RATIONAL FUNCTION VARIANT OF A PROBLEM OF ERDŐS AND GRAHAM

SZ. TENGELY AND N. VARGA

ABSTRACT. In this paper we provide bounds for the size of the solutions of the Diophantine equations

$$\begin{aligned} \frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)} &= y^2, \\ \frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)(x+c)} &= y^3, \\ \frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)(x+c)(x+d)} &= y^2, \end{aligned}$$

where $a, b, c, d \in \mathbb{Z}$ are pairwise distinct integers.

1. INTRODUCTION

Let us define

$$f(x, k, d) = x(x+d)\cdots(x+(k-1)d),$$

and consider the Diophantine equation

(1) $f(x,k,d) = y^l.$

Erdős [6] and independently Rigge [17] proved that the equation $f(x, k, 1) = y^2$ has no integer solution. Erdős and Selfridge [7] extended this result when $d = 1, x \ge 1$ and $k \ge 2$ and they stated that f(x, k, 1) is never a perfect power. This type of Diophantine equations have been studied intensively.

In the first case assume that l = 2. Euler solved the equation (1) with k = 4 (see [4] pp. 440 and 635) and after that Obláth [16] extended this result to the product of five terms in arithmetic progression, i.e. k = 5. If d is a power of a prime number and $k \ge 4$ Saradha and Shorey [20] proved that (1) has no solutions. Laishram and Shorey [14] examined the case where either $d \le 10^{10}$, or d has at most six prime divisors. Bennett, Bruin, Győry and Hajdu [2] solved (1) when $6 \le k \le 11$. Hirata-Kohno, Laishram, Shorey and Tijdeman [13] completely solved the equation (1) with $3 \le k < 110$. Combining their result with those

²⁰⁰⁰ Mathematics Subject Classification. Primary 11D61; Secondary 11Y50. Key words and phrases. Diophantine equations.

of Tengely [23] all solutions of (1) with $3 \le k \le 100$, P(b) < k are determined, where P(u) denotes the greatest prime factor of u, with the convention P(1) = 1.

Now assume for this paragraph that $l \geq 3$. The literature of this equation

(2)
$$f(x,k,d) = by^l,$$

with b > 0 and $P(b) \le k$ is very rich. Saradha [19] proved that (2) has no solution with $k \ge 4$. Győry [9] studied the product of two and three consecutive terms in arithmetic progression. Győry, Hajdu and Saradha [11] proved that if k = 4, 5 and gcd(x, d) = 1 equation (2) cannot be a perfect power. Hajdu, Tengely and Tijdeman [12] proved that the product of k coprime integers in arithmetic progression cannot be a cube when 2 < k < 39. If 3 < k < 35 and gcd(x, d) = 1 Győry, Hajdu and Pintér [10] proved that for any positive integers x, d and k the product f(x, k, d) cannot be a perfect power.

Erdős and Graham [5] asked if the Diophantine equation

$$\prod_{i=1}^{r} f(x_i, k_i, 1) = y^2$$

has, for fixed $r \ge 1$ and $\{k_1, k_2, \ldots, k_r\}$ with $k_i \ge 4$ for $i = 1, 2, \ldots, r$, at most finitely many solutions in positive integers $(x_1, x_2, \ldots, x_r, y)$ with $x_i + k_i \le x_{i+1}$ for $1 \le i \le r - 1$. Skałba [21] provided a bound for the smallest solution and estimated the number of solutions below a given bound. Ulas [25] gave a counterexample when either $r = k_i = 4$, or $r \ge$ 6 and $k_i = 4$. Bauer and Bennett [1] extended this result to the cases r = 3 and r = 5. In the case $k_i = 5$ and $r \ge 5$ Bennett and Van Luijk [3] constructed an infinite family such that the product $\prod_{i=1}^r f(x_i, k_i, 1)$ is always a perfect square. Luca and Walsh [15] considered the case $(r, k_i) = (2, 4)$.

In our previous paper [24] we considered the equation

$$\frac{x(x+1)(x+2)(x+3)}{(x+a)(x+b)} = y^2$$

where $a, b \in \mathbb{Z}, a \neq b$ are parameters. We provided bounds for the size of solutions and an algorithm to determine all solutions $(x, y) \in \mathbb{Z}^2$. The proof based on Runge's method and the result of Sankaranarayanan and Saradha [18].

In this paper we extended this latter result and study the following three Diophantine equations

$$\frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)} = y^2,$$

$$\frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)(x+c)} = y^3,$$

$$\frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)(x+c)(x+d)} = y^2,$$

where $a, b, c, d \in \mathbb{Z}$ are pairwise distinct integers such that $a, b, c, d \notin \{0, 1, 2, 3, 4, 5\}$. Bounds for the solutions of these equations are provided in the following three theorems.

Theorem 1. If $(x, y) \in \mathbb{Z}^2$ is a solution of the Diophantine equation

$$\frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)} = y^2,$$

 $then \ either$

$$x \mid (3a^2 + 2ab + 3b^2 - 30a - 30b + 115)^2ab$$

or

$$|x| \le 16t^3 + 440t^2,$$

where $t = \max\{|a|, |b|\}.$

Theorem 2. If $(x, y) \in \mathbb{Z}^2$ is a solution of the Diophantine equation

$$\frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)(x+c)} = y^3,$$

then either

 $x \mid (a+b+c-15)^3 abc$

or

$$|x| \le 6t^2 + 68t,$$

where $t = \max\{|a|, |b|, |c|\}.$

Theorem 3. If $(x, y) \in \mathbb{Z}^2$ is a solution of the Diophantine equation

$$\frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)(x+c)(x+d)} = y^2,$$

then either

$$x \mid (a+b+c+d-15)^2 abcd$$

or

$$|x| \le 12t^2 + 132t,$$

where $t = \max\{|a|, |b|, |c|, |d|\}.$

We will use the following result of Fujiwara [8] to prove our statements.

Lemma 1. Given
$$p(z) = \sum_{i=0}^{n} a_i z^i, a_n \neq 0$$
. Then
 $\max\{|\zeta| : p(\zeta) = 0\} \le 2 \max\left\{ \left| \frac{a_{n-1}}{a_n} \right|, \left| \frac{a_{n-2}}{a_n} \right|^{1/2}, \dots, \left| \frac{a_0}{a_n} \right|^{1/2} \right\}$

2. Proof of Theorem 1

{.

Now we deal with the equation

(3)
$$F(x) = \frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)} = y^2.$$

The polynomial part of the Puiseux expansion of $F(x)^{1/2}$ is

$$P(x) = x^{2} - \frac{a+b-15}{2}x + \frac{3a^{2} + 2ab + 3b^{2} - 30a - 30b + 115}{8}$$

Let

$$A(x) = x(x+1)(x+2)(x+3)(x+4)(x+5) - (x+a)(x+b)\left(P(x) - \frac{1}{8}\right)^2$$

and

$$B(x) = x(x+1)(x+2)(x+3)(x+4)(x+5) - (x+a)(x+b)\left(P(x) + \frac{1}{8}\right)^2$$

We have that deg $A = \deg B = 4$ and the leading coefficient of A is 1/4 and the leading coefficient of B is -1/4. Denote by I_A an interval containing all zeroes of the polynomial A(x) and by I_B the interval containing all zeroes of B(x). We observe that if $x < \min\{a, b\}$ or $x > \max\{a, b\}$ and we also have that $x \notin I_A, x \notin I_B$, then

$$\frac{A(x)}{(x+a)(x+b)}$$
 and $\frac{B(x)}{(x+a)(x+b)}$

have opposite signs. Therefore there are two possibilities. Either

$$F(x) - \left(P(x) - \frac{1}{8}\right)^2 < 0,$$

$$F(x) - \left(P(x) + \frac{1}{8}\right)^2 > 0$$

4

or

$$F(x) - \left(P(x) - \frac{1}{8}\right)^2 > 0,$$

$$F(x) - \left(P(x) + \frac{1}{8}\right)^2 < 0.$$

We only handle the first case, the second case is very similar. Here we obtain that

$$\left(P(x) + \frac{1}{8}\right)^2 < F(x) = y^2 < \left(P(x) - \frac{1}{8}\right)^2.$$

Hence

$$(8P(x) + 1)^2 < (8y)^2 < (8P(x) - 1)^2.$$

The polynomial 8P(x) has integral coefficients, so if x is an integer, then 8P(x) is an integer as well. For a fixed integer x there is only one square integer between $(8P(x) + 1)^2$ and $(8P(x) - 1)^2$, it is $64P(x)^2$. Thus y = P(x) and x divides the constant term of the polynomial $64x(x+1)(x+2)(x+3)(x+4)(x+5) - 64(x+a)(x+b)P(x)^2$, that is x divides

$$(3a^2 + 2ab + 3b^2 - 30a - 30b + 115)^2ab.$$

It remains to provide an upper bound for the size of roots of $A(x) = \frac{1}{4}x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$ and $B(x) = -\frac{1}{4}x^4 + b_3x^3 + b_2x^2 + b_1x + b_0$. Let $t = \max\{|a|, |b|\}$. We have that

$$\begin{aligned} |4a_3| &\leq 8t^3 + 60t^2 + 114t + 45, \\ |4a_2| &\leq \frac{15}{4}t^4 + 60t^3 + 450t^2 + 855t + \frac{1135}{4}, \\ |4a_1| &\leq \frac{9}{4}t^5 + 45t^4 + 282t^3 + 855t^2 + \frac{3249}{2}t + 480, \\ |4a_0| &\leq 4t^6 + 60t^5 + 339t^4 + 855t^3 + \frac{3249}{4}t^2. \end{aligned}$$

Similarly we obtain that

$$\begin{aligned} |4b_3| &\leq 8t^3 + 60t^2 + 116t + 30, \\ |4b_2| &\leq \frac{15}{4}t^4 + 60t^3 + 450t^2 + 870t + 255, \\ |4b_1| &\leq \frac{9}{4}t^5 + 45t^4 + 283t^3 + 870t^2 + 1682t + 480t^2 \\ |4b_0| &\leq 4t^6 + 60t^5 + 341t^4 + 870t^3 + 841t^2. \end{aligned}$$

By Fujiwara's result it follows that

$$\max\{|\zeta| : A(\zeta) = 0 \text{ or } B(\zeta) = 0\} \le 16t^3 + 440t^2.$$

3. Proof of Theorem 2

Now, we consider the equation

(4)
$$\frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)(x+c)} = y^3,$$

where $a, b, c \in \mathbb{Z}$ are pairwise distinct integers with $a, b, c \notin \{0, 1, 2, 3, 4, 5\}$. The polynomial part of the Puiseux expansion of

$$\left(\frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)(x+c)}\right)^{1/3}$$

is $P(x) = x + 5 - \frac{a+b+c}{3}$. Define

$$A(x) = x(x+1)(x+2)(x+3)(x+4)(x+5) - (x+a)(x+b)(x+c)\left(P(x) - \frac{1}{3}\right)^3$$

and

$$B(x) = x(x+1)(x+2)(x+3)(x+4)(x+5) - (x+a)(x+b)(x+c)\left(P(x) + \frac{1}{3}\right)^{3}.$$

We obtain that $\deg A = \deg B = 5$ and the leading coefficient of A is 1 and the leading coefficient of B is -1. Therefore

$$\frac{A(x)}{(x+a)(x+b)(x+c)}$$
 and $\frac{B(x)}{(x+a)(x+b)(x+c)}$

have opposite signs if |x| is larger than the maximum of the zeroes of A(x)B(x) in absolute value. The following two possibilities can occur. Either

$$\left(P(x) - \frac{1}{3}\right)^3 < \frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)(x+c)} < \left(P(x) + \frac{1}{3}\right)^3$$

or

$$\left(P(x) + \frac{1}{3}\right)^3 < \frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)(x+c)} < \left(P(x) - \frac{1}{3}\right)^3$$

In a similar way than in the proof of Theorem 1 one gets that $y = P(x) = x + 5 - \frac{a+b+c}{3}$. Hence x divides the constant coefficient of the polynomial

$$27x(x+1)(x+2)(x+3)(x+4)(x+5) - 27(x+a)(x+b)(x+c)P(x)^3,$$

that is

that is

$$x \mid (a+b+c-15)^3 abc.$$

It remains to determine a bound for the maximum of the zeroes of A(x)B(x) in absolute value. We apply Fujiwara's result to obtain such a bound. We have that $A(x) = x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$ and

 $B(x) = -x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x + b_0$. Let $t = \max\{|a|, |b|, |c|\}$. First we compute bounds for the absolute value of the coefficients of A(x) and B(x). These are as follows

$$\begin{aligned} |a_4| &\leq 3t^2 + 14t + 59/3, \\ |a_3| &\leq 16/9t^3 + 28t^2 + 392/3t + 3331/27, \\ |a_2| &\leq 29/9t^4 + 112/3t^3 + 392/3t^2 + 2744/9t + 274, \\ |a_1| &\leq 16/9t^5 + 70/3t^4 + 392/3t^3 + 2744/9t^2 + 120, \\ |a_0| &\leq t^6 + 14t^5 + 196/3t^4 + 2744/27t^3 \end{aligned}$$

and

$$\begin{aligned} |b_4| &\leq 3t^2 + 16t + 1/3, \\ |b_3| &\leq 16/9t^3 + 32t^2 + 512/3t + 1979/27, \\ |b_2| &\leq 29/9t^4 + 128/3t^3 + 512/3t^2 + 4096/9t + 274, \\ |b_1| &\leq 16/9t^5 + 80/3t^4 + 512/3t^3 + 4096/9t^2 + 120, \\ |b_0| &\leq t^6 + 16t^5 + 256/3t^4 + 4096/27t^3. \end{aligned}$$

One needs to establish a bound for $|a_{5-i}|^{1/i}$ and $|b_{5-i}|^{1/i}$, i = 1, 2, ..., 5. One has that $\max\{|a_{5-i}|^{1/i}, |b_{5-i}|^{1/i}\} \leq 3t^2 + 34t$. Thus Fujiwara's bound implies that $|x| \leq 6t^2 + 68t$.

4. Proof of Theorem 3

Let us study the Diophantine equation

(5)
$$\frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)(x+c)(x+d)} = y^2,$$

where $a, b, c, d \in \mathbb{Z}$ are pairwise distinct integers with $a, b, c, d \notin \{0, 1, 2, 3, 4, 5\}$. The polynomial part of the Puiseux expansion of

$$\left(\frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)(x+c)(x+d)}\right)^{1/2}$$

is $P(x) = x + \frac{15 - (a+b+c+d)}{2}$. Let
 $A(x) = x(x+1)(x+2)(x+3)(x+4)(x+5) - (x+a)(x+b)(x+c)(x+d)\left(P(x) - \frac{1}{2}\right)^2$

and

$$B(x) = x(x+1)(x+2)(x+3)(x+4)(x+5) - (x+a)(x+b)(x+c)(x+d)\left(P(x) + \frac{1}{2}\right)^2.$$

The degree of A(x) is 5 and the leading coefficient is 1, the degree of B(x) is also 5 and the leading coefficient is -1. So one has that

$$\frac{A(x)}{(x+a)(x+b)(x+c)(x+d)}$$
 and $\frac{B(x)}{(x+a)(x+b)(x+c)(x+d)}$

have opposite signs if |x| is larger than the maximum of the zeroes of A(x)B(x) in absolute value. It follows that either

$$\left(P(x) - \frac{1}{2}\right)^2 < \frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)(x+c)(x+d)} < \left(P(x) + \frac{1}{2}\right)^2$$

or

$$\left(P(x) + \frac{1}{2}\right)^2 < \frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)(x+c)(x+d)} < \left(P(x) - \frac{1}{2}\right)^2$$

We conclude that if |x| is large, then $y = P(x) = x + \frac{15 - (a+b+c+d)}{2}$ and x divides the constant term of the polynomial

$$4x(x+1)(x+2)(x+3)(x+4)(x+5) - 4(x+a)(x+b)(x+c)(x+d)P(x)^2.$$

That is

$$x \mid (a+b+c+d-15)^2 abcd.$$

Now we compute bounds for $|a_i|$ and $|b_i|, i = 0, 1, ..., 4$, where $A(x) = x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$ and $B(x) = -x^5 + b_4x^4 + b_3x^3 + b_2x^2 + b_1x + b_0$. Let $t = \max\{|a|, |b|, |c|, |d|\}$. We have that

$$\begin{aligned} |a_4| &\leq 6t^2 + 28t + 36, \\ |a_3| &\leq 6t^3 + 28t^2 + 196t + 225, \\ |a_2| &\leq 9t^4 + 112t^3 + 294t^2 + 274, \\ |a_1| &\leq 12t^5 + 98t^4 + 196t^3 + 120, \\ |a_0| &\leq 4t^6 + 28t^5 + 49t^4 \end{aligned}$$

and

$$\begin{aligned} |b_4| &\leq 6t^2 + 32t + 21, \\ |b_3| &\leq 6t^3 + 32t^2 + 256t + 225, \\ |b_2| &\leq 9t^4 + 128t^3 + 384t^2 + 274, \\ |b_1| &\leq 12t^5 + 112t^4 + 256t^3 + 120, \\ |b_0| &\leq 4t^6 + 32t^5 + 64t^4. \end{aligned}$$

One obtains that $\max\{|a_{5-i}|^{1/i}, |b_{5-i}|^{1/i}\} \le 6t^2 + 66t$. Thus Fujiwara's bound implies that $|x| \le 12t^2 + 132t$.

5. Numerical results

In this section we provide complete solutions of the considered three Diophantine equations for certain values of the parameters. We wrote Sage [22] codes to compute all solutions $(x, y) \in \mathbb{Z}^2$ of the concrete equations. It can be downloaded from

http://www.math.unideb.hu/~tengely/RatFunErdosGraham.sage.

Theorem 4. Let a < b integers such that $a, b \in \{-10, -9, ..., 14, 15\} \setminus \{0, 1, 2, 3, 4, 5\}$. The pairs [a, b] for which equation (3) has a non-trivial solution are given by

5	0
[a,b]	list of solutions $[x, y]$
[-10, -8]	[[0,0], [3,24], [-1,0], [-5,0], [-4,0], [-3,0], [-2,0]]
[-10, -6]	$\left[\left[0,0 ight] , \left[1,4 ight] , \left[-2,0 ight] , \left[-5,0 ight] , \left[-4,0 ight] , \left[-3,0 ight] , \left[-1,0 ight] ight]$
[-9, -7]	$\left[\left[0,0 ight] , \left[2,12 ight] , \left[-2,0 ight] , \left[-5,0 ight] , \left[-4,0 ight] , \left[-3,0 ight] , \left[-1,0 ight] ight]$
[-9, -6]	$\left[\left[0,0 ight] , \left[-2,0 ight] , \left[-6,2 ight] , \left[-5,0 ight] , \left[-4,0 ight] , \left[-3,0 ight] , \left[-1,0 ight] ight]$
[-7, -3]	$\left[\left[0,0 ight] , \left[-1,0 ight] , \left[-7,6 ight] , \left[-5,0 ight] , \left[-4,0 ight] , \left[-3,0 ight] , \left[-2,0 ight] ight]$
[-6, -5]	$\left[\left[0,0 ight] , \left[1,6 ight] , \left[-1,0 ight] , \left[-5,0 ight] , \left[-4,0 ight] , \left[-3,0 ight] , \left[-2,0 ight] ight]$
[-6, -2]	$\left[\left[0,0 ight],\left[1,12 ight],\left[-2,0 ight],\left[-8,12 ight],\left[-5,0 ight],\left[-4,0 ight],\left[-3,0 ight],\left[-1,0 ight] ight] ight] ight]$
[-4, -2]	$\left[\left[0,0\right],\left[-1,0\right],\left[-10,30\right],\left[-6,3\right],\left[-5,0\right],\left[-4,0\right],\left[-3,0\right],\left[-2,0\right]\right]\right]$
[-4,7]	$\left[\left[0,0 ight], \left[-1,0 ight], \left[-10,60 ight], \left[-5,0 ight], \left[-4,0 ight], \left[-3,0 ight], \left[-2,0 ight] ight] ight]$
[-2,9]	$\left[\left[0,0 ight] , \left[5,60 ight] , \left[-2,0 ight] , \left[-5,0 ight] , \left[-4,0 ight] , \left[-3,0 ight] , \left[-1,0 ight] ight]$
[7,9]	[[0,0], [1,3], [5,30], [-1,0], [-5,0], [-4,0], [-3,0], [-2,0]]
[7, 11]	$\left[\left[0,0 ight],\left[3,12 ight],\left[-2,0 ight],\left[-6,12 ight],\left[-5,0 ight],\left[-4,0 ight],\left[-3,0 ight],\left[-1,0 ight] ight] ight] ight]$
[8, 12]	$\left[\left[0,0 ight], \left[2,6 ight], \left[-1,0 ight], \left[-5,0 ight], \left[-4,0 ight], \left[-3,0 ight], \left[-2,0 ight] ight] ight]$
[10, 11]	$\left[\left[0,0 ight] , \left[-1,0 ight] , \left[-6,6 ight] , \left[-5,0 ight] , \left[-4,0 ight] , \left[-3,0 ight] , \left[-2,0 ight] ight]$
[11, 14]	$\left[\left[0,0 ight] , \left[1,2 ight] , \left[-2,0 ight] , \left[-5,0 ight] , \left[-4,0 ight] , \left[-3,0 ight] , \left[-1,0 ight] ight]$
[11, 15]	$\left[\left[0,0 ight] , \left[-2,0 ight] , \left[-6,4 ight] , \left[-5,0 ight] , \left[-4,0 ight] , \left[-3,0 ight] , \left[-1,0 ight] ight]$
[12, 14]	$\left[\left[0,0 \right], \left[-2,0 \right], \left[-7,12 \right], \left[-5,0 \right], \left[-4,0 \right], \left[-3,0 \right], \left[-1,0 \right] ight]$
[13, 15]	$\left[\left[0,0 ight] , \left[-1,0 ight] , \left[-8,24 ight] , \left[-5,0 ight] , \left[-4,0 ight] , \left[-3,0 ight] , \left[-2,0 ight] ight]$

Theorem 5. Let a < b < c integers such that $a, b, c \in \{-7, -6, ..., 12\} \setminus \{0, 1, 2, 3, 4, 5\}$. The triples [a, b, c] for which equation (4) has a non-trivial solution are given by

	0 0
[a, b, c]	list of solutions $[x, y]$
[-7, -6, -4]	$\left[\left[0,0\right],\left[1,-2\right],\left[-1,0\right],\left[-8,-2\right],\left[-5,0\right],\left[-4,0\right],\left[-3,0\right],\left[-2,0\right]\right]\right]$
[-7, -5, -1]	$\left[\left[0,0 ight] , \left[-2,0 ight] , \left[-9,-3 ight] , \left[-5,0 ight] , \left[-4,0 ight] , \left[-3,0 ight] , \left[-1,0 ight] ight]$
[-7, -2, 12]	$\left[\left[0,0 ight], \left[-2,0 ight], \left[-7,2 ight], \left[-5,0 ight], \left[-4,0 ight], \left[-3,0 ight], \left[-1,0 ight] ight]$
[-7, 7, 12]	$\left[\left[0,0 ight] , \left[2,-2 ight] , \left[-2,0 ight] , \left[-5,0 ight] , \left[-4,0 ight] , \left[-3,0 ight] , \left[-1,0 ight] ight]$
[-7, 9, 11]	$\left[\left[0,0 ight] , \left[1,-1 ight] , \left[-2,0 ight] , \left[-5,0 ight] , \left[-4,0 ight] , \left[-3,0 ight] , \left[-1,0 ight] ight]$
[-6, -4, 12]	$\left[\left[0,0 ight] , \left[-2,0 ight] , \left[-6,1 ight] , \left[-5,0 ight] , \left[-4,0 ight] , \left[-3,0 ight] , \left[-1,0 ight] ight]$
[-6, -3, 8]	$\left[\left[0,0 \right], \left[1,2 \right], \left[-1,0 \right], \left[-5,0 \right], \left[-4,0 \right], \left[-3,0 \right], \left[-2,0 \right] ight]$
[-6, 6, 10]	$\left[\left[0,0 ight] , \left[4,-6 ight] , \left[-1,0 ight] , \left[-5,0 ight] , \left[-4,0 ight] , \left[-3,0 ight] , \left[-2,0 ight] ight]$
[-5, -1, 7]	$\left[\left[0,0 ight] , \left[-2,0 ight] , \left[-9,-6 ight] , \left[-5,0 ight] , \left[-4,0 ight] , \left[-3,0 ight] , \left[-1,0 ight] ight]$
[-5, -1, 11]	$\left[\left[0,0 ight] , \left[-1,0 ight] , \left[-9,6 ight] , \left[-5,0 ight] , \left[-4,0 ight] , \left[-3,0 ight] , \left[-2,0 ight] ight]$
[-4, -3, -2]	$\left[\left[0,0 ight] , \left[-1,0 ight] , \left[-6,-1 ight] , \left[-5,0 ight] , \left[-4,0 ight] , \left[-3,0 ight] , \left[-2,0 ight] ight]$
[-4, -3, 7]	$\left[\left[0,0 ight], \left[-1,0 ight], \left[-6,2 ight], \left[-5,0 ight], \left[-4,0 ight], \left[-3,0 ight], \left[-2,0 ight] ight] ight]$
[-3, 8, 11]	$\left[\left[0,0 ight] , \left[-1,0 ight] , \left[-6,-2 ight] , \left[-5,0 ight] , \left[-4,0 ight] , \left[-3,0 ight] , \left[-2,0 ight] ight]$
[-2, 6, 10]	$\left[\left[0,0 ight] , \left[4,6 ight] , \left[-2,0 ight] , \left[-5,0 ight] , \left[-4,0 ight] , \left[-3,0 ight] , \left[-1,0 ight] ight]$
[-2, 8, 9]	$\left[\left[0,0 ight] , \left[1,-2 ight] , \left[-1,0 ight] , \left[-5,0 ight] , \left[-4,0 ight] , \left[-3,0 ight] , \left[-2,0 ight] ight]$
[6, 10, 12]	$\left[\left[0,0 ight] , \left[4,3 ight] , \left[-2,0 ight] , \left[-5,0 ight] , \left[-4,0 ight] , \left[-3,0 ight] , \left[-1,0 ight] ight]$
[7, 8, 9]	$\left[\left[0,0 ight] , \left[1,1 ight] , \left[-2,0 ight] , \left[-5,0 ight] , \left[-4,0 ight] , \left[-3,0 ight] , \left[-1,0 ight] ight]$
[9, 11, 12]	[[0,0], [3,2], [-1,0], [-6,2], [-5,0], [-4,0], [-3,0], [-2,0]]

Theorem 6. Let a < b < c < d integers such that $a, b, c, d \in \{-7, -6, ..., 12\} \setminus \{0, 1, 2, 3, 4, 5\}$. The tuples [a, b, c, d] for which equation (5) has a non-trivial solution are given by

[a, b, c, d]	list of solutions $[x, y]$
[-7, -6, -5, 7]	[[0,0], [-1,0], [-9,3], [-5,0], [-4,0], [-3,0], [-2,0]]
[-7, -6, -4, -3]	[[0,0], [1,2], [-1,0], [-5,0], [-4,0], [-3,0], [-2,0]]
[-7, -6, -4, 6]	[[0,0], [-1,0], [-8,2], [-5,0], [-4,0], [-3,0], [-2,0]]
[-7, -6, 10, 11]	[[0,0], [-2,0], [-8,4], [-5,0], [-4,0], [-3,0], [-1,0]]
[-7, -5, -1, 6]	[[0,0], [-2,0], [-9,3], [-5,0], [-4,0], [-3,0], [-1,0]]
[-7, -5, 6, 10]	[[0,0], [4,12], [-2,0], [-5,0], [-4,0], [-3,0], [-1,0]]
[-7, -4, -1, 12]	[[0,0], [2,6], [-2,0], [-5,0], [-4,0], [-3,0], [-1,0]]
[-7, -4, 7, 11]	[[0,0], [3,6], [-2,0], [-5,0], [-4,0], [-3,0], [-1,0]]
[-7, -4, 7, 12]	[[0,0], [2,2], [-2,0], [-5,0], [-4,0], [-3,0], [-1,0]]
[-7, -3, -2, 6]	[[0,0], [-2,0], [-7,2], [-5,0], [-4,0], [-3,0], [-1,0]]
[-7, -3, 6, 12]	[[0,0], [2,3], [-2,0], [-5,0], [-4,0], [-3,0], [-1,0]]
[-7, -3, 8, 11]	[[0,0], [-2,0], [-7,3], [-5,0], [-4,0], [-3,0], [-1,0]]
[-7, -2, 9, 11]	[[0,0], [1,1], [-2,0], [-5,0], [-4,0], [-3,0], [-1,0]]
[-7, -2, 9, 12]	[[0,0], [-2,0], [-7,2], [-5,0], [-4,0], [-3,0], [-1,0]]
[-7, -1, 8, 12]	[[0,0], [-2,0], [-7,3], [-5,0], [-4,0], [-3,0], [-1,0]]
[-7, 6, 9, 12]	[[0,0], [-2,0], [-7,6], [-5,0], [-4,0], [-3,0], [-1,0]]
[-6, -5, 7, 8]	$\left[\left[0,0 ight], \left[-2,0 ight], \left[-9,12 ight], \left[-5,0 ight], \left[-4,0 ight], \left[-3,0 ight], \left[-1,0 ight] ight]$
[-6, -5, 10, 11]	$\left[\left[0,0 ight],\left[4,12 ight],\left[-2,0 ight],\left[-9,12 ight],\left[-5,0 ight],\left[-4,0 ight],\left[-3,0 ight],\left[-1,0 ight] ight] ight]$
[-6, -5, 11, 12]	$\left[\left[0,0 ight] , \left[3,4 ight] , \left[-2,0 ight] , \left[-5,0 ight] , \left[-4,0 ight] , \left[-3,0 ight] , \left[-1,0 ight] ight]$
[-6, -4, 7, 9]	$\left[\left[0,0 ight],\left[-1,0 ight],\left[-10,15 ight],\left[-5,0 ight],\left[-4,0 ight],\left[-3,0 ight],\left[-2,0 ight] ight] ight]$
[-6, -4, 7, 12]	$\left[\left[0,0 ight], \left[-2,0 ight], \left[-6,1 ight], \left[-5,0 ight], \left[-4,0 ight], \left[-3,0 ight], \left[-1,0 ight] ight]$
[-6, -4, 8, 9]	$\left[\left[0,0 ight], \left[-2,0 ight], \left[-6,1 ight], \left[-5,0 ight], \left[-4,0 ight], \left[-3,0 ight], \left[-1,0 ight] ight]$
[-6, -3, 7, 8]	$\left[\left[0,0 ight] , \left[1,1 ight] , \left[-1,0 ight] , \left[-5,0 ight] , \left[-4,0 ight] , \left[-3,0 ight] , \left[-2,0 ight] ight]$
[-6, -3, 8, 12]	[[0,0], [2,3], [-2,0], [-5,0], [-4,0], [-3,0], [-1,0]]
[-6, -2, -1, 7]	[[0,0], [-1,0], [-8,4], [-5,0], [-4,0], [-3,0], [-2,0]]
[-6, -2, 9, 12]	[[0,0], [-2,0], [-8,6], [-5,0], [-4,0], [-3,0], [-1,0]]
[-5, -3, -1, 8]	[[0,0], [-1,0], [-9,6], [-5,0], [-4,0], [-3,0], [-2,0]]
[-5, -3, 8, 9]	[[0,0], [1,1], [-1,0], [-5,0], [-4,0], [-3,0], [-2,0]]
[-5, -1, 6, 8]	[[0,0], [-1,0], [-9,12], [-5,0], [-4,0], [-3,0], [-2,0]]
[-5, -1, 10, 12]	[[0,0], [-2,0], [-9,12], [-5,0], [-4,0], [-3,0], [-1,0]]
[-4, -3, 7, 8]	$\begin{bmatrix} [0,0], [-1,0], [-6,2], [-5,0], [-4,0], [-3,0], [-2,0] \end{bmatrix}$
[-4, -3, 8, 10]	$\begin{bmatrix} [0,0], [-1,0], [-6,1], [-5,0], [-4,0], [-3,0], [-2,0] \end{bmatrix}$
$\begin{bmatrix} -4, -3, 9, 11 \end{bmatrix}$	$\begin{bmatrix} [0,0], [1,1], [-2,0], [-5,0], [-4,0], [-3,0], [-1,0] \end{bmatrix}$
$\frac{[-4, -2, -1, 9]}{[-4, -2, 6, 9]}$	$\begin{bmatrix} [0,0], [5,30], [-1,0], [-5,0], [-4,0], [-3,0], [-2,0] \end{bmatrix}$
[-4, -2, 0, 9] [-4, -2, 9, 11]	$ \begin{bmatrix} [0,0], [-1,0], [-10,15], [-5,0], [-4,0], [-3,0], [-2,0] \end{bmatrix} \\ \begin{bmatrix} [0,0], [5,15], [-2,0], [-5,0], [-4,0], [-3,0], [-1,0] \end{bmatrix} $
[-4, -2, 9, 11] [-4, -1, 7, 9]	$ \begin{bmatrix} [0,0], [5,15], [-2,0], [-5,0], [-4,0], [-3,0], [-1,0] \end{bmatrix} $
[-4, -1, 7, 9]	[[0,0], [-1,0], [-10,30], [-5,0], [-4,0], [-3,0], [-2,0]]
[-3, -2, 8, 9]	[[0,0], [1,2], [-1,0], [-5,0], [-4,0], [-3,0], [-2,0]]
[-3, -2, 8, 11]	[[0,0], [-1,0], [-6,1], [-5,0], [-4,0], [-3,0], [-2,0]]
[-3, -2, 10, 11]	[[0,0], [4,12], [-2,0], [-5,0], [-4,0], [-3,0], [-1,0]]
[-3, -1, 6, 10]	[[0,0], [4,12], [-1,0], [-5,0], [-4,0], [-3,0], [-2,0]]
[-3, 6, 8, 10]	[[0,0], [4,6], [-2,0], [-5,0], [-4,0], [-3,0], [-1,0]]
[-2, 6, 7, 11]	[[0,0], [3,4], [-2,0], [-5,0], [-4,0], [-3,0], [-1,0]]
[-2, 10, 11, 12]	[[0,0], [4,3], [-1,0], [-5,0], [-4,0], [-3,0], [-2,0]]
[-1, 6, 10, 12]	[[0,0], [4,3], [-2,0], [-5,0], [-4,0], [-3,0], [-1,0]]
[-1, 7, 8, 12]	[[0,0], [2,2], [-2,0], [-5,0], [-4,0], [-3,0], [-1,0]]
[-1,9,11,12]	[[0,0], [3,2], [-1,0], [-5,0], [-4,0], [-3,0], [-2,0]]
[8,9,11,12]	[[0,0], [-2,0], [-6,2], [-5,0], [-4,0], [-3,0], [-1,0]]

Acknowledgement. Szabolcs Tengely was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 "National Excellence Program".

Nóra Varga was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 "National Excellence Program".

References

- M. Bauer and M. A. Bennett. Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation. *Ramanujan J.*, 6(2):209–270, 2002.
- [2] M. A. Bennett, N. Bruin, K. Győry, and L. Hajdu. Powers from products of consecutive terms in arithmetic progression. *Proc. London Math. Soc.* (3), 92(2):273–306, 2006.
- [3] M. A. Bennett and R. Van Luijk. Squares from blocks of consecutive integers: a problem of Erdős and Graham. *Indag. Math.*, New Ser., 23(1-2):123–127, 2012.
- [4] L.E. Dickson. History of the theory of numbers. Vol II: Diophantine analysis. Chelsea Publishing Co., New York, 1966.
- [5] P. Erdős and R. L. Graham. Old and new problems and results in combinatorial number theory., 1980.
- [6] P. Erdős. Note on the product of consecutive integers (II). J. London Math. Soc., 14:245–249, 1939.
- [7] P. Erdős and J. L. Selfridge. The product of consecutive integers is never a power. *Illinois J. Math.*, 19:292–301, 1975.
- [8] M. Fujiwara. Über die obere Schranke des absoluten Betrages der Wurzeln einer algebraischen Gleichung. Tôhoku Math. J., 10:167–171, 1916.
- [9] K. Győry. On the diophantine equation $n(n+1)...(n+k-1) = bx^{\ell}$. Acta Arith., 83(1):87–92, 1998.
- [10] K. Győry, L. Hajdu, and Á. Pintér. Perfect powers from products of consecutive terms in arithmetic progression. *Compos. Math.*, 145(4):845–864, 2009.
- [11] K. Győry, L. Hajdu, and N. Saradha. On the Diophantine equation $n(n + d) \cdots (n + (k-1)d) = by^l$. Canad. Math. Bull., 47(3):373–388, 2004.
- [12] L. Hajdu, Sz. Tengely, and R. Tijdeman. Cubes in products of terms in arithmetic progression. *Publ. Math. Debrecen*, 74(1-2):215–232, 2009.
- [13] N. Hirata-Kohno, S. Laishram, T. N. Shorey, and R. Tijdeman. An extension of a theorem of Euler. Acta Arith., 129(1):71–102, 2007.
- [14] S. Laishram and T. N. Shorey. The equation $n(n+d)\cdots(n+(k-1)d) = by^2$ with $\omega(d) \leq 6$ or $d \leq 10^{10}$. Acta Arith., 129(3):249–305, 2007.
- [15] F. Luca and P.G. Walsh. On a diophantine equation related to a conjecture of Erdős and Graham. Glas. Mat., III. Ser., 42(2):281–289, 2007.
- [16] R. Obláth. Uber das Produkt fünf aufeinander folgender Zahlen in einer arithmetischen Reihe. Publ. Math. Debrecen, 1:222–226, 1950.
- [17] O. Rigge. Über ein diophantisches problem. In 9th Congress Math. Scand., pages 155–160. Mercator 1939, Helsingfors 1938.

- [18] A. Sankaranarayanan and N. Saradha. Estimates for the solutions of certain Diophantine equations by Runge's method. Int. J. Number Theory, 4(3):475– 493, 2008.
- [19] N. Saradha. On perfect powers in products with terms from arithmetic progressions. Acta Arith., 82(2):147–172, 1997.
- [20] N. Saradha and T. N. Shorey. Almost squares in arithmetic progression. Compositio Math., 138(1):73–111, 2003.
- [21] M. Skałba. Products of disjoint blocks of consecutive integers which are powers. Colloq. Math., 98(1):1–3, 2003.
- [22] W. A. Stein et al. Sage Mathematics Software (Version 6.0). The Sage Development Team, 2014. http://www.sagemath.org.
- [23] Sz. Tengely. Note on the paper: "An extension of a theorem of Euler" [Acta Arith. 129 (2007), no. 1, 71–102; mr2326488] by N. Hirata-Kohno, S. Laishram, T. N. Shorey and R. Tijdeman. Acta Arith., 134(4):329–335, 2008.
- [24] Sz. Tengely and N. Varga. On a generalization of a problem of Erdős and Graham. *Publ. Math. Debrecen*, 2014. to appear.
- [25] M. Ulas. On products of disjoint blocks of consecutive integers. Enseign. Math. (2), 51(3-4):331–334, 2005.

MATHEMATICAL INSTITUTE UNIVERSITY OF DERECEN P.O.BOX 12 4010 DEBRECEN HUNGARY *E-mail address*: tengely@science.unideb.hu

MATHEMATICAL INSTITUTE

MTA-DE RESEARCH GROUP "EQUATIONS, FUNCTIONS AND CURVES" HUNGARIAN ACADEMY OF SCIENCES AND UNIVERSITY OF DEBRECEN P.O.Box 12 4010 DEBRECEN HUNGARY *E-mail address*: nvarga@science.unideb.hu

12