approx \sqrt{8N/3}. \]

Remark: \(P_{24,1;5}(2) = 3\) and \(P_{120,49;5}(2) = 4.\)
Gonzáles-Jiménez and Xarles (2014): they proved that the arithmetic progression $24n + 1$ is the only one, up to equivalence, that contains $P_N(2)$ squares for the values of N such that $P_N(2)$ increases in the interval $7 \leq N \leq 52$ (these are given by $N = 8, 13, 16, 23, 27, 36, 41$ and 52).

Tools:

- Elliptic curves,
- Parametrization of points on conics,
- Elliptic Chabauty's method (developed by Bruin, Flynn and Wetherell).
In the given range they computed all the arithmetic progressions such that

\[P_N(2) = P_{a,b;N}(2), \]

except in cases of the 5-tuples

- \{0, 1, 2, 6, 10\}, \{0, 3, 5, 6, 10\},
- \{0, 2, 4, 5, 11\}, \{0, 2, 5, 7, 11\},
- \{0, 1, 5, 8, 11\}, \{0, 1, 6, 8, 11\}.
How to handle the remaining 5-tuples? Instead of working with genus 5 curves and quadratic number fields we try to deal with genus 2 curves and quartic number fields.

For example in case of the tuple \{0, 1, 2, 6, 10\} we have

\[
\begin{align*}
b &= x_0^2, \\
x + b &= x_1^2, \\
2x + b &= x_2^2, \\
6x + b &= x_3^2, \\
10x + b &= x_4^2.
\end{align*}
\]
We may parametrize all variables using x_i, x_j for any $i, j \in \{0, 1, 2, 3, 4\}, i \neq j$ to obtain

$$y^2 = f(x_i, x_j),$$

where f is homogeneous degree 6 polynomial. We have

$$(i, j) \in \{(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)\},$$

so we may obtain 10 genus 2 curves.
Genus 2 curves

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>$f(x_i, x_j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>$-(9/x_0^2 - 10/x_1^2)(5/x_0^2 - 6/x_1^2)(x_0^2 - 2/x_1^2)$</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>$\frac{1}{2}(4/x_0^2 - 5/x_2^2)(2/x_0^2 - 3/x_2^2)(x_0^2 + x_2^2)$</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>$-\frac{1}{54}(5/x_0^2 + x_3^2)(2/x_0^2 + x_3^2)(2/x_0^2 - 5/x_3^2)$</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>$\frac{1}{250}(9/x_0^2 + x_4^2)(4/x_0^2 + x_4^2)(2/x_0^2 + 3/x_4^2)$</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>$(8/x_1^2 - 9/x_2^2)(4/x_1^2 - 5/x_2^2)(2/x_1^2 - x_2^2)$</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>$-\frac{1}{125}(6/x_1^2 - x_3^2)(4/x_1^2 + x_3^2)(4/x_1^2 - 9/x_3^2)$</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>$\frac{1}{729}(10/x_1^2 - x_4^2)(8/x_1^2 + x_4^2)(4/x_1^2 + 5/x_4^2)$</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>$-\frac{1}{8}(5/x_2^2 - x_3^2)(3/x_2^2 - x_3^2)(x_2^2 - 2/x_3^2)$</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>$\frac{1}{64}(9/x_2^2 - x_4^2)(5/x_2^2 - x_4^2)(x_2^2 + x_4^2)$</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>$\frac{1}{8}(9/x_3^2 - 5/x_4^2)(5/x_3^2 - 3/x_4^2)(2/x_3^2 - x_4^2)$</td>
</tr>
</tbody>
</table>
Genus 2 curves

Our choice: \(i = 2, j = 4 \):

\[
y_0^2 = \frac{1}{64} \left(9 x_2^2 - x_4^2 \right) \left(5 x_2^2 - x_4^2 \right) \left(x_2^2 + x_4^2 \right),
\]

it can be written as follows

\[
C : \quad y^2 = x^6 - 13x^4 + 31x^2 + 45.
\]

Based on Stoll’s papers one computes that the rank of the Jacobian is 2, therefore classical Chabauty’s method cannot be applied to determine the set of rational points.
Put $K = \mathbb{Q}(\alpha)$, where $\alpha^4 - 8\alpha^2 + 36 = 0$. Over the number field K we have

$$y^2 = f_1(x)f_2(x),$$

where $\deg f_1 = 2$, $\deg f_2 = 4$ and

$$f_1(x) = x^2 + \frac{1}{6}(\alpha^3 - 8\alpha)x + \frac{1}{2}(-\alpha^2 + 4),$$

$$f_2(x) = x^4 + \frac{1}{6}(-\alpha^3 + 8\alpha)x^3 + \frac{1}{2}(-\alpha^2 - 14)x^2 +$$

$$+ \frac{1}{2}(3\alpha^3 - 24\alpha)x + \frac{1}{2}(9\alpha^2 - 36).$$
We can write that

\[y_1^2 = \delta f_1(x) \text{ and } y_2^2 = \delta f_2(x), \]

where \(\delta \) is an element of a finite set, in our case a set of cardinality 32. In all cases the equation \(y_2^2 = \delta f_2(x) \) defines an elliptic curve over \(K \) with Mordell-Weil rank 0, 1 or 2. So the rank is less than the degree of \(K \), therefore elliptic curve Chabauty’s method can be applied.
Elliptic Chabauty’s method

The case of $\delta = 1/12(\alpha^3 - 2\alpha)$. The curve $y_2^2 = \delta f_2(x)$ has the model

$$E : \quad Y^2 = X^3 + \frac{1}{4}(3\alpha^3 + \alpha^2 - 24\alpha + 50)X^2 +$$

$$+ \frac{1}{4}(25\alpha^3 - 30\alpha^2 - 218\alpha + 408)X + \frac{1}{2}(33\alpha^3 - 90\alpha^2 - 210\alpha + 648).$$

The torsion subgroup of the Mordell-Weil group of E has 4 elements and the rank of the Mordell-Weil group is 2. The points coming from this case on C are

$$(\pm 3, 0), (-2, \pm 5), (2, \pm 5).$$
Fix any exponent $\ell \geq 2$. Let a be a positive integer (the difference of our progression), b be an integer, and put

$$S_{a,b}(\ell) = \lim_{N \to \infty} \frac{\left| \{x : ax + b \text{ is an } \ell\text{-th power, } 0 \leq x < N \} \right|}{\ell \sqrt{N}}.$$

We let

$$S_a(\ell) = \max_{b \in \mathbb{Z}} S_{a,b}(\ell).$$

Note that clearly, $S_{a,b}(\ell)$ does not actually depend on b, only on the residue class of b modulo a.

$$(24k - 23 \sim 24k + 1 \sim 24k + 25).$$
Set

\[S(\ell) = \max_{a \in \mathbb{N}} S_a(\ell). \]

It is not that obvious that this maximum also exists. Let \(\ell \geq 2 \) and let \(ax + b \) be an arithmetic progression. By an \(\ell \)-transformation of this progression we mean an arithmetic progression of the shape

\[(az^\ell)x + (b + ta)z^\ell, \]

where \(z \) is a positive integer and \(t \) is an arbitrary integer.
Theorem (Part 1)

\(S(\ell) \) exists for any \(\ell \geq 2 \) and we have

\[
S(\ell) = \begin{cases}
\sqrt{\frac{8}{3}}, & \text{if } \ell = 2, \\
\prod_{p \text{ prime, } p-1|\ell} (p - 1)p^{\frac{1}{\ell} - 1}, & \text{otherwise.}
\end{cases}
\]
Theorem (Part 2)

Further, for the arithmetic progression $ax + b$ we have $S_{a,b}(\ell) = S(\ell)$ if and only if it is an ℓ-transformation of

$$a^* x + b^*$$

with

$$a^* = \begin{cases}
24, & \text{if } \ell = 2, \\
5 \text{ or } 80, & \text{if } \ell = 4, \\
\prod_{p \text{ prime}, \; p-1|\ell} p, & \text{otherwise}, \\
\prod_{p \text{ prime}, \; p-1|\ell} \frac{\log p}{\log p - \log(p-1)} > \ell
\end{cases}$$

and

$$b^* = \begin{cases}
0, & \text{if } a^* = 1, \\
1, & \text{otherwise}.
\end{cases}$$
Remark

Note that clearly, we could take $b^* = 1$ for $a^* = 1$ as well. Our choice for b^* in the theorem in this case is just to keep the convention $0 \leq b^* < a^*$.

Observe that for ℓ odd, the products in the statement are empty, so we have

$$S(\ell) = a^* = 1$$

in this case. That is, for odd values of ℓ, the 'best' progression (in the above sense) is the trivial one x, or any of its ℓ-transformations. On the other hand, there are infinitely many even values of ℓ with $S(\ell) > 1$ and $a^* > 1$. For example, taking $\ell = p - 1$ with any odd prime p, a simple calculation shows that $p \mid a^*$ and $S(\ell) \geq \ell(\ell + 1)^{\frac{1}{\ell} - 1} > 1$.
In case of $\ell = 4$ none of the two 'best' progressions is 'better' than the other. In fact, though

$$\left| P_{5,1;N(4)} - P_{80,1;N(4)} \right| \leq 1$$

for any N,

$$P_{5,1;N(4)} - P_{80,1;N(4)}$$

changes sign infinitely often.
Problem 1

Is it true that

$$\lim_{\ell \to \infty} S(\ell) = 1 ?$$

Problem 2

For fixed $\ell \geq 2$, for any arithmetic progression $ax + b$ and $N \geq 1$ set

$$P_{a,b;N}(\ell) = |\{x : ax + b \text{ is an } \ell\text{-th power, } 0 \leq x < N\}|.$$

Is it true that there exists an N_0 such that for any $N > N_0$

$$\max_{a > 0, \ b \geq 0} P_{a,b;N}(\ell) = P_{a^*,b^*;N}(\ell)$$

holds? Here for the special case $\ell = 4$ we use the convention that

$$P_{a^*,b^*;N}(4) = \max(P_{5,1;N}(4), P_{80,1;N}(4)).$$
Problem 3

Use the notation from Problem 2, and for ℓ odd and $N \geq 1$ let b^\times be the largest ℓ-th power being at most $(N - 1)/2$, that is

$$b^\times = \left\lfloor \ell \sqrt{\frac{N - 1}{2}} \right\rfloor.$$

Is it true that for any odd ℓ there exists an N_0 such that for any $N > N_0$

$$\max_{a > 0, \ b \in \mathbb{Z}} P_{a,b;N}(\ell) = P_{1,-b^\times;N}(\ell)$$

holds?
Lemma (Niven, Zuckerman and Montgomery)

Let ℓ and n be positive integers greater than one, and write $U_\ell(n)$ for the number of ℓ-th roots of unity modulo n. Further, let $\nu_p(\ell)$ denote the exponent of a prime p in the factorization of ℓ.

i) We have $U_\ell(2) = 1$, and if ℓ is odd, then $U_\ell(2^\alpha) = 1$ for any $\alpha \geq 1$. If ℓ is even, then we have $U_\ell(2^\alpha) = 2^{\min(\nu_2(\ell)+1,\alpha-1)}$ for any $\alpha \geq 2$.

ii) Let p be an odd prime. Then for any $\alpha \geq 1$ we have $U_\ell(p^\alpha) = p^{\min(\nu_p(\ell),\alpha-1)} \gcd(\ell, p - 1)$.
The total number of \(\ell \)-th powers between the first term \(b \) and the \(N \)-th term \(a(N - 1) + b \) of the progression \(ax + b \) \((x \geq 0)\) is clearly \(\sqrt[\ell]{aN} + o(1) \). The question is that how many of these (roughly) \(\sqrt[\ell]{aN} \) \(\ell \)-th powers belong to the progression \(ax + b \), for a given \(b \). Obviously, any \(\ell \)-th power belongs to some progression \(ax + b \) with \(0 \leq b < a \).

Clearly, those \(\ell \)-th powers \(u^\ell \) will belong to the progression \(ax + b \) for which

\[u^\ell \equiv b \pmod{a}. \]
That is, we should find the b for which

$$M_{a,b}(\ell) := \left| \{ u : 0 \leq u < a, \ u^\ell \equiv b \pmod{a} \} \right|$$

is maximal. Write

$$M_a(\ell) = \max_{0 \leq b < a} M_{a,b}(\ell)$$

for this maximum.
$S_a(\ell)$ and $M_a(\ell)$ are multiplicative in a: if $a = a_1 a_2$ with $\gcd(a_1, a_2) = 1$, then

$$M_a(\ell) = M_{a_1}(\ell) M_{a_2}(\ell), \quad S_a(\ell) = S_{a_1}(\ell) S_{a_2}(\ell).$$

We may restrict our attention to arithmetic progressions $ax + b$ with $a = p^\alpha$ and

$$S_{p^\alpha, b}(\ell) \geq 1.$$
For any b with $0 \leq b < p^\alpha$, by the definition of $M_{p^\alpha,b}(\ell)$ there exist integers

$$0 \leq u_1 < \cdots < u_{M_{p^\alpha,b}(\ell)} < p^\alpha$$

such that

$$u_1^\ell \equiv \cdots \equiv u_{M_{p^\alpha,b}(\ell)}^\ell \equiv b \pmod{p^\alpha}.$$
Sketch of the proof

We only consider the case with $p \nmid b$.

Multiplying the sequence of congruences with $u_1^{-\ell}$ modulo $p\alpha$, we see that $M_{p\alpha,b}(\ell) = M_{p\alpha,1}(\ell)$. So for any b with $p \nmid b$ Lemma N-Z-M shows that

$$S_{p\alpha,b}(\ell) = \begin{cases} 2^{\alpha\left(\frac{1}{\ell} - 1\right)}, & \text{if } p = 2 \text{ and } \ell \text{ is odd,} \\ 2^{\min(\nu_2(\ell)+1,\alpha-1)} \cdot 2^{\alpha\left(\frac{1}{\ell} - 1\right)}, & \text{if } p = 2 \text{ and } \ell \text{ is even,} \\ p^{\min(\nu_p(\ell),\alpha-1)} \gcd(\ell, p - 1) \cdot p^{\alpha\left(\frac{1}{\ell} - 1\right)}, & \text{if } p \text{ is an odd prime.} \end{cases}$$
Take $p = 2$. We have that ℓ is even, $\alpha > 1$ and

$$\min(\nu_2(\ell) + 1, \alpha - 1) + \alpha \left(\frac{1}{\ell} - 1\right) \geq 0.$$

If

$$\nu_2(\ell) + 1 \geq \alpha - 1$$

then on the one hand

$$\ell \geq 2^{\alpha-2},$$

and on the other hand, by the inequality

$$\alpha \geq \ell.$$

Hence we get that

$$(p^\alpha, \ell) = (4, 2), (8, 2), (16, 4).$$
Otherwise, if \(\nu_2(\ell) + 1 < \alpha - 1 \)

then as the inequality implies

\[\nu_2(\ell) + \frac{\alpha}{\ell} \geq \alpha - 1, \]

we get \(\alpha > \ell \). As \(\ell \geq 2^{\nu_2(\ell)} \) this gives

\[\nu_2(\ell) < \frac{\log \alpha}{\log 2}. \]

It follows that

\((p^\alpha, \ell) = (16, 2) \).
How to determine the 'best' progressions?

There exists integers \(n_0, n_1, n_2, n_3 \) with
\[0 \leq n_0 < n_1 < n_2 < n_3 < N \] such that

\[an_i + b = x_i^3 \quad (i = 0, 1, 2, 3) \quad (3) \]

with some integers \(x_0, x_1, x_2, x_3 \). The system (3) yields four genus one curves of the form

\[(n_j - n_i)X^3 + (n_i - n_k)Y^3 + (n_k - n_j)Z^3 = 0, \quad (4) \]

where \(0 \leq i < j < k \leq 3 \).
We get three genus one curves as follows:

\begin{align*}
 C_1 : & \quad n_1 x_2^3 - n_2 x_1^3 + (n_2 - n_1) x_0^3 = 0, \\
 C_2 : & \quad n_1 x_3^3 - n_3 x_1^3 + (n_3 - n_1) x_0^3 = 0, \\
 C_3 : & \quad n_2 x_3^3 - n_3 x_2^3 + (n_3 - n_2) x_0^3 = 0.
\end{align*}

Define morphisms

\begin{align*}
 \zeta_0 : & \quad (x_0 : x_1 : x_2 : x_3) \to (\zeta x_0 : x_1 : x_2 : x_3), \\
 \zeta_1 : & \quad (x_0 : x_1 : x_2 : x_3) \to (x_0 : \zeta x_1 : x_2 : x_3), \\
 \zeta_2 : & \quad (x_0 : x_1 : x_2 : x_3) \to (x_0 : x_1 : \zeta x_2 : x_3), \\
 \zeta_3 : & \quad (x_0 : x_1 : x_2 : x_3) \to (x_0 : x_1 : x_2 : \zeta x_3),
\end{align*}

where \(\zeta \) denotes a primitive cube root of unity. We will use subgroups of the form \(H_{i,j} = \langle \zeta_0^i \zeta, \zeta_0^j \zeta \rangle \) with \(1 \leq i < j \leq 3 \).
For example, if we take the first two genus one curves C_1 and C_2 defined above with the subgroup $H_{1,2} = \langle \zeta_0 \zeta_1, \zeta_0 \zeta_2 \rangle$, then the corresponding quotient is isomorphic to the genus two hyperelliptic curve given by

$$C_{H_{1,2}}^{1,2} : \quad y^2 = ((n_2 - n_1)(n_3 - n_1)n_3)^2x^6 +$$

$$+2((n_3 - n_1)n_3)^2(2n_1n_2 - n_1n_3 - n_2n_3)x^3 + ((n_3 - n_1)n_3^2)^2.$$

We note that $(1, (n_3 - n_1)(n_1 + n_2 - n_3)n_3)$ is a point on $C_{H_{1,2}}^{1,2}$.
We provide some details for \((n_0, n_1, n_2, n_3) = (0, 1, 3, 8)\). We obtain the three genus one curves

\[
\begin{align*}
C_1 & : \quad x_2^3 - 3x_1^3 + 2x_0^3 = 0, \\
C_2 & : \quad x_3^3 - 8x_1^3 + 7x_0^3 = 0, \\
C_3 & : \quad 3x_3^3 - 8x_2^3 + 5x_0^3 = 0.
\end{align*}
\]

We get the hyperelliptic curve

\[
C_{H_1,2}^{1,2} : y^2 = 12544x^6 - 163072x^3 + 200704,
\]

which is isomorphic to

\[
C' : y^2 = 784x^6 - 10192x^3 + 12544.
\]
We get that the rank of the Jacobian of the curve is one and
\[
\text{Jac}(C')(\mathbb{Q}) = \langle (x^2, -112, 2), (x, 28x^3 + 112, 2), (x-1, 28x^3 - 84, 2) \rangle,
\]
where the first two generators are of order three and the last generates the free part. A standard application of Chabauty’s method yields that the only affine rational points on \(C' \) are given by
\[
\{(0, \pm 112), (1, \pm 56)\}.
\]
These points do not give rise to non-constant arithmetic progressions.
Let \((n_0, n_1, n_2)\) with \(0 \leq n_0 < n_1 < n_2 \leq N\) be such that

\[an_i + b = x_i^4 \quad (i = 0, 1, 2).\] (5)

If \(n_0, n_1, n_2\) is an arithmetic progression, then we get

\[x_0^4 + x_2^4 = 2x_1^4.\]

However, a classical result of Dénes implies that \(x_0 = x_1 = x_2\), a contradiction.
If \((n_0, n_1, n_2) = (0, 1, 3)\) then we get

\[3x_1^4 - 2x_0^4 = x_2^4.\]

The pairwise coprime integral solutions of the above equation can be parametrized by standard arguments. In our case we get

\[
\begin{align*}
rx_0^2 &= -2p^2 - 2pq + q^2, \\
rx_1^2 &= 2p^2 + q^2, \\
rx_2^2 &= 2p^2 - 4pq - q^2,
\end{align*}
\]

where \(p, q, r \in \mathbb{Z}\) and \(r \mid 12\). From the second equation we immediately get that \(r > 0\).
If \(r \in \{1, 3, 4, 12\} \), then the equation

\[
rx_2^2 = 2p^2 - 4pq - q^2 = 6p^2 - (2p + q)^2
\]

has only the trivial solution \((p, q, x_2) = (0, 0, 0)\).

Further, if \(r = 2 \) then the equation

\[
rx_0^2 = -2p^2 - 2pq + q^2 = (q - p)^2 - 3p^2
\]

has only the trivial solution.
So we are left with $r = 6$ as the only possibility. In this case multiplying the three equations above, after dividing by q^6 and writing $x = p/q, \ y = 36x_0x_1x_2$ we obtain the genus two hyperelliptic curve

$$D : \quad y^2 = -48x^6 + 48x^5 + 120x^4 + 60x^2 - 12x - 6.$$
We get that

$$\text{Jac}(D)(\mathbb{Q}) = \langle (x^2 + \frac{1}{2}, 0, 2), (x^2 + x - \frac{1}{2}, 0, 2), (x^2 + x + \frac{1}{4}, 12x + \frac{3}{2}, 2) \rangle,$$

where the first two elements are of order two and the last one generates the free part. Classical Chabauty’s method implies that

$$D(\mathbb{Q}) = \{ (-\frac{1}{2}, \pm \frac{9}{2}) \}.$$

This gives rise to the trivial solution with $$(x^4_0, x^4_1, x^4_2) = (1, 1, 1).$$
Consider the equation

\[
\binom{n}{k} = \binom{m}{l} + d.
\]

There are many nice results related to \(d = 0\) and

\((k, l) = (2, 3), (2, 4), (2, 6), (2, 8), (3, 4), (3, 6), (4, 6), (4, 8)\).

Elliptic curves appear all in the above cases.
Cases with $d = 0$

\[
\binom{16}{2} = \binom{10}{3}, \quad \binom{56}{2} = \binom{22}{3}, \quad \binom{120}{2} = \binom{36}{3}, \quad \binom{21}{2} = \binom{10}{4}, \quad \binom{153}{2} = \binom{19}{5}, \quad \binom{78}{2} = \binom{15}{5} = \binom{14}{6}, \quad \binom{221}{2} = \binom{17}{8}, \quad \frac{F_{2i+2}F_{2i+3}}{F_{2i}F_{2i+3}} = \frac{F_{2i+2}F_{2i+3} - 1}{F_{2i}F_{2i+3} + 1} \text{ for } i = 1, 2, \ldots,
\]

where F_n is the nth Fibonacci number. The infinite family of solutions involving Fibonacci numbers was found by Lind and Singmaster.
Cases with $d \neq 0$

In 2017 Blokhuis, Brouwer and de Weger determined all non-trivial solutions with $d = 1$ in almost all elliptic curve cases.

<table>
<thead>
<tr>
<th>n</th>
<th>k</th>
<th>m</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>2</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>60</td>
<td>2</td>
<td>23</td>
<td>3</td>
</tr>
<tr>
<td>160403633</td>
<td>2</td>
<td>425779</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>34</td>
<td>2</td>
</tr>
<tr>
<td>27</td>
<td>3</td>
<td>77</td>
<td>2</td>
</tr>
<tr>
<td>29</td>
<td>3</td>
<td>86</td>
<td>2</td>
</tr>
<tr>
<td>34</td>
<td>3</td>
<td>21</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>k</th>
<th>m</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>19630</td>
<td>3</td>
<td>1587767</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>32</td>
<td>2</td>
</tr>
<tr>
<td>93</td>
<td>4</td>
<td>2417</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>5</td>
<td>230</td>
<td>2</td>
</tr>
<tr>
<td>62</td>
<td>5</td>
<td>3598</td>
<td>2</td>
</tr>
<tr>
<td>135</td>
<td>5</td>
<td>26333</td>
<td>2</td>
</tr>
<tr>
<td>139</td>
<td>5</td>
<td>28358</td>
<td>2</td>
</tr>
<tr>
<td>28</td>
<td>11</td>
<td>6554</td>
<td>2</td>
</tr>
</tbody>
</table>
Cases with d as a variable

If d is not fixed Blokhuis, Brouwer and de Weger also obtained some interesting infinite families, an example is given by

\[
\left(\frac{12x^2 - 12x + 3}{3}\right) + \left(\frac{x}{2}\right) = \left(\frac{24x^3 - 36x^2 + 15x - 1}{2}\right).
\]

In 2019, Katsipis completely resolved the case with $(k, l) = (8, 2)$ and he also determined the integral solutions if $(k, l), (l, k) = (3, 6)$ and $d = 1$.
Let

\[C_d : \quad y^2 = 15x(x - 1)(x - 2)(x - 3)(x - 4) + 15^2(8d + 1) \]

and write \(J_d := \text{Jac}(C_d) \). The curve \(C_d \) is isomorphic to the curve defined by the equation \(\left(\frac{y}{2} \right) = \left(\frac{x}{5} \right) + d \). We computed upper bounds for the numbers \(r_d = \text{rank}J_d(\mathbb{Q}) \) using the Magma procedure RankBound.
Ranks of curves

We obtained the following data

<table>
<thead>
<tr>
<th>i</th>
<th>the value of d such that $r_d \leq i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$-45, -40, -39, -37, -34, -10, -9, -4, 8, 25, 26, 40, 47$</td>
</tr>
<tr>
<td>1</td>
<td>$-47, -36, -33, -31, -28, -26, -25, -22, -14, -13, -8, -5, -2, 5, 11, 17, 20, 29, 32, 41, 50$</td>
</tr>
<tr>
<td>2</td>
<td>$-50, -46, -41, -38, -32, -30, -29, -24, -23, -19, -16, -7, 4, 13, 14, 23, 30, 31, 38, 43, 44$</td>
</tr>
<tr>
<td>3</td>
<td>$-48, -44, -43, -42, -35, -21, -20, -15, -11, -3, -1, 2, 7, 16, 18, 19, 33, 35, 39, 42, 48$</td>
</tr>
<tr>
<td>4</td>
<td>$-49, -27, -18, -17, -12, -6, 9, 12, 22, 24, 34, 37, 46, 49$</td>
</tr>
<tr>
<td>5</td>
<td>$27, 36$</td>
</tr>
<tr>
<td>6</td>
<td>$0, 1, 3, 6, 10, 15, 45$</td>
</tr>
<tr>
<td>7</td>
<td>$21, 28$</td>
</tr>
</tbody>
</table>
Rank 8 curve

We also looked for high rank Jacobians for further values of d of the form $\binom{w}{2}$. For $d = 66 = \binom{12}{2}$ we obtained the equality $r_{66} = 8$:

$$<x - 3, -345>, <x - 1, -345>, <x - 4, 345>, <x, 345>,$$

$$<x + 3, 285>, <x + 4, 135>, <x - 11, 975>, <x^2 + x + 30, -30x + 165>.$$

Problem

Prove that the only solutions in positive integers of the equation $\binom{y}{2} = \binom{x}{5} + 66$ are

$$(x, y) = (1, 23), (2, 23), (3, 23), (4, 23), (11, 65), (28, 887),$$

$$(7935, 1447264765), (7939, 1449089815).$$
The large points are explained by the fact that on the curve $C_{(w_2)}$ we have the following solutions

\[
x = 3 \cdot 5 \cdot (2w - 1)^2,
\]
\[
y = 75(720w^4 - 1440w^3 + 1020w^2 - 300w + 31)(2w - 1) \quad \text{and}
\]
\[
x = 3 \cdot 5 \cdot (2w - 1)^2 + 4,
\]
\[
y = 75(720w^4 - 1440w^3 + 1140w^2 - 420w + 61)(2w - 1).
\]
Large rank

We obtain the following divisors on $J_{\left(\frac{w}{2}\right)}(\mathbb{Q})$

$$< x, 30w - 15, 1 >,$$
$$< x - 1, 30w - 15, 1 >,$$
$$< x - 2, 30w - 15, 1 >,$$
$$< x - 3, 30w - 15, 1 >,$$
$$< x - 4, 30w - 15, 1 >,$$
$$< x - 60w^2 + 60w - 15, 108000w^5 - 270000w^4 + 261000w^3 - 121500w^2 + 27150w - 2325, 1 >,$$
$$< x - 60w^2 + 60w - 19, 108000w^5 - 270000w^4 + 279000w^3 - 148500w^2 + 40650w - 4575, 1 >.$$

$w = 9, 11 \rightarrow \text{rank} = 5$

$w = 3, 4, 5, 6, 10 \rightarrow \text{rank} = 6$

$w = 7, 8 \rightarrow \text{rank} = 7$
Numerical experiment

We computed the set

\[D_k := \left\{ \binom{n}{k} - \binom{m}{k} : k < m < n \leq 10^4 \right\} . \]

As one may expect, in case \(k = 3 \) the number of duplicates is large.

Problem

For each \(N \in \mathbb{N} \) there exists \(d_N \in \mathbb{N} \) such that the equation \(\binom{n}{3} - \binom{m}{3} = d_N \) has at least \(N \) positive integer solutions.
For $k = 5$ we found 4 values of d which appeared at least 2 times in D_5:

\[
\begin{align*}
 d &= 146438643 \quad (n, m) = (117, 78), (133, 118), \\
 d &= 153852348 \quad (n, m) = (118, 78), (133, 117), \\
 d &= 817514347 \quad (n, m) = (160, 53), (209, 197), \\
 d &= 2346409884 \quad (n, m) = (197, 53), (209, 160).
\end{align*}
\]

For $k = 6$ we also found 4 values of d which appeared at least 2 times in D_6:

\[
\begin{align*}
 d &= 3819816 \quad (n, m) = (40, 18), (57, 56), \\
 d &= 32449872 \quad (n, m) = (56, 18), (57, 40), \\
 d &= 6627315776 \quad (n, m) = (193, 66), (252, 243), \\
 d &= 268624373556 \quad (n, m) = (243, 66), (252, 193).
\end{align*}
\]
Among the solutions given by Blokhuis, Brouwer and de Weger there are some with \((k, l) = (2, 5)\) e.g.:

\[
\binom{10}{5} + 1 = \binom{23}{2}, \quad \binom{22}{5} + 1 = \binom{230}{2}, \quad \binom{62}{5} + 1 = \binom{3598}{2}
\]

in these cases the problem can be reduced to genus 2 curves.
Genus 2 cases

Gallegos-Ruiz, Katsipis, Ulas and T.

All integral solutions \((n, m)\) of equation \(\binom{n}{k} = \binom{m}{l} + d\) with
\(d \in \{-3, \ldots, 3\}, \ k = 2, \ l = 5\) are as follows.

<table>
<thead>
<tr>
<th>(d)</th>
<th>solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>[(3, 6)]</td>
</tr>
<tr>
<td>-2</td>
<td>[]</td>
</tr>
<tr>
<td>-1</td>
<td>[(11, 8)]</td>
</tr>
<tr>
<td>0</td>
<td>[(2, 5), (4, 6), (7, 7), (78, 15), (153, 19)]</td>
</tr>
<tr>
<td>1</td>
<td>[(23, 10), (230, 22), (3598, 62), (26333, 135), (28358, 139)]</td>
</tr>
<tr>
<td>2</td>
<td>[(3, 5)]</td>
</tr>
<tr>
<td>3</td>
<td>[(31, 11), (94, 16), (346888, 375), (356263, 379)]</td>
</tr>
</tbody>
</table>
In case of $d = 3$ the hyperelliptic curve is given by

$$y^2 = 15x(x - 1)(x - 2)(x - 3)(x - 4) + 75^2$$

and the rank of the Jacobian is 6. A Mordell-Weil basis is as follows (in Mumford representation)

$$D_1 = \langle x - 4, -75 \rangle, \quad D_2 = \langle x - 3, 75 \rangle,$$
$$D_3 = \langle x - 1, -75 \rangle, \quad D_4 = \langle x, 75 \rangle,$$
$$D_5 = \langle x^2 - 7x + 30, 195 \rangle, \quad D_6 = \langle x^2 - 3x + 20, -30x - 45 \rangle.$$
We apply Baker’s method to get a large upper bound for $\log |x|$, in this case we obtain

$$\log |x| \leq 1.028 \times 10^{612}.$$

Every integral point on the curve can be expressed in the form

$$P - \infty = \sum_{i=1}^{6} n_i D_i$$

with $\|(n_1, n_2, n_3, n_4, n_5, n_6)\| \leq 1.92 \times 10^{306}$.
We choose to compute the period matrix and the hyperelliptic logarithms with 1500 digits of precision. The hyperelliptic logarithms of the divisors D_i are given by

\[
\varphi(D_1) = (0.087945 \ldots + i0.112834 \ldots, -0.473844 \ldots - i0.741784 \ldots) \in \mathbb{C}^2,
\]
\[
\varphi(D_2) = (0.114612 \ldots + i0.112834 \ldots, -0.420527 \ldots - i0.741784 \ldots) \in \mathbb{C}^2,
\]
\[
\varphi(D_3) = (-0.044486 \ldots + i1.333456 \ldots, -0.416321 \ldots + i5.329970 \ldots) \in \mathbb{C}^2,
\]
\[
\varphi(D_4) = (0.127905 \ldots + i0.112834 \ldots, -0.413878 \ldots - i0.741784 \ldots) \in \mathbb{C}^2,
\]
\[
\varphi(D_5) = (-0.118415 \ldots + i0.037611 \ldots, -0.857076 \ldots - i0.247261 \ldots) \in \mathbb{C}^2,
\]
\[
\varphi(D_6) = (0.128537 \ldots + i0.075223 \ldots, -0.173077 \ldots - i0.494522 \ldots) \in \mathbb{C}^2.
\]
Setting $K = 10^{1300}$ we get a new bound 125.87 for $\|(n_1, n_2, n_3, n_4, n_5, n_6)\|$. We repeat the reduction process with $K = 10^{18}$ that yields a better bound, namely 15.99. Three more steps with $K = 10^{15}$, $K = 10^{13}$ and $K = 6 \times 10^{11}$ provide the bounds 14.85, 14.1 and 13.8. It remains to compute all possible expressions of the form

$$n_1 D_1 + \ldots + n_6 D_6$$

with $\|(n_1, n_2, n_3, n_4, n_5, n_6)\| \leq 13.8$. We performed a parallel computation to enumerate linear combinations coming from integral points on a machine having 12 cores. The computation took 3 hours and 23 minutes.
We obtained the following non-trivial solutions with $n \geq 5$

\[
\begin{align*}
\binom{11}{5} + 3 &= \binom{31}{2}, \\
\binom{16}{5} + 3 &= \binom{94}{2}, \\
\binom{375}{5} + 3 &= \binom{346888}{2}, \\
\binom{379}{5} + 3 &= \binom{356263}{2}.
\end{align*}
\]
In case of the equation $\binom{n}{2} = \binom{m}{7} + d$ one obtains genus 3 curves. Stoll proved that the rank of the Jacobian is 9 if $d = 0$. For other values of d in the range \{-3, \ldots, 3\} many of the genus 3 hyperelliptic curves have high ranks as well. Balakrishnan et. al. developed an algorithm to deal with genus 3 hyperelliptic curves defined over \mathbb{Q} whose Jacobians have Mordell-Weil rank 1. If $d = -2$, then the equation is isomorphic to the curve

$$Y^2 = 70X^7 - 1470X^6 + 12250X^5 - 51450X^4 + 113680X^3 - 123480X^2 + 50400X - 661500$$

and using Magma (with `SetClassGroupBounds("GRH")` to speed up computation) we get that the rank of the Jacobian is 1. The affine points are $(8, \pm 1470)$, hence we have the solution $\binom{4}{2} = \binom{8}{7} - 2$.
