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The Fibonacci number 89

Let Fn be the Fibonacci sequence, that is

F0 = 0,

F1 = 1,

Fn = Fn−1 + Fn−2, n ≥ 2.

The first few values are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89.

In 1953 Stancliff noted an interesting property of the Fibonacci
number F11 = 89. One has that

1

89
=

0

10
+

1

102
+

1

103
+

2

104
+

3

105
+

5

106
+ . . . ,

where in the numerators the elements of the Fibonacci sequence
appear.
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Decimal expansion

In 1980 Winans investigated the related sums
∞∑
k=0

Fαk

10k+1

for certain values of α. In 1981 Hudson and Winans provided a
complete characterization of all decimal fractions that can be
approximated by sums of the type

1

Fα

n∑
k=1

Fαk

10l(k+1)
, α, l ≥ 1.

Long proved a general identity for binary recurrence sequences
from which one obtains e.g.

1

9899
=

∞∑
k=0

Fk

102(k+1)
,

1

109
=

∞∑
k=0

Fk

(−10)k+1
.
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Different bases

In case of different bases characterizations were obtained by Jia
Sheng Lee and by Köhler and by Jin Zai Lee and Jia Sheng Lee.
Here we state a result by Köhler that we will use later

Theorem A

Let A,B, a0, a1 be arbitrary complex numbers. Define the sequence
{an} by the recursion an+1 = Aan + Ban−1. Then the formula

∞∑
k=0

ak
xk+1

=
a0x − Aa0 + a1

x2 − Ax − B

holds for all complex x such that |x | is larger than the absolute
values of the zeros of x2 − Ax − B.
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Lucas sequences

Let P and Q be non-zero relatively prime integers. The Lucas
sequence {Un(P,Q)} is defined by

U0 = 0,U1 = 1 and Un = PUn−1 − QUn−2, if n ≥ 2.

In this talk we deal with the determination of all integers x ≥ 2 for
which there exists an n ≥ 0 such that

1

Un
=
∞∑
k=1

Uk−1

xk
, (1)

where Un is a Lucas sequence with some given P and Q.
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Fibonacci case

In case of P = 1,Q = −1 one gets the Fibonacci sequence. De
Weger computed all x ≥ 2 in case of the Fibonacci sequence, the
solutions are as follows

1

F1
=

1

F2
=

1

1
=
∞∑
k=1

Fk−1

2k
,

1

F5
=

1

5
=
∞∑
k=1

Fk−1

3k
,

1

F10
=

1

55
=
∞∑
k=1

Fk−1

8k
,

1

F11
=

1

89
=
∞∑
k=1

Fk−1

10k
.
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Statements

Theorem

Let {Un(P,Q)} be a Lucas sequence with Q ∈ {±1}. Then
equation (1) possesses only finitely many solutions in n, x which
can be effectively determined.

The proof of the above Theorem provides an algorithm to
determine all solutions of equation (1). Following this algorithm
we obtained numerical results.
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Numerical result

Theorem

Let {Un(P,Q)} be a Lucas sequence with
−10 ≤ P ≤ 10,Q ∈ {±1} and (P,Q) 6= (−2, 1), (2, 1). Then
equation (1) has the following solutions

(P,Q, n, x) ∈ {(−3, 1, 5, 6), (−1,−1, 5, 2), (−1,−1, 11, 9), (1,−1, 1, 2),

(1,−1, 2, 2), (1,−1, 5, 3), (1,−1, 10, 8), (1,−1, 11, 10), (2,−1, 2, 3),

(3,−1, 2, 4), (3, 1, 1, 3), (3, 1, 5, 9), (4,−1, 2, 5), (4,−1, 10, 647),

(4, 1, 1, 4), (5,−1, 2, 6), (5, 1, 1, 5), (6,−1, 2, 7), (6, 1, 1, 6),

(7,−1, 2, 8), (7, 1, 1, 7), (8,−1, 2, 9), (8, 1, 1, 8), (9,−1, 2, 10),

(9, 1, 1, 9), (10,−1, 2, 11), (10, 1, 1, 10)}.
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Associated Lucas sequences

The Lucas sequences {Un(P,Q)} and associated Lucas sequences
{Vn(P,Q)} are defined by the same linear recurrent relation with
P,Q ∈ Z \ {0} but different initial terms:

U0 = 0,U1 = 1 and Un = PUn−1 − QUn−2, if n ≥ 2,

V0 = 2,V1 = P and Vn = PVn−1 − QVn−2, if n ≥ 2.

Terms of Lucas sequences and associated Lucas sequences satisfy
the following identity

V 2
n − DU2

n = 4Qn, (2)

where D = P2 − 4Q.
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Ternary quadratic equations

To determine the appropriate Thue equations we use parametric
solutions of ternary quadratic equations.

Lemma (Alekseyev-Tengely)

Let A,B,C be non-zero integers and let (x0, y0, z0) with z0 6= 0 be
a particular non-trivial integer solution to the Diophantine equation
Ax2 + By2 + Cz2 = 0. Then its general integer solution is given by

(x, y, z) =
p

q
(Px (m, n), Py (m, n), Pz (m, n))

where m, n as well as p, q are coprime integers with q > 0 dividing
2 lcm(A,B)Cz2

0 , and

Px (m, n) = x0Am
2 + 2y0Bmn − x0Bn

2
,

Py (m, n) = −y0Am
2 + 2x0Amn + y0Bn

2
,

Pz (m, n) = z0Am
2 + z0Bn

2
.
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Finiteness

Let {Un(P,Q)} be a Lucas sequence with Q ∈ {±1}. Theorem A
implies that

∞∑
k=1

Uk−1

xk
=

1

x2 − Px ± 1
. (3)

Hence from equations (1) and (3) it follows that
Un = x2 − Px ± 1. Finiteness follows from results by Nemes and
Pethő and by Pethő. We provide two approaches to determine a
finite set of possible values of x for which Un = x2 − Px ± 1.
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Elliptic curves

The first one is based on elliptic curves. It only works if one can
determine the rank of the appropriate Mordell-Weil groups. The
second method is based on an elementary reduction algorithm
which yield finitely many quartic Thue equations to solve.
Substituting Un = x2 − Px ± 1 into the identity (2) yields a genus
1 curve

C(P,Q,n) : y2 = (P2 − 4Q)(x2 − Px + Q)2 + 4Qn.

Bruin and Stoll described and algorithm the so-called two-cover
descent, which can be used to prove that a given hyperelliptic
curve has no rational points.
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Elliptic curves

This algorithm is implemented in Magma, the procedure is called
TwoCoverDescent. If it turns out that there are no rational points
on the curves y2 = (P2 − 4)(x2 − Px + 1)2 + 4 and
y2 = (P2 + 4)(x2 − Px − 1)2 ± 4, then the equation (1) has no
solution. If TwoCoverDescent yields that rational points may
exist, but the procedure Points fails to find one, then we follow
the second approach, solution via Thue equations that we consider
later in the proof. Now we assume that we could determine points
on curves for which TwoCoverDescent predicts existence of
rational points. That means we are given elliptic curves in quartic
model. Tzanakis provided a method to determine all integral
points on quartic models, the algorithm is implemented in Magma
as IntegralQuarticPoints.
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Elementary reduction

There are three ternary quadratic equations to parametrize

Q1 : X 2 − (P2 − 4)Y 2 − 4Z 2 = 0,

Q2 : X 2 − (P2 + 4)Y 2 − 4Z 2 = 0,

Q3 : X 2 − (P2 + 4)Y 2 + 4Z 2 = 0.

There are points on these curves:

Q1 : (X ,Y ,Z ) = (2, 0, 1),

Q2 : (X ,Y ,Z ) = (2, 0, 1),

Q3 : (X ,Y ,Z ) = (P, 1, 1).
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Elementary reduction

It follows from Lemma 1 that
±1 = Pz(m, n) = p

q (m2 − (P2 ± 4)n2). Therefore p = ±1. We deal

with the curve y2 = (P2 − 4)(x2 − Px + 1)2 + 4, the other two
cases are similar. We obtain that

x2 − Px + 1 =
±4mn

q
.

Hence we have that

q(2x − P)2 ± (4− P2)(m2 − (P2 − 4)n2)∓ 16mn = 0,

where q > 0 divides 8(P2 − 4). Applying Lemma 1 again we obtain
that m = fm(u, v) and n = fn(u, v), where fm, fn are homogeneous
quadratic polynomials.
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Eigenvalues and eigenvectors

If we have a possible solution x ∈ N of equation (1), then we have

to compute the value of the sum
∑∞

k=1
Uk−1

xk
. We define

T =

(
P/x −Q/x
1/x 0

)
.

Following standard arguments one has that

1

x

(
T 0 + T 1 + T 2 + . . .+ TN−1

)(1
0

)
=

(
∗∑N

k=1
Uk−1

xk

)
.

Using eigenvectors and eigenvalues one can determine a formula
for the powers of T , hence one obtains a formula depending only
on N for the sum

∑N
k=1

Uk−1

xk
.
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Illustration of the algorithm

We will illustrate how one can use the approaches provided in the
proof of Theorem 1 to determine all solutions of equation (1) for
given P and Q. First we deal with the case P = 4,Q = −1. We
have that

y2 = 20(x2 − 4x − 1)2 ± 4.

To determine all integral solutions we use the Magma commands

IntegralQuarticPoints([20, -160, 280, 160, 16]) and
IntegralQuarticPoints([20, -160, 280, 160,

24],[-1,-18]).

One obtains that x ∈ {−643,−1, 0, 1, 3, 4, 5, 647}.
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Illustration of the algorithm

Since x ≥ 2 only 4 values remain. In case of x = 647 the matrix T
is as follows (

4/647 1/647
1/647 0

)
and we obtain that

N∑
k=1

Uk−1

647k
=

(
2−
√

5
647

)N
(129
√

5− 1)−
(

2+
√

5
647

)N
(129
√

5 + 1)

832040
+

1

416020
.
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Illustration of the algorithm

Thus

lim
N→∞

N∑
k=1

Uk−1

647k
=

1

416020
=

1

U10
.

In a similar way we get that

lim
N→∞

N∑
k=1

Uk−1

3k
= +∞,

lim
N→∞

N∑
k=1

Uk−1

4k
= +∞,

lim
N→∞

N∑
k=1

Uk−1

5k
=

1

4
=

1

U2
.
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Illustration of the algorithm

We apply the second method to completely solve equation (1) with
P = 3,Q = 1. The curve CP,Q,n has the form
y2 = 5(x2 − 3x + 1)2 + 4. It can be written as
v2 = 5u4 − 50u2 + 189 with v = 4y and u = 2x − 3. The second
approach has been implemented in Sage by Alekseyev and Tengely.
Using their procedure QuarticEq([5,-50,189]) we obtain that
u ∈ {±1,±3,±15}, therefore x ∈ {−6, 0, 1, 2, 3, 9}. We have that

lim
N→∞

N∑
k=1

Uk−1

2k
= +∞,

lim
N→∞

N∑
k=1

Uk−1

3k
= 1 =

1

U1

,

lim
N→∞

N∑
k=1

Uk−1

9k
=

1

55
=

1

U5

.
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