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Dedi
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Abstra
t. For given positive integers a and n; we 
onsider the three-term

arithmeti
 progressions a

2

; y

n

; x

2

; where x and y are unknown integers. We

give expli
it upper bounds both for the number of su
h arithmeti
 progressions

and for maxfjxj; jyjg: Moreover, we �nd all su
h progressions with 1 � a �

1000; and 3 � n � 80:

1. Introdu
tion

Let a and n be given integers with a > 0 and n � 3: In this paper we investi-

gate the arithmeti
 progressions a

2

; y

n

; x

2

; where x; y are 
oprime positive integers.

Clearly, these three terms form an arithmeti
 progression if and only if (x; y) is a

solution to the equation

x

2

+ a

2

= 2y

n

; in x; y 2 N with g
d(x; y) = 1:(1)

Note that if a is also 
onsidered as a variable, then (1) has in�nitely many solutions.

There are many results in the literature 
on
erning similar equations. In the 
ase

n = 4 equations of the form

aX

2

� bY

4

= 


are of parti
ular interest, 
f. [3℄,[14℄,[21℄,[24℄, [28℄,[30℄,[32℄,[33℄. There are also a lot

of interesting papers dealing with equations of the form

aX

2

+ b = 
Y

n

;

we refer to [10℄,[12℄,[13℄,[18℄,[19℄,[22℄,[23℄,[25℄,[31℄.

Equation (1) is a spe
ial hyperellipti
 equation. In 1969, Baker [2℄ gave an

expli
it bound for the solutions of hyperellipti
 equations, i.e. of equations of type

f(x) = by

n

in x; y 2 Z;(2)

where f is a polynomial with integer 
oeÆ
ients and non-zero dis
riminant, and b

and n are given positive integers with n � 2: This result of Baker was improved and

generalized by several authors, see e.g. [8℄ and the referen
es given there. Moreover,

in 1998 Bilu and Hanrot (see [5℄) gave an algorithm for the pra
ti
al solution of

hyperellipti
 equations.

On the other hand, it is possible to derive in (2) an upper bound for the exponent

n in terms of f and b. The �rst result in this dire
tion was obtained in [27℄. This

result also was improved and generalized, see e.g. [4℄ or [7℄ and the referen
es given

there.
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ond author was supported in part by the Universitas Foundation of Kereskedelmi Bank
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2 I. PINK AND SZ. TENGELY

In our paper we give an upper bound for maxfjxj; jyjg (
f. Theorem 1), where

(x; y) is an arbitrary solution to (1). Using the spe
ial form of our hyperellipti


equation, our bound will be mu
h sharper than those provided by the general

estimates. Further, we provide an algorithm for the pra
ti
al solution of equations

of type (1). This algorithm in this spe
ial 
ase is mu
h more eÆ
ient than that of

Bilu and Hanrot [5℄. In the last se
tion, we use our algorithm to give a 
omplete

list of solutions of equation (1) for the ranges 1 � a � 1000 and 3 � n � 80: We

also derive an upper bound for n (see also Theorem 1), by spe
ializing an estimate

of Bugeaud and Hajdu [9℄ to (1). Finally, we give an expli
it upper bound for the

number of solutions of (1), too (
f. Theorem 2).

2. Results

The following theorem provides an upper bound for the solutions of (1). More-

over, an estimate for n is also given.

Theorem 1. Consider the diophantine equation

x

2

+ a

2

= 2y

n

; in x; y 2 N with g
d(x; y) = 1;(1)

where a and n are given positive integers with n � 3: Then the following inequalities

hold.

(i) If n is a power of 2 then

maxfx

2

; y

n

g < 2

8

� (45a)

10

64

:

(ii) If n is not a power of 2 and p denotes the smallest odd prime divisor of n; then

maxfx

2

; y

n

g < 3

p

a

2p(p�1)

:

(iii) We have in both 
ases

n � 2

91

� 5

27

� a

10

:

As was mentioned above, (i) and (ii) of Theorem 1 give better bounds than the

best known general bonds for (2).

It follows from a general theorem of Evertse and Silverman [15℄ 
on
erning the

number of solutions of (2), that our equation (1) has at most 17

16

n

8

solutions.

Using our approa
h, we prove Theorem 2 below. We denote by d(a) the number of

positive divisors of a, and by !(a) the number of distin
t prime divisors of a:

Theorem 2. If p denotes the smallest odd prime divisor of n; then the number of

solutions of (1) is at most

2(p� 1)d(a):

Further, if n is a power of 2 then this number is at most

2800 � 4

!(a)+1

:

Our bounds are better than that of [15℄ when d(a) and !(a) are small.

Remark. It follows from the proof of Theorem 1 that this theorem is valid also

for the more general equation

x

2

+ z

2

= 2y

n

in x; y; z 2 N;

with g
d(x; y) = 1; jzj � a; where a and n � 3 are given positive integers. Further,

Theorem 1 of Gy}ory [16℄ 
on
erning Thue inequalities implies that if n is a power

of 2 then the number of solutions with jxj � 3 � 10

9

a

9

4

is at most 100.
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3. Proofs

To prove Theorem 1, we need some lemmas. Let n � 3 be an integer, and

denote by F

r

(u; v) the real part of the polynomial i

r

(1 + i)(u+ iv)

n

in u; v for r =

0; 1; 2; 3: Further, let F

�1

(u; v) = F

3

(u; v): It is 
lear that F

r

(u; v) is a homogeneous

polynomial in Z[u; v℄:

Lemma 1. The pair x; y 2 Z with y > 0; g
d(a; x) = 1 is a solution to (1) if and

only if there exist integers u; v su
h that for some r 2 f0; 1; 2; 3g;

a = F

r

(u; v); x = F

r�1

(u; v); y = u

2

+ v

2

:(3)

Proof. This lemma 
an be easily proven by means of Gaussian integers; see e.g.

[26℄ or [31℄.

Lemma 2. Let n and F

r

(u; v) be as in Lemma 1. If n is odd then in Z[u; v℄ we

have

(u+ (�1)

r

v) j F

r

(u; v); if n � �1 (mod 4)

(u� (�1)

r

v) j F

r

(u; v); if n � 1 (mod 4):

Proof. If n � 1 (mod 4) then

F

r

((�1)

r

v; v) =

i

r

(1 + i)((�1)

r

v + iv)

n

+ (�i)

r

(1� i)((�1)

r

v � iv)

n

2

= i

r

(1 + i)((�1)

r

+ i)

n

v

�

1 + (�1)

n(r+1)+r

2

�

= 0;

sin
e n(r+1)+ r is odd. Hen
e it follows that (u� (�1)

r

v)jF

r

(u; v). The proof of

the other 
ase is similar.

The following lemma provide upper bound for the solutions of Thue equations.

Lemma 4 is a result of Bugeaud and Gy}ory [11℄. Throughout the paper we write

log

�

a for maxflog a; 1g:

Lemma 3. Let F 2 Z[X;Y ℄ be an irredu
ible binary form of degree n � 3; and let

b be a non-zero integer. Then all solutions of the equation

F (x; y) = b in x; y 2 Z

satisfy

max fj x j; j y jg < exp f
R(log

�

R)(R + log(H � jbj))g ;(4)

where 
 = 3

r+27

� n

2n+13r+33

and r; R denote the unit rank and the regulator of the

�eld Q(�); where � is a zero of F (x; 1); and H is the maximum of the absolute

values of the 
oeÆ
ients of F:

Finally, we use the following result of Bugeaud and Hajdu [9℄ to derive an upper

bound for n in (1).

Lemma 4. Let a and k be non-zero integers and put f(x) = ax

m

� k. Let b

denote a non-zero integer and n a positive integer. Using the previous notation, the

equation

f(x) = by

n

in integers x; y with jyj > 2 implies

n � 20

5m+17

m

5m+27

jakj

5m

2

(log

�

jbj)

7

3

:
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Proof of Theorem 1. (i) If n = 2

m

;m � 2 then we have

x

2

+ a

2

= 2z

4

;

where z = y

2

m�2

: For the binary forms de�ned in Lemma 1, we get

F

0

(u; v) = u

4

� 4u

3

v � 6u

2

v

2

+ 4uv

3

+ v

4

F

1

(u; v) = �F

0

(u;�v)

F

2

(u; v) = �F

0

(u; v)

F

3

(u; v) = F

0

(u;�v):

It is easy to see that F

0

; F

1

; F

2

and F

3

are irredu
ible over Q: A

ording to (3), to

obtain an upper bound for maxfjxj; jzjg it is suÆ
ient to derive an upper bound

for the solutions u; v of the quarti
 Thue equation

F

0

(u; v) = �a:

We note that for a = �1 and a = �4; this equation was 
ompletely solved earlier

by Lettl and Peth}o in [20℄. Using the notation of Lemma 3, we have

R � 2:4418; r = 3; n = 4; H = 6;

and by (4) we get

maxfjuj; jvjg � (45a)

2

160

�3

31

:

This implies that

x

2

�

�

16

�

(45a)

2

160

�3

31

�

4

�

2

;

and

y

n

� 16(45a)

2

163

�3

31

;

whi
h prove (i).

(ii) This proof is proposed by the referee, for whi
h the authors would like to say

thanks. Let now a; n be given positive integers with n > 1; and suppose that n is

not a power of 2. If p is the smallest odd prime dividing n; then (1) 
an be written

in the form

x

2

+ a

2

= 2(y

n

p

)

p

:

Applying Lemma 1, we get

a = F

r

(u; v); x = F

r�1

(u; v); y

n

p

= u

2

+ v

2

;(5)

where r 2 f0; 1; 2; 3g: By Lemma 2 we obtain that the binary form F

r

(u; v) is

redu
ible, hen
e from the equation

F (a

0

� v; v)� a = 0; where a

0

ja;

we have

jvj � a

p�1

+ 1 and juj � a

p�1

+ a+ 1:

It implies that

y

n=p

= u

2

+ v

2

� 2a

2(p�1)

+ 2a

p

+ 4a

p�1

+ a

2

+ 2a+ 2 � 3a

2(p�1)

;

and the assertion follows.
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(iii) Applying Lemma 4 to (1) we obtain

n � 2

91

5

27

a

10

:

Proof of Theorem 2. First 
onsider the 
ase when n is not a power of 2. Denote by

p the smallest odd prime divisor of n: It is 
lear that it suÆ
ies to give a bound for

the number of solutions in the parti
ular 
ase when n = p is an odd prime.

First suppose that n � 1 (mod 4): The 
ase n � �1 (mod 4) 
an be treated

similarly. Denote by F

r

(u; v) the binary form in Z[u; v℄ de�ned above. By Lemma

2 it follows that

(u� (�1)

r

v)jF

r

(u; v) in Z:

Let x; y be an arbitrary but �xed solution of (1). Then Lemma 1 implies that

a = F

r

(u; v) and x = F

r�1

(u; v) for some r 2 f0; 1; 2; 3g and some u; v 2 Z: Hen
e,

by Lemma 2, we have u � (�1)

r

vja in Z: Further, it follows from Lemma 2 that

there is a homogeneous polynomial F (u; v) in Z[u; v℄ with degF = p� 1 su
h that

F

r

(u; v) = (u � (�1)

r

v)F (u; v) in Z[u; v℄: Hen
e, for the above u; v 2 Z we obtain

that u� (�1)

r

v = a

1

; and so

a = a

1

F (a

1

+ (�1)

r

v; v):(6)

The possible values of a

1

is 2d(a): Further, for �xed a

1

equation (6) has at most

p� 1 solutions in v: Thus equation (1) has at most 2(p� 1)d(a) solutions.

Next 
onsider the 
ase when n is a power of 2. Then we may assume that n = 4:

Let again x; y be an arbitrary but �xed solution of (1). Then

a = F

r

(u; v);(7)

and x = F

r�1

(u; v) for some r 2 f0; 1; 2; 3g and some u; v; where F

r

is a quarti


binary form in Z[u; v℄:We have seen above that F

r

is irredu
ible over Q: Equation

(7) is a quarti
 Thue equation. We 
an now apply a well-known theorem of Bombieri

and S
hmidt [6℄ on the number of solutions of Thue equations and we get that the

number of solutions of (7) in u; v 2 Z is at most C4

!(a)+1

; where C is an absolute


onstant. Further, by a theorem of Stewart [29℄ one may take C = 2800: This gives

immediately that in this 
ase equation (1) has at most 2800 � 4

!(a)+1

solutions.

4. Numeri
al results

In this se
tion we list all solutions of equation (1), with 3 � n � 80 and 1 � a �

1000: We used the method applied in the proof of our Theorem 1 to obtain these

results. Namely, we redu
ed equation (1) in ea
h 
on
rete 
ase to a quarti
 or to a

redu
ible Thue equation, a

ording as n is a power of 2 or not. In the �rst 
ase we

used the program pa
kage KANT [17℄ to solve the Thue equation in question. In

the redu
ible 
ase we redu
ed the Thue equation to systems of equations of lower

degree and utilized elimination theory to �nd the solutions.

As (a; x; y) = (1; 1; 1) is a trivial solution for all n, we will indi
ate only those

values of n for whi
h there are other solutions, too.
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The 
ase n = 3

a x y

1 1 1

5 99 17

9 13 5

13 9 5

19 5291 241

27 545 53

37 55 13

55 37 13

71 275561 3361

73 161 25

77 207 29

91 305 37

99 5 17

99 27607 725

121 351 41

143 1099 85

143 1603 109

161 73 25

181 649 61

207 77 29

253 845 73

a x y

253 1079 85

253 9217 349

265 14325849 46817

297 679 65

305 91 37

337 1665 113

351 121 41

369 1432283 10085

377 18989 565

391 3537 185

433 2431 145

481 1917 125

517 531 65

517 79623 1469

531 517 65

541 3401 181

545 27 53

559 61525 1237

585 2191 137

611 1205 97

629 4103 205

a x y

649 181 61

661 4599 221

671 1269 101

679 297 65

693 7501 305

747 923 89

793 6049 265

819 6611 281

845 253 73

851 38493 905

923 747 89

935 472213 4813

937 7775 313

989 744675931 652081

The 
ase n = 4

a x y

1 1 1

1 239 13

17 31 5

31 17 5

79 401 17

191 863 25

239 1 13

241 1921 37

401 79 17

799 881 29

863 191 25

881 799 29

911 10177 85

The 
ase n = 5

a x y

1 1 1

3 79 5

79 3 5

475 719 13

719 475 13

The 
ase n = 6

a x y

1 1 1

73 161 5

161 73 5
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The 
ase n = 7

a x y

1 1 1

249 307 5

307 249 5

The 
ase n = 8

a x y

1 1 1

191 863 5

863 191 5

The 
ase n = 9

a x y

1 1 1

481 1917 5

Remark. We note that the 
ase n = 4 with a = 1 was earlier solved by Ljunggren

[21℄.

A
knowledgements. The authors are grateful to Professors K�alm�an Gy}ory, Lajos
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