
ON COMPOSITE RATIONAL FUNCTIONS

A. PETHŐ AND SZ. TENGELY

Abstract. In this paper we characterize all composite lacunary rational func-

tions having at most 4 distinct zeroes and poles and we also provide some
examples in case of 5 singularities.

1. introduction

In this article we deal with a problem related to decompositions of polynomials
and rational functions. A classical result by Ritt [28] states that if there is a
polynomial f ∈ C[X] satisfying certain tameness properties and

f = g1 ◦ g2 ◦ · · · ◦ gr = h1 ◦ h2 ◦ · · · ◦ hs,
then r = s and {deg g1, . . . ,deg gr} = {deg h1, . . . ,deg hr}. Ritt’s fundamental
result has been investigated, extended and applied in various wide-ranging contexts
(see e.g. [5, 11, 13, 14, 17, 18, 21, 22, 24, 25, 32, 33]). The above statement is not
true for rational functions. It is not true that all complete decompositions of a
rational function have the same length. Gutierrez and Sevilla [21] provided an
example with rational coefficients as follows

f =
x3(x+ 6)3(x2 − 6x+ 36)3

(x− 3)3(x2 + 3x+ 9)3
,

f = g1 ◦ g2 ◦ g3 = x3 ◦ x(x− 12)

x− 3
◦ x(x+ 6)

x− 3
,

f = h1 ◦ h2 =
x3(x+ 24)

x− 3
◦ x(x2 − 6x+ 36)

x2 + 3x+ 9
.

We would like to emphasize that combinations of Siegel’s [30] and Faltings’ [16]
finiteness theorems, related to integral and rational points on algebraic curves, and
Ritt’s result have yielded many nice results in Diophantine number theory (see e.g.
[2, 6, 8, 7, 10, 12, 18, 23, 26, 27, 31]).

In case of lacunary polynomials, that is when the number of terms of the poly-
nomial is considered to be fixed while the degrees and coefficients may vary, Erdős
[15] and independently Rényi posed the following conjecture. If h(x)2 has bound-
edly many terms, then the same is true for h(x) ∈ C[X]. Schinzel [29] gave a proof
in a more general case, namely when h(x)d has boundedly many terms. Schinzel
made the conjecture that if g(h(x)) has boundadly many term, then it holds also
for h(x). This latter conjecture has been proved by Zannier [34]. Fuchs and Zannier
[20] extended the problem, they considered lacunary rational functions which are
decomposable. An other possibility to think about lacunarity is that one considers
the number of zeros and poles of a rational function in reduced form to be bounded.
In this case Fuchs and Pethő [19] obtained results related to the structure of such
decomposable rational functions. We note that their proof was algorithmic, in
this paper we provide some computational experiments that we obtained by using
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2 A. PETHŐ AND SZ. TENGELY

a MAGMA [9] implementation. We not only compute the appropriate varieties,
but we also provide parametrizations of the possible solutions. We remark that
algorithms have been developed earlier to find decompositions of a given rational
function (see e.g. [1, 3, 4]). In [3], Ayad and Fleischmann implemented a MAGMA
code to find decompositions, as an example they considered the rational function

f =
x4 − 8x

x3 + 1

and they obtained that f(x) = g(h(x)), where

g =
x2 + 4x

x+ 1
and h =

x2 − 2x

x+ 1
.

2. auxiliary results

Fuchs and Pethő [19] proved the following theorem.

Theorem A. Let n be a positive integer. Then there exists a positive integer J
and, for every i ∈ {1, . . . , J}, an affine algebraic variety Vi defined over Q and with
Vi ⊂ An+ti for some 2 ≤ ti ≤ n, such that:

(i) If f, g, h ∈ k(x) with f(x) = g(h(x)) and with deg g,deg h ≥ 2, g not of the
shape (λ(x))m,m ∈ N, λ ∈ PGL2(k), and f has at most n zeros and poles altogether,
then there exists for some i ∈ {1, . . . , J} a point P = (α1, . . . , αn, β1, . . . , βti) ∈
Vi(k), a vector (k1, . . . , kti) ∈ Zti with k1 + k2 + . . .+ kti = 0 or not depending on
Vi , a partition of {1, . . . , n} in ti + 1 disjoint sets S∞, Sβ1

, . . . , Sβti with S∞ = ∅
if k1 + k2 + . . . + kti = 0, and a vector (l1, . . . , ln) ∈ {0, 1, . . . , n − 1}n, also both
depending only on Vi, such that

f(x) =

ti∏
j=1

(ωj/ω∞)kj , g(x) =

ti∏
j=1

(x− βj)kj

and

h(x) =

{
βj +

ωj
ω∞

(j = 1, . . . , ti), if k1 + k2 + . . .+ kti 6= 0
βj1ωj2−βj2ωj1

ωj2−ωj1
(1 ≤ j1 < j2 ≤ ti), otherwise,

where

ωj =
∏

m∈Sβj

(x− αm)lm , j = 1, . . . , ti

and

ω∞ =
∏

m∈S∞

(x− αm)lm .

Moreover, we have degh ≤ (n− 1)/max ti − 2, 1 ≤ n− 1.
(ii) Conversely for given data P ∈ Vi(k), (k1, . . . , kti), S∞, Sβ1

, . . . , Sβti , (l1, . . . , ln)

as described in (i) one defines by the same equations rational functions f, g, h with
f having at most n zeros and poles altogether for which f(x) = g(h(x)) holds.

(iii) The integer J and equations defining the varieties Vi are effectively com-
putable only in terms of n.

The method of proof of the above Theorem is effective. It provides an algorithm
to obtain all possible decompositions of rational functions with at most n zeros and
poles altogether.

We introduce some notation. Let

f(x) =

n∏
i=1

(x− αi)fi
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with pairwise distinct αi ∈ k and fi ∈ Z for i = 1, . . . , n. (Remember that without
loss of generality we are assuming that f is monic.) Similarly, let

g(x) =

t∏
j=1

(x− βj)kj

with pairwise distinct βj ∈ k and kj ∈ Z for j = 1, . . . , t and t ∈ N. Therefore we
have

n∏
i=1

(x− αi)fi = f(x) = g(h(x)) =

t∏
j=1

(h(x)− βj)kj .

We shall write h(x) = p(x)/q(x) with p, q ∈ k[x], p, q coprime. Fuchs and Pethő
showed that if S∞ 6= ∅ then

q(x) =
∏

m∈S∞

(x− αm)lm

and there is a partition of the set {1, . . . , n} \ S∞ in t disjoint subsets Sβ1 , . . . , Sβt
such that

(1) h(x) = βj +
1

q(x)

∏
m∈Sj

(x− αm)lm ,

where lm ∈ N satisfies lmkj = fm for m ∈ Sβj , and this holds true for every
j = 1, . . . , t. We obtain at least two different representations of h, since we assumed
that g is not of the shape (λ(x))m. Hence we get at least one equation of the form

(2) βi +
1

q(x)

∏
r∈Si

(x− αr)lr = βj +
1

q(x)

∏
s∈Sj

(x− αs)ls .

If S∞ = ∅ then we have

(p(x)− βjq(x))kj =
∏

m∈Sβj

(x− αm)fm .

Now we have that t ≥ 3, otherwise g is in the special form we excluded. Siegel’s
identity provides the equations in this case. That is if 1 ≤ j1 < j2 < j3 ≤ t, then
we have

(3) vj1,j2,j3 + vj3,j1,j2 + vj2,j3,j1 = 0,

where

vj1,j2,j3 = (βj1 − βj2)
∏

m∈Sβj3

(x− αm)lm .

3. the computation

The method of proof by Fuchs and Pethő provides an algorithm to obtain the
possible varieties. So we followed the steps described below.

(1) compute the partitions of {1, 2, . . . , n} into t+ 1 disjoint sets
(2) given a partition S∞, Sβ1

, . . . , Sβt and a vector (l1, . . . , ln) ∈ {1, 2, . . . , n}n
compute the corresponding variety V = {v1, . . . , vr}, where vi is a polyno-
mial in α1, . . . , αn, β1, . . . , βt obtained from (2) or (3)

(3) compute Groebner basis VG of the ideal generated by the polynomials
v1, . . . , vr

(4) test ideal membership for all αi−αj , i, j = 1, 2, . . . , n, i 6= j and βi−βj , i, j =
1, 2, . . . , t, i 6= j

(5) if there is no contradiction in the system list the given partition, vector and
variety.
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Now we provide some details of the computation. We note that there are no solution
if t = 3, n = 3 and S∞ 6= ∅ or t = 3, n = 4 and S∞ 6= ∅ or t = 4, n = 4 and S∞ 6= ∅.

3.1. The case t = 2, n = 3 and S∞ 6= ∅. There are two types of systems here, in
the first class one obtains solutions having two parameters, in the second class one
has solutions having three parameters. Below we indicate the 18 systems which
yield families with two parameters.

(S∞, Sβ1 , Sβ2), (l1, l2, l3) System of equations Solution (α1, α2, α3, β1, β2)

({3}, {2}, {1}) α1 − α3 + 1/4 = 0 (−1/4 + α3,−1/2 + α3, α3,−1 + β2, β2)
(1, 2, 2) α2 − α3 + 1/2 = 0

β1 − β2 + 1 = 0

({2}, {1}, {3}) α1 − α3 + 1/4 = 0 (−1/4 + α3, 1/4 + α3, α3,−1 + β2, β2)
(2, 2, 1) α2 − α3 − 1/4 = 0

β1 − β2 + 1 = 0

({1}, {2}, {3}) α1 − α3 − 1/4 = 0 (1/4 + α3,−1/4 + α3, α3,−1 + β2, β2)
(2, 2, 1) α2 − α3 + 1/4 = 0

β1 − β2 + 1 = 0

({1}, {3}, {2}) α1 − α3 − 1/2 = 0 (1/2 + α3, 1/4 + α3, α3,−1 + β2, β2)
(2, 1, 2) α2 − α3 − 1/4 = 0

β1 − β2 + 1 = 0

({2}, {3}, {1}) α1 − α3 + 1/4 = 0 (−1/4 + α3, 1/4 + α3, α3, 1 + β2, β2)
(2, 2, 1) α2 − α3 − 1/4 = 0

β1 − β2 − 1 = 0

({3}, {1}, {2}) α1 − α3 + 1/2 = 0 (−1/2 + α3,−1/4 + α3, α3,−1 + β2, β2)
(2, 1, 2) α2 − α3 + 1/4 = 0

β1 − β2 + 1 = 0

({1}, {3}, {2}) α1 − α3 − 1/4 = 0 (1/4 + α3,−1/4 + α3, α3, 1 + β2, β2)
(2, 2, 1) α2 − α3 + 1/4 = 0

β1 − β2 − 1 = 0

({1}, {2}, {3}) α1 − α3 − 1/2 = 0 (1/2 + α3, 1/4 + α3, α3, 1 + β2, β2)
(2, 1, 2) α2 − α3 − 1/4 = 0

β1 − β2 − 1 = 0

({2}, {1}, {3}) α1 − α3 − 1/4 = 0 (1/4 + α3, 1/2 + α3, α3, 1 + β2, β2)
(1, 2, 2) α2 − α3 − 1/2 = 0

β1 − β2 − 1 = 0

({2}, {3}, {1}) α1 − α3 − 1/4 = 0 (1/4 + α3, 1/2 + α3, α3,−1 + β2, β2)
(1, 2, 2) α2 − α3 − 1/2 = 0

β1 − β2 + 1 = 0

({3}, {2}, {1}) α1 − α3 + 1/2 = 0 (−1/2 + α3,−1/4 + α3, α3, 1 + β2, β2)
(2, 1, 2) α2 − α3 + 1/4 = 0

β1 − β2 − 1 = 0

({3}, {1}, {2}) α1 − α3 + 1/4 = 0 (−1/4 + α3,−1/2 + α3, α3, 1 + β2, β2)
(1, 2, 2) α2 − α3 + 1/2 = 0

β1 − β2 − 1 = 0

As an example consider the system from the sixth row, that is (S∞, Sβ1 , Sβ2) =
({3}, {1}, {2}) and (l1, l2, l3) = (2, 1, 2). Here we obtain the following system of
equations

α1 − α3 + 1/2 = 0,

α2 − α3 + 1/4 = 0,

β1 − β2 + 1 = 0.



ON COMPOSITE RATIONAL FUNCTIONS 5

Therefore one gets the parametric solution (α3 − 1/2, α3 − 1/4, α3, β2 − 1, β2) and

f(x) =
(x− α3 + 1/2)2(x− α3 + 1/4)

(x− α3)4
,

g(x) = (x− β2 + 1)(x− β2),

h(x) = β2 − 1 +
(x− α3 + 1/2)2

(x− α3)2
.

We note that one gets the same family in case of (S∞, Sβ1 , Sβ2) = ({3}, {2}, {1})
and (l1, l2, l3) = (1, 2, 2).

Now we provide the table containing the 6 systems which yield families with
three parameters.

(S∞, Sβ1 , Sβ2), (l1, l2, l3) System of equations Solution (α1, α2, α3, β1, β2)

({3}, {2}, {1}) α1 − α2 + 1/2β1 − 1/2β2 = 0 (−α2 + 2α3, α2, α3, 4α2 − 4α3 + β2, β2)
(2, 2, 1) α2 − α3 − 1/4β1 + 1/4β2 = 0

({1}, {3}, {2}) α1 − α3 + 1/4β1 − 1/4β2 = 0 (α1,−α3 + 2α1, α3,−4α1 + 4α3 + β2, β2)
(1, 2, 2) α2 − α3 + 1/2β1 − 1/2β2 = 0

({2}, {3}, {1}) α1 − α3 + 1/2β1 − 1/2β2 = 0 (2α2 − α3, α2, α3,−4α2 + 4α3 + β2, β2)
(2, 1, 2) α2 − α3 + 1/4β1 − 1/4β2 = 0

({1}, {2}, {3}) α1 − α3 − 1/4β1 + 1/4β2 = 0 (α1,−α3 + 2α1, α3, 4α1 − 4α3 + β2, β2)
(1, 2, 2) α2 − α3 − 1/2β1 + 1/2β2 = 0

({3}, {1}, {2}) α1 − α2 − 1/2β1 + 1/2β2 = 0 (−α2 + 2α3, α2, α3,−4α2 + 4α3 + β2, β2)
(2, 2, 1) α2 − α3 + 1/4β1 − 1/4β2 = 0

({2}, {1}, {3}) α1 − α3 − 1/2β1 + 1/2β2 = 0 (2α2 − α3, α2, α3, 4α2 − 4α3 + β2, β2)
(2, 1, 2) α2 − α3 − 1/4β1 + 1/4β2 = 0

From the parametrizations one can easily obtain the corresponding rational
functions, as an example we take the fourth row of the table. That is, we have
(S∞, Sβ1

, Sβ2
) = ({1}, {2}, {3}), (l1, l2, l3) = (1, 2, 2) and

α1 − α3 − 1/4β1 + 1/4β2 = 0,

α2 − α3 − 1/2β1 + 1/2β2 = 0.

Thus

f(x) =
(x− α3)2(x− 2α1 + α3)2

(x− α1)2
,

g(x) = (x− 4α1 + 4α3 − β2)(x− β2),

h(x) = β2 +
(x− α3)2

x− α1
.

3.2. The case t = 3, n = 3 and S∞ = ∅. In total there are six parametrizations
here, these are indicated in the table below.
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(Sβ1 , Sβ2 , Sβ3 , ), (l1, l2, l3) System of equations Solution (α1, α2, α3, β1, β2, β3)

({1}, {3}, {2}) α1β2 − α1β3 + α2β1 − α2β2 − α3β1 + α3β3 = 0 (−α2β1−α2β2−α3β1+α3β3
β2−β3

,

(1, 1, 1) α2, α3, β1, β2, β3)

({2}, {1}, {3}) α1β1 − α1β3 − α2β2 + α2β3 − α3β1 + α3β2 = 0 (α2β2−α2β3+α3β1−α3β2
β1−β3

,

(1, 1, 1) α2, α3, β1, β2, β3)

({3}, {1}, {2}) α1β1 − α1β3 − α2β1 + α2β2 − α3β2 + α3β3 = 0 (α2β1−α2β2+α3β2−α3β3
β1−β3

,

(1, 1, 1) α2, α3, β1, β2, β3)

({1}, {2}, {3}) α1β2 − α1β3 − α2β1 + α2β3 + α3β1 − α3β2 = 0 (α2β1−α2β3−α3β1+α3β2
β2−β3

,

(1, 1, 1) α2, α3, β1, β2, β3)

({3}, {2}, {1}) α1β1 − α1β2 − α2β1 + α2β3 + α3β2 − α3β3 = 0 (α2β1−α2β3−α3β2+α3β3
β1−β2

,

(1, 1, 1) α2, α3, β1, β2, β3)

({2}, {3}, {1}) α1β1 − α1β2 + α2β2 − α2β3 − α3β1 + α3β3 = 0 (−α2β2−α2β3−α3β1+α3β3
β1−β2

,

(1, 1, 1) α2, α3, β1, β2, β3)

As an illustration we provide an example corresponding to the parametrization
indicated in the fourth row, that is (Sβ1 , Sβ2 , Sβ3) = ({1}, {2}, {3}) and (l1, l2, l3) =
(1, 1, 1). Now let (α2, α3, β1, β2, β3) = (2, 1,−1, 1, 0) and k1 = k2 = 1, k3 = −2. One
has that α1 = 0 and

f(x) =
(x− 2)x

(x− 1)2
,

g(x) =
(x− 1)(x+ 1)

x2
,

h(x) = x− 1.

3.3. The case t = 2, n = 4 and S∞ 6= ∅. There are 264 systems to deal with. We
will treat only a few representative examples.

Systems containing two polynomials.
If (S∞, Sβ1

, Sβ2
) = ({4}, {1, 2}, {3}) and (l1, l2, l3, l4) = (1, 1, 2, 1), then we have

α1 + α2 − 2α3 − β1 + β2 = 0

α2
2 − 2α2α3 − α2β1 + α2β2 + α2

3 + α4β1 − α4β2 = 0.

Since αi 6= αj and βi 6= βj if i 6= j, we have that

α1 = −α2 + 2α3 + β1 − β2,

α4 = α2 −
(α2 − α3)2

β1 − β2
.

For example, if we consider the solution (α1, α2, α3, α4, β1, β2) = (−2, 1, 0, 2, 0, 1),
then we get

f(x) =
(x− 1)x2(x+ 2)

(x− 2)2
,

g(x) = (x− 1)x,

h(x) =
(x− 1)(x+ 2)

x− 2
.

Systems containing three polynomials.
If (S∞, Sβ1 , Sβ2) = ({1}, {2, 3}, {4}) and (l1, l2, l3, l4) = (1, 2, 1, 3), then we get

α1 + 1/3α3 − 4/3α4 = 0

α2 + 1/2α3 − 3/2α4 = 0

α2
3 − 2α3α4 + α2

4 − 4/3β1 + 4/3β2 = 0.
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Thus one obtains the parametrization

α1 = −1/3α3 + 4/3α4,

α2 = −1/2α3 + 3/2α4,

β1 = 3/4α2
3 − 3/2α3α4 + 3/4α2

4 + β2.

Let us take (α1, α2, α3, α4, β1, β2) = (−1/3,−1/2, 1, 0, 1, 1/4), then we have

f(x) =
(x− 1)x3(x+ 1/2)2

(x+ 1/3)2
,

g(x) = (x− 1)(x− 1/4),

h(x) =
1

4
+

x3

x+ 1/3
.

Systems containing four polynomials.
Consider the case (S∞, Sβ1 , Sβ2) = ({1}, {2, 3}, {4}) and (l1, l2, l3, l4) = (3, 1, 1, 3).

One gets the system

α1 − α4 − 1/3 = 0

α2 + α3 − 2α4 − 1/3 = 0

α2
3 − 2α3α4 − 1/3α3 + α2

4 + 1/3α4 + 1/27 = 0

β1 − β2 − 1 = 0.

The parametrization is as follows

α1 = α4 + 1/3,

α2 = α4 ∓
√
−3

18
+

1

6
,

α3 = α4 ±
√
−3

18
+

1

6
,

β1 = β2 + 1.

As an example we take (α1, α2, α3, α4, β1, β2) = (1/6,−
√
−3/18,

√
−3/18,−1/6, 1, 0),

then we obtain

f(x) =
(x−

√
−3/18)(x+

√
−3/18)(x+ 1/6)3

(x− 1/6)6
,

g(x) = (x− 1)x,

h(x) =
(x+ 1/6)3

(x− 1/6)3
.

Systems containing five polynomials.
If (S∞, Sβ1

, Sβ2
) = ({1}, {2, 3}, {4}) and (l1, l2, l3, l4) = (3, 1, 2, 2), then we have

α1 − 1/3α2 − 2/3α3 − 1/3 = 0

α2
2 − 2α2α4 + 2α2 + 8α2

3 − 16α3α4 + 6α3 + 9α2
4 − 8α4 + 1 = 0

α2 + 7/2α3 − 9/2α4 + 1 = 0

α3 − α4 + 8/27 = 0

β1 − β2 + 1 = 0.

We get the parametrization

α1 = α4 + 4/27,

α2 = α4 + 1/27,

α3 = α4 − 8/27,

β1 = β2 − 1.
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As a concrete example we deal with the case (α1, α2, α3, α4, β1, β2) = (4/27, 1/27,−8/27, 0, 0, 1).
It easily follows that

f(x) =
(x− 1/27)x2(x+ 8/27)2

(x− 4/27)6
,

g(x) = (x− 1)x,

h(x) = 1 +
x2

(x− 4/27)3
.

3.4. The case t = 3, n = 4 and S∞ = ∅. There are 24 systems to handle
in this case. The systems are getting more and more complicated therefore we
deal with two typical cases. There are 6 systems having two polynomials in the
Groebner basis, one of these is as follows: (Sβ1 , Sβ2 , Sβ3) = ({1, 3}, {4}, {2}) and
(l1, l2, l3, l4) = (1, 2, 1, 2). The system of equations are given by

α1β2 − α1β3 + 2α2β1 − 2α2β2 + α3β2 − α3β3 − 2α4β1 + 2α4β3 = 0

α
2
2β1 − α

2
2β2 − 2α2α3β1 + 2α2α3β2 − α

2
3β2 + α

2
3β3 + 2α3α4β1 − 2α3α4β3 − α

2
4β1 + α

2
4β3 = 0.

There are four solutions where αi = αj or βi = βj

(α1 = α4, α2 = α4, α3 = α4, α4, β1, β2, β3),

(α1 = α3, α2 = α3, α3, α4, β1 = β3, β2, β3),

(α1, α2, α3, α4, β1 = β3, β2 = β3, β3),

(α1, α2 = α4, α3, α4, β1, β2 = β3, β3).

These solutions do not lead to appropriate rational functions. There is one solution
which yield solutions of the original problem

α1 = −α2α3 − 2α2α4 + α3α4

α2 − 2α3 + α4
,

β2 =
α2
2β1 − 2α2α3β1 + α2

3β3 + 2α3α4β1 − 2α3α4β3 − α2
4β1 + α2

4β3
(α2 − α3)2

,

where α2, α3, α4, β1, β3 are parameters such that αi 6= αj , βi 6= βj and α2 − 2α3 +
α4 6= 0. As an example consider the case (α2, α3, α4, β1, β3) = (0, 1, 3, 0, 1). We
obtain that α1 = −3 and β2 = 4. Let k1 = k2 = 1 and k3 = −2. We get that

f(x) =
(x− 3)2(x− 1)(x+ 3)

x4
,

g(x) =
(x− 4)x

(x− 1)2
,

h(x) =
(x− 1)(x+ 3)

2x− 3
.

There are 18 systems having three polynomials in the Groebner basis, one of these
is as follows: (Sβ1

, Sβ2
, Sβ3

) = ({1}, {2, 3}, {4}) and (l1, l2, l3, l4) = (2, 1, 1, 2). The
system of equations is

α1α2 + α1α3 − 2α1α4 − 2α2α3 + α2α4 + α3α4 = 0

α1β2 − α1β3 − 1/2α2β1 + 1/2α2β3 − 1/2α3β1 + 1/2α3β3 + α4β1 − α4β2 = 0

α
2
2β1 − α

2
2β3 + 2α2α3β1 − 4α2α3β2 + 2α2α3β3 − 4α2α4β1+

+4α2α4β2 + α
2
3β1 − α

2
3β3 − 4α3α4β1 + 4α3α4β2 + 4α

2
4β1 − 4α

2
4β2 = 0.

The only solution where one can obtain appropriate rational functions is

α1 =
−α2α4 − α3α4 + 2α2α3

α2 + α3 − 2α4

,

β3 =
α2
2β1 + 2α2α3β1 − 4α2α3β2 − 4α2α4β1 + 4α2α4β2 + α2

3β1 − 4α3α4β1 + 4α3α4β2 + 4α2
4β1 − 4α2

4β2

(α2 − α3)2
,
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where α2, α3, α4, β1, β3 are parameters such that αi 6= αj , βi 6= βj and α2 + α3 −
2α4 6= 0. Now we consider the example with (α2, α3, α4, β1, β2) = (0, 1, 3, 0, 1). We
have that α1 = 2/3 and β3 = −8. Let k1 = k2 = 1 and k3 = −2. We have that

f(x) =
(x− 2/3)2(x− 1)x

(x− 2)4
,

g(x) =
(x− 1)x

(x+ 8)2
,

h(x) =
(3x− 2)2

−3x+ 4
.

3.5. The case t = 4, n = 4 and S∞ = ∅. Here we have 24 systems to solve.
Since one has 24 very similar systems, we will deal with one of these only. Let
(Sβ1

, Sβ2
, Sβ3

, Sβ4
) = ({1}, {2}, {3}, {4}) and (l1, l2, l3, l4) = (1, 1, 1, 1). One gets

the system of equations

α1β2 − α1β4 − α2β1 + α2β4 + α4β1 − α4β2 = 0

α1β3 − α1β4 − α3β1 + α3β4 + α4β1 − α4β3 = 0

α2β3 − α2β4 − α3β2 + α3β4 + α4β2 − α4β3 = 0.

There are three solutions which do not correspond to appropriate rational functions,
the remaining solution has

α1 =
α3β1 − α3β4 − α4β1 + α4β3

β3 − β4
,

α2 =
α3β2 − α3β4 − α4β2 + α4β3

β3 − β4
.

Now let (α3, α4, β1, β2, β3, β4) = (0, 1, 3, 2, 1, 0) and k1 = k2 = 1, k3 = k4 = −1.
One obtains that

f(x) =
(x+ 1)(x+ 2)

(x− 1)x
,

g(x) =
(x− 3)(x− 2)

(x− 1)x
,

h(x) = −x+ 1.

4. two examples with n = 5

We computed all the varieties corresponding to n = 5, the systems are getting
more and more complicated therefore we selected only two examples given below.
Some details of the computations can be found in the following table and all systems
in case of n = 5 can be downloaded from
http://www.math.unideb.hu/∼tengely/CFunc5.txt.tar.gz

n t S∞ # systems
5 2 6= ∅ 4644
5 3 6= ∅ 60
5 4 6= ∅ 0
5 5 6= ∅ 0
5 3 ∅ 384
5 4 ∅ 0
5 5 ∅ 120

In this section we provide two examples in case of n = 5.
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• Consider the case (S∞, Sβ1
, Sβ2

) = ({1, 5}, {3, 4}, {2}) and (l1, l2, l3, l4, l5) =
(3, 1, 1, 3, 1). One gets a system containing 5 equations

α1 − 2α4 + α5 = 0

α2 − 3/2α4 + 1/2α5 = 0

α3 − 3α4 + 2α5 = 0

α3
4 − 3α2

4α5 + 3α4α
2
5 − α3

5 + 1/2 = 0

β1 − β2 + 1 = 0.

The solutions of this system of equations are given by

(α1, α1+
1

4
3
√

4ζk,
1

2
(

3
√

2α1−1)
3
√

4ζk,
1

2
(

3
√

2α1+1)
3
√

4ζk,
1

2
(

3
√

2α1+2)
3
√

4ζk, β1, β1+1),

where ζ = 1+i
√
3

2 and k = 0, 1, 2.
• Let (S∞, Sβ1

, Sβ2
) = ({1, 2, 5}, {3}, {4}) and (l1, l2, l3, l4, l5) = (1, 1, 1, 3, 1).

We obtain the following system of equations

α1 + α2 − 3α4 + α5 = 0

α2
2 − 3α2α4 + α2α5 + 3α2

4 − 3α4α5 + α2
5 − 1 = 0

α3 − α3
4 + 3α2

4α5 − 3α4α
2
5 + α3

5 − α5 = 0

β1 − β2 − 1 = 0

The general solutions are given by

α1,

α2,

α3 =
1

18

√
−α1 + α2 + 2

(
4
√
α1 − α2 + 2

√
3α1α2 − 2

√
α1 − α2 + 2

√
3α

2
2 −

√
α1 − α2 + 2

(
2
√

3α
2
1 +
√
3
))

+

1

2
α1 +

1

2
α2,

α4 = −
1

6

√
−α2

1 + 2α1α2 − α2
2 + 4

√
3 +

1

2
α1 +

1

2
α2,

α5 = −
1

2

√
−α1 + α2 + 2

√
α1 − α2 + 2

√
3 +

1

2
α1 +

1

2
α2

β1,

β2 = β1 − 1.

and

α1,

α2,

α3 = −
1

18

√
−α1 + α2 + 2

(
4
√
α1 − α2 + 2

√
3α1α2 − 2

√
α1 − α2 + 2

√
3α

2
2 −

√
α1 − α2 + 2

(
2
√
3α

2
1 +
√
3
))

+

1

2
α1 +

1

2
α2,

α4 =
1

6

√
−α2

1 + 2α1α2 − α2
2 + 4

√
3 +

1

2
α1 +

1

2
α2,

α5 =
1

2

√
−α1 + α2 + 2

√
α1 − α2 + 2

√
3 +

1

2
α1 +

1

2
α2,

β1,

β2 = β1 − 1.
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