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Background

Let us define

f (x , k, d) = x(x + d) · · · (x + (k − 1)d).

• Erdős and independently Rigge proved that f (x , k, 1) is never a

perfect square.

• A celebrated result of Erdős and Selfridge states that f (x , k, 1) is

never a perfect power of an integer, provided x ≥ 1 and k ≥ 2.

• Many generalizations in the literature.

• Euler proved that a product of four terms in arithmetic progression

is never a square.

• Obláth obtained a similar statement for k = 5.
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• Erdős and independently Rigge proved that f (x , k, 1) is never a

perfect square.
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Background

• Many nice results by Bruin, Bennett, Győry, Hajdu, Laishram, Pintér,

Saradha, Shorey and others related to the Diophantine equation

• f (x , k, d) = by l

• Techniques: Baker’s method, modular approach, theory of elliptic

curves, Chabauty’s method, high degree Thue equations.

Erdős and Graham asked if the Diophantine equation

r∏
i=1

f (xi , ki , 1) = y2

has, for fixed r ≥ 1 and {k1, k2, . . . , kr} with ki ≥ 4 for i = 1, 2, . . . , r , at

most finitely many solutions in positive integers (x1, x2, . . . , xr , y) with

xi + ki ≤ xi+1 for 1 ≤ i ≤ r − 1.
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Erdős-Graham problem

• Ska lba (2003) provided a bound for the smallest solution and

estimated the number of solutions below a given bound.

• Ulas (2005) answered the above question of Erdős and Graham in

the negative when either r = ki = 4, or r ≥ 6 and ki = 4.

• Bauer and Bennett (2007) extended this result to the cases r = 3

and r = 5.

• Luca and Walsh (2007) studied the case (r , ki ) = (2, 4).

• Bennett and Van Luijk (2012) constructed an infinite family of r ≥ 5

non-overlapping blocks of five consecutive integers such that their

product is always a perfect square.

4
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Product of two blocks

We deal with the Diophantine equation

x(x + 1)(x + 2)(x + 3)(x +k)(x +k + 1)(x +k + 2)(x +k + 3) = y2. (1)

Theorem (Sz. T. (2015))

If (x , y) ∈ N2 is a solution of (1) then

1 ≤ x ≤ 1.08k .

Theorem (Sz. T. (2015))

The only solution (x , y) ∈ N2 of (1) with 4 ≤ k ≤ 106 is

(x , y) = (33, 3361826160)

with k = 1647.
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Proof of the Theorems

We apply Runge’s method and we prove that large solutions do not exists

and we provide bound for size of the possible small solutions. A solution

to equation (1) gives rise a solution to the equation

F (X ) := X (X + k + 2)(X + 2k + 2)(X + 3k) = Y 2, (2)

where X = x2 + (k + 3)x . The polynomial part of the Puiseux expansion

of F (X )(1/2) is

P(X ) = X 2 + (3k + 2)X + k2 + 3k.
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Proof of the Theorems

We obtain that

F (X )− (P(X )− 1)2 = 2X 2 − (4k2 − 6k + 4)X − k4 − 6k3 − 7k2 + 6k − 1,

F (X )− (P(X ) + 1)2 = −2X 2 − (4k2 + 6k + 4)X − k4 − 6k3 − 11k2 − 6k − 1.

Let α1, α2 be the roots of the quadratic polynomial F (X )− (P(X )− 1)2

and α3, α4 be the roots of F (X )− (P(X ) + 1)2. We define

βi , i = 1, 2, 3, 4 as follows

βi =

{
αi if αi ∈ R,
0 otherwise.
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Proof of the Theorems

It follows that

F (X )− (P(X )− 1)2 > 0, if X /∈ [min
i
{βi},max

i
{βi}]

and

F (X )− (P(X ) + 1)2 < 0, if X /∈ [min
i
{βi},max

i
{βi}].

Hence we get that

(P(X )− 1)2 < F (X ) < (P(X ) + 1)2, if X /∈ [min
i
{βi},max

i
{βi}].

If (X ,Y ) is a solution of (2) with X /∈ [mini{βi},maxi{βi}], then

Y = P(X ).

It implies that

0 = F (X )− P(X )2 = −4k2X − k4 − 6k3 − 9k2.

That is

X = −
(
k + 3

2

)2

.
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Large solutions

Since X = x2 + (k + 3)x we get that

x =
−k − 3

2
.

It means that if there exists a large solution, then k has to be odd,

x = −k−3
2 and y = (k−3)(k−1)(k+1)(k+3)

16 . It is a contradiction since k ≥ 4

and therefore 0 > −k−3
2 = x .
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Small solutions

α1 = k2 − 3

2
k − 1− 1

2

√
6 k4 + 15 k2 + 6,

α2 = k2 − 3

2
k − 1 +

1

2

√
6 k4 + 15 k2 + 6,

α3 = −k2 − 3

2
k − 1− 1

2

√
2 k4 − 5 k2 + 2,

α4 = −k2 − 3

2
k − 1 +

1

2

√
2 k4 − 5 k2 + 2.

Since k ≥ 4, we obtain that 6 k4 + 15 k2 + 6 ≥ 0 and 2 k4 − 5 k2 + 2 ≥ 0.

Therefore α1, α2, α3, α4 ∈ R and we have

α3 < α4 < α1 < α2.
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Small solutions

We need to solve the system of inequalities

0 ≤ x2 + (k + 3)x − α3,

0 ≥ x2 + (k + 3)x − α2.

The first inequality is true for all x ≥ 1. The second inequality implies

that

−1

2
k − 1

2

√
5 k2 + 2

√
6 k4 + 15 k2 + 6 + 5− 3

2
≤ x

and

x ≤ −1

2
k +

1

2

√
5 k2 + 2

√
6 k4 + 15 k2 + 6 + 5− 3

2
.

The lower bound is negative if k > 0, hence we have that x > 0, in case

of the upper bound we obtain that x ≤ 1.08k if k ≥ 4.
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Elliptic curve

X (X + k + 2)(X + 2k + 2)(X + 3k) = Y 2

k solutions (X, Y ) ∈ Z2

4 (−15,±45), (−12, 0), (−10, 0), (−9,±9), (−6, 0), (0, 0), (6,±144)

5 (−21,±126), (−16,±24), (−15, 0), (−12, 0), (−9,±18), (−7, 0), (3,±90), (0, 0)

6 (−28,±280), (−18, 0), (−14, 0), (−12,±24), (−8, 0), (2,±80), (0, 0)

7 (−36,±540), (−25,±120), (−21, 0), (−16, 0), (−12,±36), (−9, 0), (0, 0)

8 (−45,±945), (−24, 0), (−18, 0), (−15,±45), (−10, 0), (0, 0)

9 (−55,±1540), (−36,±360), (−27, 0), (−20, 0), (−15,±60), (−11, 0), (0, 0), (1,±84)

10 (−66,±2376), (−30, 0), (−22, 0), (−18,±72), (−12, 0), (0, 0)

11 (−78,±3510), (−49,±840), (−33, 0), (−24, 0), (−22,±66), (−18,±90), (−13, 0), (0, 0), (3,±216)

12
(−91,±5005), (−42,±336), (−39,±195), (−36, 0), (−26, 0), (−25,±55), (−21,±105)

(−16,±80), (−14, 0), (0, 0), (13,±819), (28,−2016)

13 (−105,±6930), (−64,±1680), (−39, 0), (−28, 0), (−21,±126), (−15, 0), (0, 0)

14 (−120,±9360), (−42, 0), (−30, 0), (−24,±144), (−16, 0), (0, 0)

15 (−136,±12376), (−81,±3024), (−45, 0), (−32, 0), (−24,±168), (−17, 0), (0, 0)

16 (−153,±16065), (−48, 0), (−34, 0), (−27,±189), (−18, 0), (0, 0)

17 (−171,±20520), (−100,±5040), (−51, 0), (−36, 0), (−27,±216), (−19, 0), (0, 0)

18 (−190,±25840), (−54, 0), (−38, 0), (−36,±144), (−30,±240), (−20, 0), (0, 0), (10,±960)

19 (−210,±32130), (−121,±7920), (−57, 0), (−40, 0), (−30,±270), (−21, 0), (0, 0)

20 (−231,±39501), (−60, 0), (−42, 0), (−33,±297), (−22, 0), (0, 0)
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Elliptic curve

There is an interesting sequence of points appearing in the above table

[k ,Pk ] ∈ {[4, (−9,±9)], [5, (−9,±18)], [6, (−12,±24)], [7, (−12,±36)], . . .}.

A related sequence (A168237) can be found in The On-Line Encyclopedia

of Integer Sequences. There is a closed formula given from which we can

provide points on the genus 1 model. If k is even, then a point is(
−3(k + 2)

2
,

3(k + 2)(−k + 2)

4

)
.

If k is odd, then we have a point(
−3(k + 1)

2
,

3(k − 1)(k + 1)

4

)
.
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Elliptic curve

The torsion subgroup of the Mordell-Weil group of the curve (2) is
generated by the points T1 = (−k − 2, 0),T2 = (−2k − 2, 0) and we
have that 2T1 = 2T2 = O,T1 + T2 = (−3k , 0). Let us first put the
quartic curve into the cubic form

y2 = x3 + (11k2 + 18k + 4)x2 + (36k4 + 132k3 + 144k2 + 48k)x + (36k6 + 216k5 + 468k4 + 432k3 + 144k2)

by sending the point (0, 0) to infinity using the transformation ϕ

x =
6k3 + 18k2 + 12k

X
,

y =
(6k3 + 18k2 + 12k)Y

X 2
.

14



Integral points

E.g. when k = 5 the integral points are as follows

(0, 0), (−7, 0), (−12, 0), (−15, 0),

±P5 = (−9,±18),±P5 ± (−12, 0) = (−21,±126),

±2P5 ± (−15, 0) = (3,±90),

±3P5 ± (−7, 0) = (−16,±24).

In case of k = 20 we have

(0, 0), (−22, 0), (−42, 0), (−60, 0),

±P20 = (−33, 297),±P20 ± (−22, 0) = (−231,±39501).
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Integral points

If k = 2t, then we obtain

±Pk ± (−k − 2, 0) = (−2t2 − 3t − 1,±(4t4 − 5t2 + 1)),

±Pk ± (−3k, 0) = (−3t − 3/2,±(3t2 − 3/4)),

±2Pk ± (−2k − 2) =

(
−2t2 − t

t − 1/2
,±−4t3 + 2t2 + 2t

t2 − t + 1/4

)
.

If k = 2t + 1, then we get

±Pk ± (−2k − 2, 0) = (−2t2 − 5t − 3,±(4t4 + 8t3 + t2 − 3t)),

±2Pk ± (−k − 1, 0) =

(
−4t2 − 8t − 3

t + 1
,±4t3 + 8t2 + 3t

t2 + 2t + 1

)
.

If the rank is 1 and k is large we may expect 8 integral points.
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Height bounds

Weierstrass model (k = 2t):

y 2 = x3+(−89856t4+34560t2−6912)x+(7741440t6−331776t4−1658880t2+221184)

(−3t−3, 3(t+1)(−t+1)) −→ (−48t2 +144t+48,−3456t3 +1728t2 +1728t)

If Q is an integral point, then Q = nPk + T . Hence n2 = ĥ(Q)

ĥ(Pk )
.

Silverman’s bound:

ĥ(Q) ≤ h(Q) +
h(j)

6
+

h(∆)

6
+ 2.14

We do not need to apply elliptic logarithm method to have a bound for

h(Q)! By Runge’s method we obtained that X ≤ c1k
2. Hence

n2 ≤ 7 log(t) + 18.24

ĥ(Pk)
.
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Problem by Zhang and Cai

Zhang and Cai deal with the equations

(x − 1)x(x + 1)(y − 1)y(y + 1) = (z − 1)z(z + 1),

(x − b)x(x + b)(y − b)y(y + b) = z2, where b is a positive even number.

In case of the first equation they prove that there exist infinitely many

non-trivial positive integer solutions. In case of the second equation they

obtain similar result.
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Problem by Zhang and Cai

They also pose two questions related to the previous equations.

Question 1. Are all the nontrivial positive integer solutions of

(x − 1)x(x + 1)(y − 1)y(y + 1) = (z − 1)z(z + 1) with x ≤ y given by

(F2n−1,F2n+1,F
2
2n), n ≥ 1?

Question 2. Are there infinitely many nontrivial positive integer solutions

of (x − b)x(x + b)(y − b)y(y + b) = z2 if b ≥ 3 odd?

19



Other approach

(x − 1)x(x + 1)(x + k − 1)(x + k)(y + k + 1) = (z − 1)z(z + 1)

We obtain via Runge’s method that

(x2 + kx − 1)3 < F (x) < (x2 + kx)3,

(z − 1)3 < G (z) < (z + 1)3.

Hence

(x2 + kx − 1)3 − (z + 1)3 < 0 < (x2 + kx)3 − (z − 1)3.

It follows that z = x2 + kx − 1 or z = x2 + kx .

20



Large solutions

If z = x2 + kx , then (k2 + 2kx + 2x2 − 2)(k + x)x ⇒ x = 0, x = −k or

|k | < 2.

If z = x2 + kx − 1, then (k2 − kx − x2 + 1)(k + x)x ⇒ x = 0, x = −k or

x = −1

2
k ± 1

2

√
5k2 − 4⇒ k = F2n,

Therefore

x = −F2n+1 or x = F 2
2n.
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Small solutions

(x2 + kx − 1)3 < F (x) < (x2 + kx)3

The second inequality is true if |k | > 1. Roots of the polynomial

F (x)− (x2 + kx − 1)3 :

−1

2
k − 1

2

√
3 k2 + 2

√
k2 + 4k + 4 ≈ −1

2
k
(√

5 + 1
)
,

−1

2
k − 1

2

√
3 k2 − 2

√
k2 + 4k + 4 ≈ −k ,

−1

2
k +

1

2

√
3 k2 − 2

√
k2 + 4k + 4 ≈ 1

k3
,

−1

2
k +

1

2

√
3 k2 + 2

√
k2 + 4k + 4 ≈ 1

2
k
(√

5− 1
)
.
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Question 2.

(x − 3)x(x + 3)(x + k − 3)(x + k)(x + k + 3) = z2

Puiseux expansion: −
(
k2 − 8 kx − 8 x2 + 72

)
(k + 2 x)

Large solutions

exist⇒ (k4 − 12k3x − 12k2x2 + 144k2 + 1728kx + 1728x2 + 5184)k2 = 0

x = −
3 k3 ± 2

√
3 k2 − 432

(
k2 − 36

)
− 432 k

6 (k2 − 144)

Thus k = 6
(
(2 +

√
3)n + (2−

√
3)n
)
. This formula provides infinitely

many solutions in Q.
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