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Abstract. In this paper we extend a result of Hirata-Kohno, Laishram,
Shorey and Tijdeman on the Diophantine equation n(n+d) · · · (n+(k−
1)d) = by2, where n, d, k ≥ 2 and y are positive integers such that
gcd(n, d) = 1.

1. introduction

Let n, d, k > 2 and y be positive integers such that gcd(n, d) = 1. For an

integer ν > 1, we denote by P (ν) the greatest prime factor of ν and we put

P (1) = 1. Let b be a squarefree positive integer such that P (b) ≤ k. We

consider the equation

(1) n(n + d) · · · (n + (k − 1)d) = by2

in n, d, k and y.

A celebrated theorem of Erdős and Selfridge [7] states that the product

of consecutive positive integers is never a perfect power. An old, difficult

conjecture states that even a product of consecutive terms of arithmetic

progression of length k > 3 and difference d ≥ 1 is never a perfect power.

Euler proved (see [6] pp. 440 and 635) that a product of four terms in

arithmetic progression is never a square solving equation (1) with b = 1 and

k = 4. Obláth [10] obtained a similar statement for b = 1, k = 5. Bennett,

Bruin, Győry and Hajdu [1] solved (1) with b = 1 and 6 ≤ k ≤ 11. For more

results on this topic see [1], [8] and the references given there.

We write

(2) n + id = aix
2
i for 0 ≤ i < k

where ai are squarefree integers such that P (ai) ≤ max(P (b), k − 1) and xi

are positive integers. Every solution to (1) yields a k-tuple (a0, a1, . . . , ak−1).

Recently Hirata-Kohno, Laishram, Shorey and Tijdeman [8] proved the fol-

lowing theorem.
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Theorem A (Hirata-Kohno, Laishram, Shorey,Tijdeman). Equation (1)
with d > 1, P (b) = k and 7 ≤ k ≤ 100 implies that (a0, a1, . . . , ak−1) is
among the following tuples or their mirror images.

k = 7 : (2, 3, 1, 5, 6, 7, 2), (3, 1, 5, 6, 7, 2, 1), (1, 5, 6, 7, 2, 1, 10),
k = 13 : (3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15),

(1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1),
k = 19 : (1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22),
k = 23 : (5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3),

(6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7).

In case of k = 5 Mukhopadhyay and Shorey [9] proved the following

result.

Theorem B (Mukhopadhyay, Shorey). If n and d are coprime nonzero

integers, then the Diophantine equation

n(n + d)(n + 2d)(n + 3d)(n + 4d) = by2

has no solutions in nonzero integers b, y and P (b) ≤ 3.

In this article we solve (1) with k = 5 and P (b) = 5, moreover we han-

dle the 8 special cases mentioned in Theorem A. We prove the following

theorems.

Theorem 1. Equation (1) with d > 1, P (b) = k and 7 ≤ k ≤ 100 has no

solutions.

Theorem 2. Equation (1) with d > 1, k = 5 and P (b) = 5 implies that

(n, d) ∈ {(−12, 7), (−4, 3)}.

2. preliminary lemmas

In the proofs of Theorem 2 and 1 we need several results using ellip-

tic Chabauty’s method (see [4],[5]). Bruin’s routines related to elliptic

Chabauty’s method are contained in MAGMA [2]. Here we only indicate

the main steps without explaining the background theory. To see how the

method works in practice, in particular by the help of Magma, [3] is an

excellent source. To have the method work, the rank of the elliptic curve

(defined over the number field K) should be strictly less than the degree

of K. In the present cases it turns out that the ranks of the elliptic curves

are either 0 or 1, so elliptic Chabauty’s method is applicable. Further, the

procedure PseudoMordellWeilGroup of Magma is able to find a subgroup

of the Mordell-Weil group of finite odd index. We also need to check that

the index is not divisible by some prime numbers provided by the procedure

Chabauty. This last step can be done by the inbuilt function IsPSaturated.
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Lemma 1. Equation (1) with k = 7 and (a0, a1, . . . , a6) = (1, 5, 6, 7, 2, 1, 10)

implies that n = 2, d = 1.

Proof. Using that n = x2
0 and d = (x2

5 − x2
0)/5 we obtain the following

system of equations

x2
5 + 4x2

0 = 25x2
1,

4x2
5 + x2

0 = 10x2
4,

6x2
5 − x2

0 = 50x2
6.

The second equation implies that x0 is even, that is there exists a z ∈ Z
such that x0 = 2z. By standard factorization argument in the Gaussian

integers we get that

(x5 + 4iz)(x5 + iz) = δ¤,

where δ ∈ {−3 ± i,−1 ± 3i, 1 ± 3i, 3 ± i}. Thus putting X = x5/z it is

sufficient to find all points (X, Y ) on the curves

(3) Cδ : δ(X + i)(X + 4i)(3X2 − 2) = Y 2,

where δ ∈ {−3±i,−1±3i, 1±3i, 3±i}, for which X ∈ Q and Y ∈ Q(i). Note

that if (X, Y ) is a point on Cδ then (X, iY ) is a point on C−δ. We will use

this isomorphism later on to reduce the number of curves to be examined.

Hence we need to consider the curve Cδ for δ ∈ {1− 3i, 1 + 3i, 3− i, 3 + i}.
I. δ = 1− 3i. In this case C1−3i is isomorphic to the elliptic curve

E1−3i : y2 = x3 + ix2 + (−17i− 23)x + (2291i + 1597).

Using MAGMA we get that the rank of E1−3i is 0 and there is no point on

C1−3i for which X ∈ Q.

II. δ = 1 + 3i. Here we obtain that E1+3i : y2 = x3 − ix2 + (17i− 23)x +

(−2291i + 1597). The rank of this curve is 0 and there is no point on C1+3i

for which X ∈ Q.

III. δ = 3−i. The elliptic curve in this case is E3−i : y2 = x3+x2+(−17i+

23)x+(−1597i−2291). We have E3−i(Q(i)) ' Z2⊕Z as an Abelian group.

Applying elliptic Chabauty with p = 13, we get that x5/z = −3. Thus n = 2

and d = 1.

IV. δ = 3+ i. The curve C3+i is isomorphic to E3+i : y2 = x3 +x2 +(17i+

23)x + (1597i − 2291). The rank of this curve is 1 and applying elliptic

Chabauty again with p = 13 we obtain that x5/z = 3. This implies that

n = 2 and d = 1. ¤

Lemma 2. Equation (1) with k = 7 and (a0, a1, . . . , a6) = (2, 3, 1, 5, 6, 7, 2)

implies that n = 2, d = 1.
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Proof. In this case we have the following system of equations

x2
4 + x2

0 = 2x2
1,

9x2
4 + x2

0 = 10x2
3,

9x2
4 − x2

0 = 2x2
6.

Using the same argument as in the proof of Theorem 1 it follows that it is

sufficient to find all points (X, Y ) on the curves

(4) Cδ : 2δ(X + i)(3X + i)(9X2 − 1) = Y 2,

where δ ∈ {−4± 2i,−2± 4i, 2± 4i, 4± 2i}, for which X ∈ Q and Y ∈ Q(i).

We summarize the results obtained by elliptic Chabauty in the following

table. In each case we used p = 29.

δ curve x4/x0

2− 4i y2 = x3 + (−12i− 9)x + (−572i− 104) {−1,±1/3}
2 + 4i y2 = x3 + (12i− 9)x + (−572i + 104) {1,±1/3}
4− 2i y2 = x3 + (−12i + 9)x + (−104i− 572) {±1/3}
4 + 2i y2 = x3 + (12i + 9)x + (−104i + 572) {±1/3}

Thus x4/x0 ∈ {±1,±1/3}. From x4/x0 = ±1 it follows that n = 2, d = 1,

while x4/x0 = ±1/3 does not yield any solutions. ¤

Lemma 3. Equation (1) with k = 7 and (a0, a1, . . . , a6) = (3, 1, 5, 6, 7, 2, 1)

implies that n = 3, d = 1.

Proof. Here we get the following system of equations

2x2
3 + 2x2

0 = x2
1,

4x2
3 + x2

0 = 5x2
2,

12x2
3 − 3x2

0 = x2
6.

Using the same argument as in the proof of Theorem 1 it follows that it is

sufficient to find all points (X, Y ) on the curves

(5) Cδ : δ(X + i)(2X + i)(12X2 − 3) = Y 2,

where δ ∈ {−3± i,−1±3i, 1±3i, 3± i} for which X ∈ Q and Y ∈ Q(i). We

summarize the results obtained by elliptic Chabauty in the following table.

In each case we used p = 13.

δ curve x3/x0

1− 3i y2 = x3 + (27i + 36)x + (243i− 351) {−1,±1/2}
1 + 3i y2 = x3 + (−27i + 36)x + (243i + 351) {1,±1/2}
3− i y2 = x3 + (27i− 36)x + (−351i + 243) {±1/2}
3 + i y2 = x3 + (−27i− 36)x + (−351i− 243) {±1/2}

Thus x3/x0 ∈ {±1,±1/2}. From x4/x0 = ±1 it follows that n = 3, d = 1,

while x3/x0 = ±1/2 does not yield any solutions. ¤
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Lemma 4. Equation (1) with (a0, a1, . . . , a4) = (−3,−5, 2, 1, 1) and k =

5, d > 1 implies that n = −12, d = 7.

Proof. From the system of equations (2) we have

1

4
x2

4 −
9

4
x2

0 = −5x2
1,

1

2
x2

4 −
3

2
x2

0 = 2x2
2,

3

4
x2

4 −
3

4
x2

0 = x2
3.

Clearly, gcd(x4, x0) = 1 or 2. In both cases we get the following system of

equations

X2
4 − 9X2

0 = −5¤,

X2
4 − 3X2

0 = ¤,

X2
4 −X2

0 = 3¤,

where X4 = x4/ gcd(x4, x0) and X0 = x0/ gcd(x4, x0). The curve in this case

is

Cδ : δ(X +
√

3)(X + 3)(X2 − 1) = Y 2,

where δ is from a finite set. Elliptic Chabauty’s method applied with

p = 11, 37 and 59 provides all points for which the first coordinate is ra-

tional. These coordinates are {−3,−2,−1, 1, 2}. We obtain the arithmetic

progression with (n, d) = (−12, 7). ¤

Lemma 5. Equation (1) with (a0, a1, . . . , a4) = (2, 5, 2,−1,−1) and k =

5, d > 1 implies that n = −4, d = 3.

Proof. We use x3 and x2 to get a system of equations as in the previ-

ous lemmas. Elliptic Chabauty’s method applied with p = 13 yields that

x3/x2 = ±1, hence (n, d) = (−4, 3). ¤

Lemma 6. Equation (1) with (a0, a1, . . . , a4) = (6, 5, 1, 3, 2) and k = 5, d >

1 has no solutions.

Proof. In this case we have

δ(x3 +
√
−1x0)(x3 + 2

√
−1x0)(2x

2
3 − x2

0) = ¤,

where δ ∈ {1± 3
√
−1, 3±

√
−1}. Chabauty’s argument gives x3/x0 = ±1,

which corresponds to arithmetic progressions with d = ±1. ¤

3. remaining cases of Theorem A

In this section we prove Theorem 1.
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Proof. First note that Lemmas 1, 2 and 3 imply the statement of the the-

orem in cases of k = 7, 13 and 19. The two remaining possibilities can be

eliminated in a similar way, we present the argument working for the tuple

(5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3).

We have the system of equations

n + d = 6x2
1,

n + 3d = 2x2
3,

n + 5d = 10x2
5,

n + 7d = 3x2
7,

n + 9d = 14x2
9,

n + 11d = x2
11,

n + 13d = 2x2
13.

We find that x7, x11 and (n + d) are even integers. Dividing all equations

by 2 we obtain an arithmetic progression of length 7 and (a0, a1, . . . , a6) =

(3, 1, 5, 6, 7, 2, 1). This is not possible by Lemma 3 and the theorem is proved.

¤

4. the case k = 5

In this section we prove Theorem 2.

Proof. Five divides one of the terms and by symmetry we may assume

that 5 | n + d or 5 | n + 2d. First we compute the set of possible tuples

(a0, a1, a2, a3, a4) for which appropriate congruence conditions hold (gcd(ai, aj) ∈
{1, P (j − i)} for 0 ≤ i < j ≤ 4) and the number of sign changes are

at most 1 and the product a0a1a2a3a4 is positive. After that we elimi-

nate tuples by using elliptic curves of rank 0. We consider elliptic curves

(n + α1d)(n + α2d)(n + α3d)(n + α4d) =
∏

i aαi
¤, where αi, i ∈ {1, 2, 3, 4}

are distinct integers belonging to the set {0, 1, 2, 3, 4}. If the rank is 0, then

we obtain all possible values of n/d. Since gcd(n, d) = 1 we get all possible

values of n and d. It turns out that it remains to deal with the following

tuples

(−3,−5, 2, 1, 1),

(−2,−5, 3, 1, 1),

(−1,−15,−1,−2, 3),

(2, 5, 2,−1,−1),

(6, 5, 1, 3, 2).

In case of (−3,−5, 2, 1, 1) Lemma 4 implies that (n, d) = (−12, 7).
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If (a0, a1, . . . , a4) = (−2,−5, 3, 1, 1), then by gcd(n, d) = 1 we have that

gcd(n, 3) = 1. Since n = −2x2
0 we obtain that n ≡ 1 (mod 3). From the

equation n + 2d = 3x2
2 we get that d ≡ 1 (mod 3). Finally, the equation

n + 4d = x2
4 leads to a contradiction.

If (a0, a1, . . . , a4) = (−1,−15,−1,−2, 3), then we obtain that gcd(n, 3) =

1. From the equations n = −x2
0 and n + d = −15x2

1 we get that n ≡
2 (mod 3) and d ≡ 1 (mod 3). Now the contradiction follows from the

equation n + 2d = −x2
2.

In case of the tuple (2, 5, 2,−1,−1) Lemma 5 implies that (n, d) = (−4, 3).

The last tuple is eliminated by Lemma 6. ¤
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