
POWER VALUES OF SUMS OF CERTAIN PRODUCTS OF CONSECUTIVE

INTEGERS AND RELATED RESULTS - SUPPLEMENTARY MATERIAL

SZABOLCS TENGELY, MACIEJ ULAS

1. Rational solutions of the equation y2 = gT (x) with T ∈ An, n ≤ 5.

Let N denote the set of positive integers, N0 the set of non-negative integers and N≥k will denote
the set of non-negative integers ≥ k. For n ∈ N0 we write

pa(x) =

a∏
i=0

(x + j).

Moreover, we define the set

An = {(a1, . . . , ak) ∈ Nk
0 : ai < ai+1 for i = 1, 2, . . . k − 1, ak < n and k ∈ {1, . . . , n− 1}}.

For given m ∈ N≥2 and T = (a1, . . . , ak) ∈ An we consider the Diophantine equation

(1) ym = gT (x), where gT (x) := pn(x) +

k∑
i=1

pai(x).

Let n ∈ N and for given T ∈ An let us consider the algebraic curve

CT : y2 = gT (x).

Let us write gen(T ) := genus(CT ) - the genus of the curve CT and JT := Jac(CT ) - the Jacobian
variety associated with CT . Moreover, we define r(T ) := rank(JT ) - the rank of the Jacobian
variety JT . As usual, by CT (Q) we will denote the set of all rational points on the curve CT and
by CT (Z) - the set of integral points on CT .

In this section we consider the Diophantine equation (1) for T ∈ An, with n ≤ 5. We present
complete system of integer solutions in the considered cases and where it is possible we compute
the set of all rational solutions. This is particulary interesting in the cases when gen(T ) ≥ 2
because in this case the set CT (Q) is finite by Faltings theorem [15].

We start with the following.

Theorem 1.1. Let T ∈ A2.

(1) If T = (0), then CT (Q) = {(0, 0),O}.
(2) If T = (1), then CT (Q) = {(−3, 0), (−1, 0), (0, 0),O}.
(3) If T = (0, 1), then CT (Q) = {(t2, t(t2 + 2)) : t ∈ Q} ∪ {O}.

Proof. If T = (0), then gT (x) = x(x2 + 3x + 3). The corresponding curve CT has rank 0 and the
torsion group consisting only two points: the finite point (0, 0) and the point at infinity.

If T = (1), then gT (x) = x(x + 1)(x + 3). The corresponding curve CT has rank 0 and the
torsion group isomorphic with Z/2Z × Z/2Z. The only rational points on CT are exactly those
from the statement.

Finally, if T = (0, 1), then gT (x) = x(x + 2)2 and the result is clear. �

Theorem 1.2. Let T ∈ A3.

(1) If gen(T ) = 0, then T ∈ {(0, 1), (1, 2)}. We have

C(0,1)(Q) =

{(
2

t2 − 1
,

4t3

(t2 − 1)2

)
: t ∈ Q \ {±1}

}
and C(0,1)(Z) = {(−2, 0), (0, 0)},

C(1,2)(Q) =

{(
1

t2 − 1
,
t(3t2 − 2)

(t2 − 1)2

)
: t ∈ Q \ {±1}

}
and C(1,2)(Z) = {(−1, 0), (0, 0)}
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(2) If T ∈ A3 \ {(0, 1), (1, 2)}, then gen(T ) = 1, r(T ) = 1, and the set CT (Q) is infinite.
Moreover, we have the following:
(a) if T = (0), then CT (Z) = {(1,±5), (0, 0)};
(b) if T = (1), then CT (Z) = {(−1, 0), (−4,±6), (0, 0)};
(c) if T = (2), then CT (Z) = {(−2, 0), (−1, 0), (2,±12), (−4, 0), (0, 0)};
(d) if T = (0, 2), then CT (Z) = {(0, 0)};
(e) if T = (0, 1, 2), then CT (Z) = {(−2, 0), (0, 0)}.

Proof. If T = (0, 1), (1, 2) we have gT (x) = x(x + 2)3 and gT (x) = x(1 + x)(3 + x)2 respectively.
In particular gen(T ) = 0. Using a standard method of parametrization of quadratic curves we get
the description of the set of rational points on the corresponding curves.

In all remaining cases we deal with genus 1 curve of the form y2 = gT (x), where gT is a monic
quartic polynomial of degree 4. In particular, the equation under consideration satisfies Runge’s
condition [22] and a simple application of standard methods give the full description of CT (Z)
presented in the statement. The rank of the corresponding elliptic curve was computed with the
help of Magma [6]. �

Theorem 1.3. Let T ∈ A4.

(1) If gen(T ) = 0, then T = (0) and CT (Q) = {(t2, t(t4 + 5t2 + 5)) : t ∈ Q}.
(2) If gen(T ) = 1, then T ∈ {(1, 2), (2, 3)}. We have r(T ) = 0 and

C(1,2)(Q) = {(0, 0), (−1, 0), (−3, 0),O},
C(2,3)(Q) = {(0, 0), (−1, 0), (−2, 0),O}.

(3) If T ∈ A4 \ {(0), (1, 2), (2, 3)}, then gen(T ) = 2 and r(T ) ≤ 1. We collect the data
concerning the set CT (Q) in the table below. In the description of the set CT (Q) we omit
the point at infinity.

T r(T ) CT (Q)

(1) 0 {(−1, 0), (0, 0)}
(2) 0 {(−2, 0), (−1, 0), (0, 0)}
(3) 1 {(−5, 0), (−3, 0), (−1, 0), (0, 0), (1,±12)}
(0, 1) 0 {(−2, 0), (0, 0)}
(0, 2) 1 {(0, 0)}
(0, 3) 0 {(0, 0)}
(1, 3) 1 {(−4,±6), (−1, 0), (0, 0)}
(0, 1, 2) 0 {(−2, 0), (0, 0)}
(0, 1, 3) 0 {(−2, 0), (0, 0)}
(0, 2, 3) 1 {(0, 0)}
(1, 2, 3) 0 {(−3, 0), (−1, 0), (0, 0)}
(0, 1, 2, 3) 0 {(−2, 0), (0, 0)}

Table 1. Rational points on the genus two curves CT .

Proof. For T = (0) we have gT (x) = x(x2 + 5x+ 5)2 and the description of the set CT (Q) is clear.
For T = (1, 2), (2, 3), we have gT (x) = x(x + 1)(x + 3)3 and gT (x) = x(x + 1)(x + 2)(x + 4)2.

In both cases the corresponding elliptic curve is of rank 0. The torsion points are the only integer
points on the corresponding curves.

For the remaining values of T ∈ A4, the corresponding curve CT is of genus 2. Fortunately, in
each case, the rank of the Jacobian variety JT associated with CT is bounded by 1. Thus in each
case we can apply Chabauty’s method [10] in order to find complete set of rational points on the
curve CT . The procedures in case of genus 2 curves were implemented in Magma based on papers
by Stoll [24, 25, 26]. More precisely, in case of rT = 0 we can use directly the following commands:

A<x>:=PolynomialRing(Rationals());

C:=HyperelllipticCurve(f(x));

J:=Jacobian(C);

Chabauty0(C);

,

where f is our polynomial of degree 5 or 6 without multiple roots and such that rank of J is equal
to 0. The computation of bound for the rank is performed with the procedure RankBound(J).

The case when the rank of the Jacobian is equal to 1, the situation is a bit different. We first
apply the procedure Points(J: Bound:=103) in order to find the set, say A, of all rational divisors
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on the Jacobian J with the height bounded by 103. The chosen bound is grater then the eh(J),
where h(J) is the height constant associated with the Jacobian under consideration. Then, we
compute the reduced basis, say R, with the help of the procedure ReducedBasis(A). Next, we
look for divisors of infinite order in R, by checking the order of the elements of R with the help of
procedure Order(P) for each P ∈ R. Finally, for the set B of all divisors of infinite order we apply
the procedure Chabauty(B) and get the required set of all rational points on C. �

We were unable to characterize rational solutions on the curve CT for all T ∈ A5. The partial
result is contained in the following:

Theorem 1.4. Let T ∈ A5.

(1) If g(T ) = 0, then T = (1) and

CT (Q) =

{(
t2

1− 2t
,

(t− 1)t(t4 − 14t3 + 51t2 − 44t + 11)

(1− 2t)3

)
: t ∈ Q \ {1/2}

}
and CQ(Z) = {(−1, 0), (0, 0)}.

(2) If g(T ) = 1, then T = (2, 3) or T = (3, 4). If T = (3, 4), then r(T ) = 0 and

C(3,4)(Q) = C(3,4)(Z) = {(−5, 0), (−3, 0), (−2, 0), (−1, 0), (0, 0)}.

If T = (2, 3), then r(T ) = 1 and the set C(Q) is infinite.
(3) If g(T ) = 2 and rk(T ) ≤ 1, then the values of T and the corresponding set of rational

points are as follows. In the description of the set CT (Q) we omit the points at infinity
(1,±1, 0).

T r(T ) CT (Q)

(0) 1 {(0, 0)}
(4) 1 {(−6, 0), (−4, 0), (−3, 0), (−2, 0), (−1, 0), (0, 0), (−12/7,±720/7)}
(0, 1) 1 {(−2, 0), (0, 0)}
(0, 2) 1 {(0, 0)}
(0, 3) 1 {(0, 0)}
(1, 2) 1 {(−3, 0), (−1, 0), (0, 0)}
(2, 4) 1 {(−2, 0), (−1, 0), (0, 0)}
(0, 1, 3) 1 {(−2, 0), (0, 0)}
(0, 1, 4) 1 {(−2, 0), (0, 0)}
(0, 2, 4) 1 {(0, 0)}
(0, 3, 4) 1 {(121/120,±51334697/120), (0, 0)}
(1, 2, 4) 1 {(−3, 0), (−1, 0), (0, 0)}
(2, 3, 4) 1 {(−38/11,±1368/11), (−4, 0), (−2, 0), (0, 0)}
(0, 1, 2, 4) 1 {(−2, 0), (0, 0)}
(0, 1, 3, 4) 1 {(−2, 0), (−25/8,±1335/8), (0, 0)}
(0, 2, 3, 4) 1 {(0, 0)}
(1, 2, 3, 4) 1 {(−3, 0), (−1, 0), (0, 0)}

Table 3. Rational points on the genus two curves CT for T ∈ A5 and r(T ) ≤ 1

Proof. If T = (1), then gT (x) = p1(x)+p5(x) = x(x+1)(x2 +7x+11)2. The rational parametriza-
tion of the curve v2 = x(x + 1) is given by

x =
t2

1− 2t
, v =

(1− t)t

1− 2t

and hence the result (with y = v(x2 + 7x + 11)).
If T = (3, 4), then gT (x) = p3(x)+p4(x)+p5(x) = x(x+1)(x+2)(x+3)(x+5)2. The curve v2 =

x(x+1)(x+2)(x+3) is birationally equivalent with the elliptic curve ET : y2 = x3+11x2+36x+36
of rank 0 and Tors(E) ' Z/2Z× Z/4Z.

If T = (2, 3), then gT (x) = p2(x) + p3(x) + p5(x) = x(x + 1)(x + 2)(x + 4)3. The curve v2 =
x(x+1)(x+2)(x+4) is birationally equivalent with the elliptic curve ET : y2 = x3+14x2+56x+64
of rank 1, where the point of infinite order is P = (0,−8) and Tors(E) ' Z/2Z× Z/4Z.

In remaining cases of T ∈ A5, we get that the curve CT is of genus 2 with r(T ) = 1 (as computed
by Magma). Thus in each case we can apply Chabauty’s method and get the result. �
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2. Application of Runge method for several equations ym = gT (x).

Theorem 2.1. For T ∈ A5 consider the curve CT : y2 = gT (x). The complete list of integral
solutions are given in the Table 2.

T polynomial CT (Z)

(0) (1, 15, 85, 225, 274, 121, 0) {(0, 0)}
(1) (1, 15, 85, 225, 275, 121, 0) {(−1, 0), (0, 0)}
(2) (1, 15, 85, 226, 277, 122, 0) {(−1, 0), (−2, 0), (0, 0)}
(3) (1, 15, 86, 231, 285, 126, 0) {(−1, 0), (−9,±252), (−2, 0), (−3, 0), (0, 0)}
(4) (1, 16, 95, 260, 324, 144, 0) {(−4, 0), (−1, 0), (−2, 0), (−6, 0), (−3, 0), (0, 0)}
(0, 1) (1, 15, 85, 225, 275, 122, 0) {(−2, 0), (0, 0)}
(0, 2) (1, 15, 85, 226, 277, 123, 0) {(0, 0)}
(0, 3) (1, 15, 86, 231, 285, 127, 0) {(0, 0)}
(0, 4) (1, 16, 95, 260, 324, 145, 0) {(1,±29), (0, 0)}
(1, 2) (1, 15, 85, 226, 278, 123, 0) {(−1, 0), (−3, 0), (0, 0)}
(1, 3) (1, 15, 86, 231, 286, 127, 0) {(−4,±6), (−1, 0), (0, 0)}
(1, 4) (1, 16, 95, 260, 325, 145, 0) {(−1, 0), (0, 0)}
(2, 3) (1, 15, 86, 232, 288, 128, 0) {(−4, 0), (2,±72), (−1, 0), (−2, 0), (0, 0)}
(2, 4) (1, 16, 95, 261, 327, 146, 0) {(−1, 0), (−2, 0), (0, 0)}
(3, 4) (1, 16, 96, 266, 335, 150, 0) {(−1, 0), (−5, 0), (−2, 0), (−3, 0), (0, 0)}
(0, 1, 2) (1, 15, 85, 226, 278, 124, 0) {(1,±27), (−2, 0), (0, 0)}
(0, 1, 3) (1, 15, 86, 231, 286, 128, 0) {(−2, 0), (0, 0)}
(0, 1, 4) (1, 16, 95, 260, 325, 146, 0) {(−2, 0), (0, 0)}
(0, 2, 3) (1, 15, 86, 232, 288, 129, 0) {(0, 0)}
(0, 2, 4) (1, 16, 95, 261, 327, 147, 0) {(0, 0)}
(0, 3, 4) (1, 16, 96, 266, 335, 151, 0) {(0, 0)}
(1, 2, 3) (1, 15, 86, 232, 289, 129, 0) {(−1, 0), (−3, 0), (0, 0)}
(1, 2, 4) (1, 16, 95, 261, 328, 147, 0) {(−1, 0), (−3, 0), (0, 0)}
(1, 3, 4) (1, 16, 96, 266, 336, 151, 0) {(−4,±6), (−1, 0), (0, 0)}
(2, 3, 4) (1, 16, 96, 267, 338, 152, 0) {(−4, 0), (−1, 0), (−2, 0), (0, 0)}
(0, 1, 2, 3) (1, 15, 86, 232, 289, 130, 0) {(−2, 0), (0, 0)}
(0, 1, 2, 4) (1, 16, 95, 261, 328, 148, 0) {(−2, 0), (0, 0)}
(0, 1, 3, 4) (1, 16, 96, 266, 336, 152, 0) {(−2, 0), (0, 0)}
(0, 2, 3, 4) (1, 16, 96, 267, 338, 153, 0) {(0, 0)}
(1, 2, 3, 4) (1, 16, 96, 267, 339, 153, 0) {(−1, 0), (−3, 0), (0, 0)}
(0, 1, 2, 3, 4) (1, 16, 96, 267, 339, 154, 0) {(−2, 0), (0, 0)}

Table 2. Integer solutions of the Diophantine equation y2 = gT (x) for T ∈ A5.

Proof. In all cases gT (x) is a monic polynomial of degree 6, hence Runge’s condition is satisfied.
An algorithm to solve such Diophantine equations is given in [27], we followed it to determine the
integral solutions. We provide details of the computation in case of T = (2, 3), that is we deal with
the Diophantine equation

y2 = x6 + 15x5 + 86x4 + 232x3 + 288x2 + 128x.

The polynomial part of the Puiseux expansion of GT (x)1/2 is given by

PT (x) = x3 +
15

2
x2 +

119

8
x +

71

16
.

We have that

256gT (x)− (16PT (x)− 1)2 = 32x3 + 284x2 − 552x− 4900,

256gT (x)− (16PT (x) + 1)2 = −32x3 − 196x2 − 1504x− 5184.

If x > 4.154, then

256gT (x)− (16PT (x)− 1)2 > 0

256gT (x)− (16PT (x) + 1)2 < 0.

Hence

(16PT (x)− 1)2 < (16y)2 < (16PT (x) + 1)2.
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It follows that y = PT (x). If x < −8.875, then

256gT (x)− (16PT (x)− 1)2 < 0

256gT (x)− (16PT (x) + 1)2 > 0.

Therefore we get that

(16PT (x) + 1)2 < (16y)2 < (16PT (x)− 1)2.

We obtain that y = PT (x). If x ∈ {−8, . . . , 4}, then the list of integral solutions (x, y) is given
by [(−4, 0), (−2, 0), (−1, 0), (0, 0), (2,±72)]. The equation PT (x)2 − gT (x) = 0 does not possesses
integral solutions. We note that the total running time to resolve the 31 equations was less than
a second on an Intel Core i7-6700HQ 2.6GHz PC. �

Theorem 2.2. For T ∈ A5 consider the curve C ′T : y3 = gT (x). The complete list of integral
solutions are given Table 3.

T polynomial C ′T (Z)

(0) (1, 15, 85, 225, 274, 121, 0) {(−1,−1), (0, 0)}
(1) (1, 15, 85, 225, 275, 121, 0) {(−1, 0), (0, 0)}
(2) (1, 15, 85, 226, 277, 122, 0) {(−1, 0), (−2, 0), (0, 0)}
(3) (1, 15, 86, 231, 285, 126, 0) {(−1, 0), (−2, 0), (−3, 0), (0, 0)}
(4) (1, 16, 95, 260, 324, 144, 0) {(−4, 0), (−1, 0), (−2, 0), (−6, 0), (−3, 0), (0, 0)}
(0, 1) (1, 15, 85, 225, 275, 122, 0) {(−1,−1), (−2, 0), (0, 0), (−4, 2)}
(0, 2) (1, 15, 85, 226, 277, 123, 0) {(−1,−1), (0, 0)}
(0, 3) (1, 15, 86, 231, 285, 127, 0) {(−1,−1), (0, 0)}
(0, 4) (1, 16, 95, 260, 324, 145, 0) {(−1,−1), (0, 0), (−5,−5)}
(1, 2) (1, 15, 85, 226, 278, 123, 0) {(−1, 0), (−3, 0), (0, 0)}
(1, 3) (1, 15, 86, 231, 286, 127, 0) {(−1, 0), (0, 0)}
(1, 4) (1, 16, 95, 260, 325, 145, 0) {(−1, 0), (0, 0)}
(2, 3) (1, 15, 86, 232, 288, 128, 0) {(−4, 0), (−1, 0), (−2, 0), (0, 0)}
(2, 4) (1, 16, 95, 261, 327, 146, 0) {(−1, 0), (−2, 0), (0, 0)}
(3, 4) (1, 16, 96, 266, 335, 150, 0) {(−1, 0), (−5, 0), (−2, 0), (−3, 0), (0, 0)}
(0, 1, 2) (1, 15, 85, 226, 278, 124, 0) {(−1,−1), (−2, 0), (1, 9), (0, 0)}
(0, 1, 3) (1, 15, 86, 231, 286, 128, 0) {(−1,−1), (−2, 0), (0, 0)}
(0, 1, 4) (1, 16, 95, 260, 325, 146, 0) {(−1,−1), (−2, 0), (0, 0), (−4, 2)}
(0, 2, 3) (1, 15, 86, 232, 288, 129, 0) {(−1,−1), (0, 0)}
(0, 2, 4) (1, 16, 95, 261, 327, 147, 0) {(−1,−1), (0, 0)}
(0, 3, 4) (1, 16, 96, 266, 335, 151, 0) {(−1,−1), (0, 0)}
(1, 2, 3) (1, 15, 86, 232, 289, 129, 0) {(−1, 0), (−3, 0), (0, 0)}
(1, 2, 4) (1, 16, 95, 261, 328, 147, 0) {(−1, 0), (−3, 0), (0, 0)}
(1, 3, 4) (1, 16, 96, 266, 336, 151, 0) {(−1, 0), (0, 0)}
(2, 3, 4) (1, 16, 96, 267, 338, 152, 0) {(−4, 0), (−1, 0), (−2, 0), (0, 0)}
(0, 1, 2, 3) (1, 15, 86, 232, 289, 130, 0) {(−1,−1), (−2, 0), (0, 0), (−4, 2)}
(0, 1, 2, 4) (1, 16, 95, 261, 328, 148, 0) {(−1,−1), (−2, 0), (0, 0)}
(0, 1, 3, 4) (1, 16, 96, 266, 336, 152, 0) {(−1,−1), (−2, 0), (0, 0)}
(0, 2, 3, 4) (1, 16, 96, 267, 338, 153, 0) {(−1,−1), (0, 0)}
(1, 2, 3, 4) (1, 16, 96, 267, 339, 153, 0) {(−1, 0), (−3, 0), (0, 0)}
(0, 1, 2, 3, 4) (1, 16, 96, 267, 339, 154, 0) {(−1,−1), (−2, 0), (0, 0), (−4, 2)}

Table 5. Integer solutions of the Diophantine equation y3 = gT (x) for T ∈ A5.

Proof. Here we provide details of the computation in case of T = (0, 4), that is we consider the
Diophantine equation

y3 = x6 + 16x5 + 95x4 + 260x3 + 324x2 + 145x.

The polynomial part of the Puiseux expansion of gT (x)1/3 is given by

PT (x) = x2 +
16

3
x +

29

9
.
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We obtain that

729gT (x)− (9PT (x)− 1)3 = 243x4 + 6372x3 + 21492x2 − 7191x− 21952,

729gT (x)− (9PT (x) + 1)3 = −243x4 + 1188x3 + 4536x2 − 23895x− 27000.

If x > 1.019 or x < −22.184, then

729gT (x)− (9PT (x)− 1)3 > 0

729gT (x)− (9PT (x) + 1)3 < 0.

Thus we get that

(9PT (x)− 1)3 < (9y)3 < (9PT (x) + 1)3.

It follows that y = PT (x). If −22 ≤ x ≤ 1, then the list of integral solutions is given by
[(−5,−5), (−1,−1), (0, 0)]. The equation gT (x) − PT (x)3 = 0 has no integral solution. The to-
tal running time to resolve the 31 equations corresponding to the case (m,n) = (3, 5) was less than
a second on an Intel Core i7-6700HQ 2.6GHz PC. �

We also computed the integral solutions of the equations y2 = gT (x) with T ∈ A7, A9, A11 and
A13. The total running times on an Intel Core i7-6700HQ 2.6GHz PC are given below.

n running time
7 14s
9 2 min 48s
11 1h 39min 53s
13 27h 12min 38s

Let us collect some data related to solutions with xy 6= 0. If T ∈ A7, then (−4,±6) is a solution if T
contains 1,3 and some of the numbers 4, 5, 6. Other solutions are given by (1,±213) if T = (0, 1, 2, 6)
and (1,±215) if T = (0, 3, 4, 5, 6). If T ∈ A9, then (−4,±6) is a solution if T contains 1,3 and some
of the numbers 4, 5, 6, 7, 8. The remaining solutions are given by

T solutions

(3, 5) [(−9,±252)]
(8, 3, 5, 7) [(−9,±252)]
(0, 1, 2, 5, 6, 7) [(1,±1917)]

If T ∈ A11, then (−4,±6) is a solution if T contains 1,3 and some of the numbers 4, 5, 6, 7, 8, 9, 10.
The following table contains the rest of the solutions

T solutions

(3, 5) [(−9,±252)]
(9, 3, 5) [(−9,±252)]
(10, 3, 5) [(−9,±252)]
(8, 3, 5, 7) [(−9,±252)]
(9, 10, 3, 5) [(−9,±252)]
(8, 9, 3, 5, 7) [(−9,±252)]
(8, 10, 3, 5, 7) [(−9,±252)]
(3, 5, 7, 8, 9, 10) [(−9,±252)]

If T ∈ A13, then (−4,±6) is a solution if T contains 1,3 and some of the numbers 4, 5, 6, 7, 8, 9, 10, 11, 12.
If T is an element of the following list, then (−9,±252) is a solution:

(3, 5), (9, 3, 5), (10, 3, 5), (3, 11, 5), (3, 12, 5), (8, 3, 5, 7), (9, 10, 3, 5), (3, 9, 11, 5), (9, 3, 12, 5), (3, 10, 11, 5),

(10, 3, 12, 5), (3, 11, 12, 5), (8, 9, 3, 5, 7), (8, 10, 3, 5, 7), (8, 3, 11, 5, 7), (8, 3, 12, 5, 7), (3, 9, 10, 11, 5),

(9, 10, 3, 12, 5), (3, 9, 11, 12, 5), (3, 10, 11, 12, 5), (3, 5, 7, 8, 9, 10), (3, 5, 7, 8, 9, 11), (3, 5, 7, 8, 9, 12),

(3, 5, 7, 8, 10, 11), (3, 5, 7, 8, 10, 12), (3, 5, 7, 8, 11, 12), (3, 5, 9, 10, 11, 12), (3, 5, 7, 8, 9, 10, 11), (3, 5, 7, 8, 9, 10, 12),

(3, 5, 7, 8, 9, 11, 12), (3, 5, 7, 8, 10, 11, 12), (3, 5, 7, 8, 9, 10, 11, 12).

3. Some results concerning additive version of Erdős-Graham question

Theorem 3.1. There are infinitely many integer solutions of the Diophantine equation

(2) zm = p1(x) + p1(y)

for m odd and m = 2, 4.
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Proof. If m ≡ 1 (mod 2) then the triple

x = 2
n−1
2 tm − 1, y = 2

n−1
2 tm, z = 2t2

is the solution of the equation (2).
In case of m = 3 we offer a solution which do not satisfy the condition y − x = 1, i.e.,

x = 170t3 − 684t2 + 906t− 395,

y = 3(34t3 − 164t2 + 258t− 133),

z = 2(17t2 − 48t + 34).

In order to get the above parametrization, we first performed computer search for solutions in the
range 0 < x < y < 105 with the assumption that y− x 6= 1. Then, after a careful inspection of the
solutions set we found the presented family.

Now we consider the case m = 2. We observe that for any given positive integer k the triple of
polynomials

x = 4kt2 + (4k − 1)t− k − 1,

y = (2k − 1)(2k + 1)t2 + (4k2 − 2k − 1)t− k(k + 1),

z = (4k2 + 1)t2 + (4k2 − 2k + 1)t− k(k + 1).

solves the equation z2 = p1(x) + p1(y).
We use the above solution in order to prove that the equation (2), with m = 4, has infinitely

many solutions in integers. In order to do this, it is enough to prove the existence of k0 ∈ N, such
that the quadratic equation

v2 = (4k20 + 1)t2 + (4k20 − 2k0 + 1)t− k0(k0 + 1)

has infinitely many solutions. By taking k0 = 1 we get the Pell type equation

v2 = 5t2 + 3t− 2.

Using the standard technique we get the formula for t as follows

t =
7(9 + 4

√
5)n+1 + 7(9− 4

√
5)n+1 − 6

20
,

for n ∈ N+. However, one can check that t = tn ∈ Z if and only if n is even. Thus, taking even
values of n we get the solutions we are looking for. As an example, let us note the first three
smallest solutions of the equation z4 = p1(x) +p1(y) obtained by our approach. They are given by

(x, y) = (2022, 4522), (651174, 1456070), (209676102, 468850018).

�

Remark 3.2. It is clear that with the method used to get infinitely many solutions of the equation
z4 = p1(x) + p1(y) one can construct infinitely many families generated by appropriate Pell type
equations. Indeed, let us write Q(k, t) = (4k2 + 1)t2 + (4k2 − 2k + 1)t− k(k + 1). We have proved
that the equation z2 = Q(k0, t) has infinitely many integer solutions t = t0,n := t2n. Now, for
each n ∈ N we can treat the equation z2 = Q(k, t0,n) as Pell type equation in variables (k, z) with

known solution (k, z) = (k0, z0,n), where z0,n =
√
Q(k0, t0,n). In this way, for each n ∈ N we can

construct an infinite sequence (km,n)m∈N such that Q(km,n, t0,n) is a square for each m,n ∈ N.
Thus, we get infinitely many families of integer solutions of the equation z4 = p1(x) + p1(t).

Consider the Diophantine equation

(3) z2 = p2(x) + p2(y).

Theorem 3.3. The Diophantine equation (3) has infinitely many solutions (x, y, z) in positive
integers.

Proof. We have that

(4) p2(x) + p2(y) = (x + y + 2)(x2 − xy + y2 + x + y).

We show that there are infinitely many positive integer solutions of the system of equations

x + y + 2 = z21

x2 − xy + y2 + x + y = z22 .



8 SZABOLCS TENGELY, MACIEJ ULAS

From the second equation we obtain an infinite family of solutions given by

x = 3t2 + 4t− 1, y = 2t, z2 = 3t2 + 3t.

It remains to determine possible values of t for which x + y + 2 is a square. We have that

T 2 − 3(t + 1)2 = −2,

a Pell type equation. From the theory of Pell equations we get the formula for t as follows

t =
(1 +

√
3)(2 +

√
3)n − (1−

√
3)(2−

√
3)n

2
√

3
− 1, n ∈ N.

The first few solutions are given by

(x, y) = (19, 4), (339, 20), (4959, 80), (69919, 304), (976979, 1140).

�
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Paris, 212 (1941), 882–885.

[11] L.E. Dickson, History of the theory of numbers. Vol II: Diophantine analysis. Chelsea Publishing Co., New
York, 1966.
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Ser. III 42(62) (2) (2007), 281–289.
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