RATIONAL FUNCTION VARIANT OF A PROBLEM OF ERDŐS AND GRAHAM

SZ. TENGELY AND N. VARGA

Abstract. In this paper we provide bounds for the size of the solutions of the Diophantine equations

$$
\begin{aligned}
& \frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)}=y^{2}, \\
& \frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)(x+c)}=y^{3}, \\
& \frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)(x+c)(x+d)}=y^{2},
\end{aligned}
$$

where $a, b, c, d \in \mathbb{Z}$ are pairwise distinct integers.

1. INTRODUCTION

Let us define

$$
f(x, k, d)=x(x+d) \cdots(x+(k-1) d)
$$

and consider the Diophantine equation

$$
\begin{equation*}
f(x, k, d)=y^{l} . \tag{1}
\end{equation*}
$$

Erdős [6] and independently Rigge [17] proved that the equation $f(x, k, 1)=y^{2}$ has no integer solution. Erdős and Selfridge [7] extended this result when $d=1, x \geq 1$ and $k \geq 2$ and they stated that $f(x, k, 1)$ is never a perfect power. This type of Diophantine equations have been studied intensively.

In the first case assume that $l=2$. Euler solved the equation (1) with $k=4$ (see [4] pp. 440 and 635) and after that Obláth [16] extended this result to the product of five terms in arithmetic progression, i.e. $k=5$. If d is a power of a prime number and $k \geq 4$ Saradha and Shorey [20] proved that (1) has no solutions. Laishram and Shorey [14] examined the case where either $d \leq 10^{10}$, or d has at most six prime divisors. Bennett, Bruin, Győry and Hajdu [2] solved (1) when $6 \leq k \leq 11$. Hirata-Kohno, Laishram, Shorey and Tijdeman [13] completely solved the equation (1) with $3 \leq k<110$. Combining their result with those

[^0]of Tengely [23] all solutions of (1) with $3 \leq k \leq 100, P(b)<k$ are determined, where $P(u)$ denotes the greatest prime factor of u, with the convention $P(1)=1$.

Now assume for this paragraph that $l \geq 3$. The literature of this equation

$$
\begin{equation*}
f(x, k, d)=b y^{l}, \tag{2}
\end{equation*}
$$

with $b>0$ and $P(b) \leq k$ is very rich. Saradha [19] proved that (2) has no solution with $k \geq 4$. Győry [9] studied the product of two and three consecutive terms in arithmetic progression. Győry, Hajdu and Saradha [11] proved that if $k=4,5$ and $\operatorname{gcd}(x, d)=1$ equation (2) cannot be a perfect power. Hajdu, Tengely and Tijdeman [12] proved that the product of k coprime integers in arithmetic progression cannot be a cube when $2<k<39$. If $3<k<35$ and $\operatorname{gcd}(x, d)=1$ Győry, Hajdu and Pintér [10] proved that for any positive integers x, d and k the product $f(x, k, d)$ cannot be a perfect power.

Erdős and Graham [5] asked if the Diophantine equation

$$
\prod_{i=1}^{r} f\left(x_{i}, k_{i}, 1\right)=y^{2}
$$

has, for fixed $r \geq 1$ and $\left\{k_{1}, k_{2}, \ldots, k_{r}\right\}$ with $k_{i} \geq 4$ for $i=1,2, \ldots, r$, at most finitely many solutions in positive integers $\left(x_{1}, x_{2}, \ldots, x_{r}, y\right)$ with $x_{i}+k_{i} \leq x_{i+1}$ for $1 \leq i \leq r-1$. Skałba [21] provided a bound for the smallest solution and estimated the number of solutions below a given bound. Ulas [25] gave a counterexample when either $r=k_{i}=4$, or $r \geq$ 6 and $k_{i}=4$. Bauer and Bennett [1] extended this result to the cases $r=3$ and $r=5$. In the case $k_{i}=5$ and $r \geq 5$ Bennett and Van Luijk [3] constructed an infinite family such that the product $\prod_{i=1}^{r} f\left(x_{i}, k_{i}, 1\right)$ is always a perfect square. Luca and Walsh [15] considered the case $\left(r, k_{i}\right)=(2,4)$.

In our previous paper [24] we considered the equation

$$
\frac{x(x+1)(x+2)(x+3)}{(x+a)(x+b)}=y^{2}
$$

where $a, b \in \mathbb{Z}, a \neq b$ are parameters. We provided bounds for the size of solutions and an algorithm to determine all solutions $(x, y) \in \mathbb{Z}^{2}$. The proof based on Runge's method and the result of Sankaranarayanan and Saradha [18].

In this paper we extended this latter result and study the following three Diophantine equations

$$
\begin{aligned}
& \frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)}=y^{2} \\
& \frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)(x+c)}=y^{3} \\
& \frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)(x+c)(x+d)}=y^{2}
\end{aligned}
$$

where $a, b, c, d \in \mathbb{Z}$ are pairwise distinct integers such that $a, b, c, d \notin$ $\{0,1,2,3,4,5\}$. Bounds for the solutions of these equations are provided in the following three theorems.

Theorem 1. If $(x, y) \in \mathbb{Z}^{2}$ is a solution of the Diophantine equation

$$
\frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)}=y^{2}
$$

then either

$$
x \mid\left(3 a^{2}+2 a b+3 b^{2}-30 a-30 b+115\right)^{2} a b
$$

or

$$
|x| \leq 16 t^{3}+440 t^{2}
$$

where $t=\max \{|a|,|b|\}$.
Theorem 2. If $(x, y) \in \mathbb{Z}^{2}$ is a solution of the Diophantine equation

$$
\frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)(x+c)}=y^{3}
$$

then either

$$
x \mid(a+b+c-15)^{3} a b c
$$

or

$$
|x| \leq 6 t^{2}+68 t
$$

where $t=\max \{|a|,|b|,|c|\}$.
Theorem 3. If $(x, y) \in \mathbb{Z}^{2}$ is a solution of the Diophantine equation

$$
\frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)(x+c)(x+d)}=y^{2}
$$

then either

$$
x \mid(a+b+c+d-15)^{2} a b c d
$$

or

$$
|x| \leq 12 t^{2}+132 t
$$

where $t=\max \{|a|,|b|,|c|,|d|\}$.

We will use the following result of Fujiwara [8] to prove our statements.

Lemma 1. Given $p(z)=\sum_{i=0}^{n} a_{i} z^{i}, a_{n} \neq 0$. Then

$$
\max \{|\zeta|: p(\zeta)=0\} \leq 2 \max \left\{\left|\frac{a_{n-1}}{a_{n}}\right|,\left|\frac{a_{n-2}}{a_{n}}\right|^{1 / 2}, \ldots,\left|\frac{a_{0}}{a_{n}}\right|^{1 / n}\right\} .
$$

2. Proof of Theorem 1

Now we deal with the equation

$$
\begin{equation*}
F(x)=\frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)}=y^{2} . \tag{3}
\end{equation*}
$$

The polynomial part of the Puiseux expansion of $F(x)^{1 / 2}$ is

$$
P(x)=x^{2}-\frac{a+b-15}{2} x+\frac{3 a^{2}+2 a b+3 b^{2}-30 a-30 b+115}{8} .
$$

Let

$$
A(x)=x(x+1)(x+2)(x+3)(x+4)(x+5)-(x+a)(x+b)\left(P(x)-\frac{1}{8}\right)^{2}
$$

and

$$
B(x)=x(x+1)(x+2)(x+3)(x+4)(x+5)-(x+a)(x+b)\left(P(x)+\frac{1}{8}\right)^{2}
$$

We have that $\operatorname{deg} A=\operatorname{deg} B=4$ and the leading coefficient of A is $1 / 4$ and the leading coefficient of B is $-1 / 4$. Denote by I_{A} an interval containing all zeroes of the polynomial $A(x)$ and by I_{B} the interval containing all zeroes of $B(x)$. We observe that if $x<\min \{a, b\}$ or $x>\max \{a, b\}$ and we also have that $x \notin I_{A}, x \notin I_{B}$, then

$$
\frac{A(x)}{(x+a)(x+b)} \quad \text { and } \quad \frac{B(x)}{(x+a)(x+b)}
$$

have opposite signs. Therefore there are two possibilities. Either

$$
\begin{aligned}
& F(x)-\left(P(x)-\frac{1}{8}\right)^{2}<0 \\
& F(x)-\left(P(x)+\frac{1}{8}\right)^{2}>0
\end{aligned}
$$

or

$$
\begin{aligned}
& F(x)-\left(P(x)-\frac{1}{8}\right)^{2}>0 \\
& F(x)-\left(P(x)+\frac{1}{8}\right)^{2}<0
\end{aligned}
$$

We only handle the first case, the second case is very similar. Here we obtain that

$$
\left(P(x)+\frac{1}{8}\right)^{2}<F(x)=y^{2}<\left(P(x)-\frac{1}{8}\right)^{2}
$$

Hence

$$
(8 P(x)+1)^{2}<(8 y)^{2}<(8 P(x)-1)^{2}
$$

The polynomial $8 P(x)$ has integral coefficients, so if x is an integer, then $8 P(x)$ is an integer as well. For a fixed integer x there is only one square integer between $(8 P(x)+1)^{2}$ and $(8 P(x)-1)^{2}$, it is $64 P(x)^{2}$. Thus $y=P(x)$ and x divides the constant term of the polynomial $64 x(x+1)(x+2)(x+3)(x+4)(x+5)-64(x+a)(x+b) P(x)^{2}$, that is x divides

$$
\left(3 a^{2}+2 a b+3 b^{2}-30 a-30 b+115\right)^{2} a b .
$$

It remains to provide an upper bound for the size of roots of $A(x)=$ $\frac{1}{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ and $B(x)=-\frac{1}{4} x^{4}+b_{3} x^{3}+b_{2} x^{2}+b_{1} x+b_{0}$. Let $t=\max \{|a|,|b|\}$. We have that

$$
\begin{aligned}
\left|4 a_{3}\right| & \leq 8 t^{3}+60 t^{2}+114 t+45 \\
\left|4 a_{2}\right| & \leq \frac{15}{4} t^{4}+60 t^{3}+450 t^{2}+855 t+\frac{1135}{4} \\
\left|4 a_{1}\right| & \leq \frac{9}{4} t^{5}+45 t^{4}+282 t^{3}+855 t^{2}+\frac{3249}{2} t+480 \\
\left|4 a_{0}\right| & \leq 4 t^{6}+60 t^{5}+339 t^{4}+855 t^{3}+\frac{3249}{4} t^{2}
\end{aligned}
$$

Similarly we obtain that

$$
\begin{aligned}
\left|4 b_{3}\right| & \leq 8 t^{3}+60 t^{2}+116 t+30 \\
\left|4 b_{2}\right| & \leq \frac{15}{4} t^{4}+60 t^{3}+450 t^{2}+870 t+255 \\
\left|4 b_{1}\right| & \leq \frac{9}{4} t^{5}+45 t^{4}+283 t^{3}+870 t^{2}+1682 t+480 \\
\left|4 b_{0}\right| & \leq 4 t^{6}+60 t^{5}+341 t^{4}+870 t^{3}+841 t^{2}
\end{aligned}
$$

By Fujiwara's result it follows that

$$
\max \{|\zeta|: A(\zeta)=0 \text { or } B(\zeta)=0\} \leq 16 t^{3}+440 t^{2}
$$

3. Proof of Theorem 2

Now, we consider the equation

$$
\begin{equation*}
\frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)(x+c)}=y^{3}, \tag{4}
\end{equation*}
$$

where $a, b, c \in \mathbb{Z}$ are pairwise distinct integers with $a, b, c \notin\{0,1,2,3,4,5\}$. The polynomial part of the Puiseux expansion of

$$
\left(\frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)(x+c)}\right)^{1 / 3}
$$

is $P(x)=x+5-\frac{a+b+c}{3}$. Define

$$
A(x)=x(x+1)(x+2)(x+3)(x+4)(x+5)-(x+a)(x+b)(x+c)\left(P(x)-\frac{1}{3}\right)^{3}
$$

and

$$
B(x)=x(x+1)(x+2)(x+3)(x+4)(x+5)-(x+a)(x+b)(x+c)\left(P(x)+\frac{1}{3}\right)^{3}
$$

We obtain that $\operatorname{deg} A=\operatorname{deg} B=5$ and the leading coefficient of A is 1 and the leading coefficient of B is -1 . Therefore

$$
\frac{A(x)}{(x+a)(x+b)(x+c)} \text { and } \frac{B(x)}{(x+a)(x+b)(x+c)}
$$

have opposite signs if $|x|$ is larger than the maximum of the zeroes of $A(x) B(x)$ in absolute value. The following two possibilities can occur. Either

$$
\left(P(x)-\frac{1}{3}\right)^{3}<\frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)(x+c)}<\left(P(x)+\frac{1}{3}\right)^{3}
$$

or

$$
\left(P(x)+\frac{1}{3}\right)^{3}<\frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)(x+c)}<\left(P(x)-\frac{1}{3}\right)^{3}
$$

In a similar way than in the proof of Theorem 1 one gets that $y=$ $P(x)=x+5-\frac{a+b+c}{3}$. Hence x divides the constant coefficient of the polynomial
$27 x(x+1)(x+2)(x+3)(x+4)(x+5)-27(x+a)(x+b)(x+c) P(x)^{3}$,
that is

$$
x \mid(a+b+c-15)^{3} a b c .
$$

It remains to determine a bound for the maximum of the zeroes of $A(x) B(x)$ in absolute value. We apply Fujiwara's result to obtain such a bound. We have that $A(x)=x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ and
$B(x)=-x^{5}+b_{4} x^{4}+b_{3} x^{3}+b_{2} x^{2}+b_{1} x+b_{0}$. Let $t=\max \{|a|,|b|,|c|\}$.
First we compute bounds for the absolute value of the coefficients of $A(x)$ and $B(x)$. These are as follows

$$
\begin{aligned}
&\left|a_{4}\right| \leq 3 t^{2}+14 t+59 / 3 \\
&\left|a_{3}\right| \leq 16 / 9 t^{3}+28 t^{2}+392 / 3 t+3331 / 27, \\
&\left|a_{2}\right| \leq 29 / 9 t^{4}+112 / 3 t^{3}+392 / 3 t^{2}+2744 / 9 t+274, \\
&\left|a_{1}\right| \leq 16 / 9 t^{5}+70 / 3 t^{4}+392 / 3 t^{3}+2744 / 9 t^{2}+120, \\
&\left|a_{0}\right| \leq t^{6}+14 t^{5}+196 / 3 t^{4}+2744 / 27 t^{3}
\end{aligned}
$$

and

$$
\begin{aligned}
\left|b_{4}\right| & \leq 3 t^{2}+16 t+1 / 3 \\
\left|b_{3}\right| & \leq 16 / 9 t^{3}+32 t^{2}+512 / 3 t+1979 / 27 \\
\left|b_{2}\right| & \leq 29 / 9 t^{4}+128 / 3 t^{3}+512 / 3 t^{2}+4096 / 9 t+274 \\
\left|b_{1}\right| & \leq 16 / 9 t^{5}+80 / 3 t^{4}+512 / 3 t^{3}+4096 / 9 t^{2}+120 \\
\left|b_{0}\right| & \leq t^{6}+16 t^{5}+256 / 3 t^{4}+4096 / 27 t^{3}
\end{aligned}
$$

One needs to establish a bound for $\left|a_{5-i}\right|^{1 / i}$ and $\left|b_{5-i}\right|^{1 / i}, i=1,2, \ldots, 5$. One has that max $\left\{\left|a_{5-i}\right|^{1 / i},\left|b_{5-i}\right|^{1 / i}\right\} \leq 3 t^{2}+34 t$. Thus Fujiwara's bound implies that $|x| \leq 6 t^{2}+68 t$.

4. Proof of Theorem 3

Let us study the Diophantine equation

$$
\begin{equation*}
\frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)(x+c)(x+d)}=y^{2} \tag{5}
\end{equation*}
$$

where $a, b, c, d \in \mathbb{Z}$ are pairwise distinct integers with $a, b, c, d \notin\{0,1,2,3,4,5\}$. The polynomial part of the Puiseux expansion of

$$
\left(\frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)(x+c)(x+d)}\right)^{1 / 2}
$$

is $P(x)=x+\frac{15-(a+b+c+d)}{2}$. Let
$A(x)=x(x+1)(x+2)(x+3)(x+4)(x+5)-(x+a)(x+b)(x+c)(x+d)\left(P(x)-\frac{1}{2}\right)^{2}$
and
$B(x)=x(x+1)(x+2)(x+3)(x+4)(x+5)-(x+a)(x+b)(x+c)(x+d)\left(P(x)+\frac{1}{2}\right)^{2}$.

The degree of $A(x)$ is 5 and the leading coefficient is 1 , the degree of $B(x)$ is also 5 and the leading coefficient is -1 . So one has that

$$
\frac{A(x)}{(x+a)(x+b)(x+c)(x+d)} \text { and } \frac{B(x)}{(x+a)(x+b)(x+c)(x+d)}
$$

have opposite signs if $|x|$ is larger than the maximum of the zeroes of $A(x) B(x)$ in absolute value. It follows that either
$\left(P(x)-\frac{1}{2}\right)^{2}<\frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)(x+c)(x+d)}<\left(P(x)+\frac{1}{2}\right)^{2}$
or
$\left(P(x)+\frac{1}{2}\right)^{2}<\frac{x(x+1)(x+2)(x+3)(x+4)(x+5)}{(x+a)(x+b)(x+c)(x+d)}<\left(P(x)-\frac{1}{2}\right)^{2}$.
We conclude that if $|x|$ is large, then $y=P(x)=x+\frac{15-(a+b+c+d)}{2}$ and x divides the constant term of the polynomial
$4 x(x+1)(x+2)(x+3)(x+4)(x+5)-4(x+a)(x+b)(x+c)(x+d) P(x)^{2}$.
That is

$$
x \mid(a+b+c+d-15)^{2} a b c d .
$$

Now we compute bounds for $\left|a_{i}\right|$ and $\left|b_{i}\right|, i=0,1, \ldots, 4$, where $A(x)=$ $x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ and $B(x)=-x^{5}+b_{4} x^{4}+b_{3} x^{3}+$ $b_{2} x^{2}+b_{1} x+b_{0}$. Let $t=\max \{|a|,|b|,|c|,|d|\}$. We have that

$$
\begin{aligned}
&\left|a_{4}\right| \leq 6 t^{2}+28 t+36 \\
&\left|a_{3}\right| \leq 6 t^{3}+28 t^{2}+196 t+225 \\
&\left|a_{2}\right| \leq 9 t^{4}+112 t^{3}+294 t^{2}+274, \\
&\left|a_{1}\right| \leq 12 t^{5}+98 t^{4}+196 t^{3}+120, \\
&\left|a_{0}\right| \leq 4 t^{6}+28 t^{5}+49 t^{4}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|b_{4}\right| \leq 6 t^{2}+32 t+21 \\
& \left|b_{3}\right| \leq 6 t^{3}+32 t^{2}+256 t+225 \\
& \left|b_{2}\right| \leq 9 t^{4}+128 t^{3}+384 t^{2}+274 \\
& \left|b_{1}\right| \leq 12 t^{5}+112 t^{4}+256 t^{3}+120 \\
& \left|b_{0}\right| \leq 4 t^{6}+32 t^{5}+64 t^{4}
\end{aligned}
$$

One obtains that $\max \left\{\left|a_{5-i}\right|^{1 / i},\left|b_{5-i}\right|^{1 / i}\right\} \leq 6 t^{2}+66 t$. Thus Fujiwara's bound implies that $|x| \leq 12 t^{2}+132 t$.

5. Numerical Results

In this section we provide complete solutions of the considered three Diophantine equations for certain values of the parameters. We wrote Sage [22] codes to compute all solutions $(x, y) \in \mathbb{Z}^{2}$ of the concrete equations. It can be downloaded from
http://www.math.unideb.hu/~tengely/RatFunErdosGraham.sage.
Theorem 4. Let $a<b$ integers such that $a, b \in\{-10,-9, \ldots, 14,15\} \backslash$ $\{0,1,2,3,4,5\}$. The pairs $[a, b]$ for which equation (3) has a non-trivial solution are given by

$[a, b]$	list of solutions $[x, y]$
$[-10,-8]$	$[[0,0],[3,24],[-1,0],[-5,0],[-4,0],[-3,0],[-2,0]]$
$[-10,-6]$	$[[0,0],[1,4],[-2,0],[-5,0],[-4,0],[-3,0],[-1,0]]$
$[-9,-7]$	$[[0,0],[2,12],[-2,0],[-5,0],[-4,0],[-3,0],[-1,0]]$
$[-9,-6]$	$[[0,0],[-2,0],[-6,2],[-5,0],[-4,0],[-3,0],[-1,0]]$
$[-7,-3]$	$[[0,0],[-1,0],[-7,6],[-5,0],[-4,0],[-3,0],[-2,0]]$
$[-6,-5]$	$[[0,0],[1,6],[-1,0],[-5,0],[-4,0],[-3,0],[-2,0]]$
$[-6,-2]$	$[[0,0],[1,12],[-2,0],[-8,12],[-5,0],[-4,0],[-3,0],[-1,0]]$
$[-4,-2]$	$[[0,0],[-1,0],[-10,30],[-6,3],[-5,0],[-4,0],[-3,0],[-2,0]]$
$[-4,7]$	$[[0,0],[-1,0],[-10,60],[-5,0],[-4,0],[-3,0],[-2,0]]$
$[-2,9]$	$[[0,0],[5,60],[-2,0],[-5,0],[-4,0],[-3,0],[-1,0]]$
$[7,9]$	$[[0,0],[1,3],[5,30],[-1,0],[-5,0],[-4,0],[-3,0],[-2,0]]$
$[7,11]$	$[[0,0],[3,12],[-2,0],[-6,12],[-5,0],[-4,0],[-3,0],[-1,0]]$
$[8,12]$	$[[0,0],[2,6],[-1,0],[-5,0],[-4,0],[-3,0],[-2,0]]$
$[10,11]$	$[[0,0],[-1,0],[-6,6],[-5,0],[-4,0],[-3,0],[-2,0]]$
$[11,14]$	$[[0,0],[1,2],[-2,0],[-5,0],[-4,0],[-3,0],[-1,0]]$
$[11,15]$	$[[0,0],[-2,0],[-6,4],[-5,0],[-4,0],[-3,0],[-1,0]]$
$[12,14]$	$[[0,0],[-2,0],[-7,12],[-5,0],[-4,0],[-3,0],[-1,0]]$
$[13,15]$	$[[0,0],[-1,0],[-8,24],[-5,0],[-4,0],[-3,0],[-2,0]]$

Theorem 5. Let $a<b<c$ integers such that $a, b, c \in\{-7,-6, \ldots, 12\} \backslash$ $\{0,1,2,3,4,5\}$. The triples $[a, b, c]$ for which equation (4) has a nontrivial solution are given by

$[a, b, c]$	list of solutions $[x, y]$
$[-7,-6,-4]$	$[[0,0],[1,-2],[-1,0],[-8,-2],[-5,0],[-4,0],[-3,0],[-2,0]]$
$[-7,-5,-1]$	$[[0,0],[-2,0],[-9,-3],[-5,0],[-4,0],[-3,0],[-1,0]]$
$[-7,-2,12]$	$[[0,0],[-2,0],[-7,2],[-5,0],[-4,0],[-3,0],[-1,0]]$
$[-7,7,12]$	$[[0,0],[2,-2],[-2,0],[-5,0],[-4,0],[-3,0],[-1,0]]$
$[-7,9,11]$	$[[0,0],[1,-1],[-2,0],[-5,0],[-4,0],[-3,0],[-1,0]]$
$[-6,-4,12]$	$[[0,0],[-2,0],[-6,1],[-5,0],[-4,0],[-3,0],[-1,0]]$
$[-6,-3,8]$	$[[0,0],[1,2],[-1,0],[-5,0],[-4,0],[-3,0],[-2,0]]$
$[-6,6,10]$	$[[0,0],[4,-6],[-1,0],[-5,0],[-4,0],[-3,0],[-2,0]]$
$[-5,-1,7]$	$[[0,0],[-2,0],[-9,-6],[-5,0],[-4,0],[-3,0],[-1,0]]$
$[-5,-1,11]$	$[[0,0],[-1,0],[-9,6],[-5,0],[-4,0],[-3,0],[-2,0]]$
$[-4,-3,-2]$	$[[0,0],[-1,0],[-6,-1],[-5,0],[-4,0],[-3,0],[-2,0]]$
$[-4,-3,7]$	$[[0,0],[-1,0],[-6,2],[-5,0],[-4,0],[-3,0],[-2,0]]$
$[-3,8,11]$	$[[0,0],[-1,0],[-6,-2],[-5,0],[-4,0],[-3,0],[-2,0]]$
$[-2,6,10]$	$[[0,0],[4,6],[-2,0],[-5,0],[-4,0],[-3,0],[-1,0]]$
$[-2,8,9]$	$[[0,0],[1,-2],[-1,0],[-5,0],[-4,0],[-3,0],[-2,0]]$
$[6,10,12]$	$[[0,0],[4,3],[-2,0],[-5,0],[-4,0],[-3,0],[-1,0]]$
$[7,8,9]$	$[[0,0],[1,1],[-2,0],[-5,0],[-4,0],[-3,0],[-1,0]]$
$[9,11,12]$	$[[0,0],[3,2],[-1,0],[-6,2],[-5,0],[-4,0],[-3,0],[-2,0]]$

Theorem 6. Let $a<b<c<d$ integers such that $a, b, c, d \in\{-7,-6, \ldots, 12\} \backslash$ $\{0,1,2,3,4,5\}$. The tuples $[a, b, c, d]$ for which equation (5) has a nontrivial solution are given by

$[a, b, c, d]$	list of solutions $[x, y]$
[-7, -6, -5, 7]	$[[0,0],[-1,0],[-9,3],[-5,0],[-4,0],[-3,0],[-2,0]]$
$[-7,-6,-4,-3]$	$[[0,0],[1,2],[-1,0],[-5,0],[-4,0],[-3,0],[-2,0]]$
$[-7,-6,-4,6]$	$[[0,0],[-1,0],[-8,2],[-5,0],[-4,0],[-3,0],[-2,0]]$
[-7, -6, 10, 11]	$[0,0],[-2,0],[-8,4],[-5,0],[-4,0],[-3,0],[-1,0]]$
$[-7,-5,-1,6]$	$[[0,0],[-2,0],[-9,3],[-5,0],[-4,0],[-3,0],[-1,0]]$
[-7, -5, 6, 10]	$[[0,0],[4,12],[-2,0],[-5,0],[-4,0],[-3,0],[-1,0]]$
[-7, -4, -1, 12]	$[[0,0],[2,6],[-2,0],[-5,0],[-4,0],[-3,0],[-1,0]]$
[$-7,-4,7,11]$	$[[0,0],[3,6],[-2,0],[-5,0],[-4,0],[-3,0],[-1,0]]$
[$-7,-4,7,12]$	$[0,0],[2,2],[-2,0],[-5,0],[-4,0],[-3,0],[-1,0]]$
[-7, -3, -2, 6]	$[[0,0],[-2,0],[-7,2],[-5,0],[-4,0],[-3,0],[-1,0]]$
[$-7,-3,6,12]$	$[[0,0],[2,3],[-2,0],[-5,0],[-4,0],[-3,0],[-1,0]]$
$[-7,-3,8,11]$	$[[0,0],[-2,0],[-7,3],[-5,0],[-4,0],[-3,0],[-1,0]]$
$[-7,-2,9,11]$	$[[0,0],[1,1],[-2,0],[-5,0],[-4,0],[-3,0],[-1,0]]$
[$-7,-2,9,12]$	$[[0,0],[-2,0],[-7,2],[-5,0],[-4,0],[-3,0],[-1,0]]$
[$-7,-1,8,12]$	$[0,0],[-2,0],[-7,3],[-5,0],[-4,0],[-3,0],[-1,0]]$
[$-7,6,9,12$]	$[[0,0],[-2,0],[-7,6],[-5,0],[-4,0],[-3,0],[-1,0]]$
$[-6,-5,7,8]$	$[[0,0],[-2,0],[-9,12],[-5,0],[-4,0],[-3,0],[-1,0]]$
[$-6,-5,10,11]$	$[[0,0],[4,12],[-2,0],[-9,12],[-5,0],[-4,0],[-3,0],[-1,0]]$
[-6, -5, 11, 12]	$[[0,0],[3,4],[-2,0],[-5,0],[-4,0],[-3,0],[-1,0]]$
$[-6,-4,7,9]$	$[[0,0],[-1,0],[-10,15],[-5,0],[-4,0],[-3,0],[-2,0]]$
$[-6,-4,7,12]$	$[[0,0],[-2,0],[-6,1],[-5,0],[-4,0],[-3,0],[-1,0]]$
$[-6,-4,8,9]$	$[0,0],[-2,0],[-6,1],[-5,0],[-4,0],[-3,0],[-1,0]]$
$[-6,-3,7,8]$	$[[0,0],[1,1],[-1,0],[-5,0],[-4,0],[-3,0],[-2,0]]$
$[-6,-3,8,12]$	$[0,0],[2,3],[-2,0],[-5,0],[-4,0],[-3,0],[-1,0]]$
$[-6,-2,-1,7]$	$[0,0],[-1,0],[-8,4],[-5,0],[-4,0],[-3,0],[-2,0]]$
$[-6,-2,9,12]$	$[0,0],[-2,0],[-8,6],[-5,0],[-4,0],[-3,0],[-1,0]]$
[-5, -3, -1, 8]	$[0,0],[-1,0],[-9,6],[-5,0],[-4,0],[-3,0],[-2,0]]$
$[-5,-3,8,9]$	$[[0,0],[1,1],[-1,0],[-5,0],[-4,0],[-3,0],[-2,0]]$
[$-5,-1,6,8]$	$[0,0],[-1,0],[-9,12],[-5,0],[-4,0],[-3,0],[-2,0]]$
[-5, -1, 10, 12]	$[0,0],[-2,0],[-9,12],[-5,0],[-4,0],[-3,0],[-1,0]]$
$[-4,-3,7,8]$	$[0,0],[-1,0],[-6,2],[-5,0],[-4,0],[-3,0],[-2,0]]$
[-4, -3, 8, 10]	$[0,0],[-1,0],[-6,1],[-5,0],[-4,0],[-3,0],[-2,0]]$
$[-4,-3,9,11]$	$[0,0],[1,1],[-2,0],[-5,0],[-4,0],[-3,0],[-1,0]]$
[$-4,-2,-1,9]$	$[0,0],[5,30],[-1,0],[-5,0],[-4,0],[-3,0],[-2,0]]$
[-4, -2, 6, 9]	$[[0,0],[-1,0],[-10,15],[-5,0],[-4,0],[-3,0],[-2,0]]$
[$-4,-2,9,11]$	$[[0,0],[5,15],[-2,0],[-5,0],[-4,0],[-3,0],[-1,0]]$
[$-4,-1,7,9]$	$[[0,0],[5,15],[-1,0],[-5,0],[-4,0],[-3,0],[-2,0]]$
$[-4,6,7,9]$	$[[0,0],[-1,0],[-10,30],[-5,0],[-4,0],[-3,0],[-2,0]]$
[-3, -2, 8, 9]	$[[0,0],[1,2],[-1,0],[-5,0],[-4,0],[-3,0],[-2,0]]$
$[-3,-2,8,11]$	$[[0,0],[-1,0],[-6,1],[-5,0],[-4,0],[-3,0],[-2,0]]$
[-3, -2, 10, 11]	$[[0,0],[4,12],[-2,0],[-5,0],[-4,0],[-3,0],[-1,0]]$
[-3, -1, 6, 10]	$[0,0],[4,12],[-1,0],[-5,0],[-4,0],[-3,0],[-2,0]]$
[$-3,6,8,10$]	$[[0,0],[4,6],[-2,0],[-5,0],[-4,0],[-3,0],[-1,0]]$
[-2, 6, 7, 11]	$[0,0],[3,4],[-2,0],[-5,0],[-4,0],[-3,0],[-1,0]]$
[$-2,10,11,12]$	$[[0,0],[4,3],[-1,0],[-5,0],[-4,0],[-3,0],[-2,0]]$
[-1, 6, 10, 12]	$[[0,0],[4,3],[-2,0],[-5,0],[-4,0],[-3,0],[-1,0]]$
[$-1,7,8,12$]	$[[0,0],[2,2],[-2,0],[-5,0],[-4,0],[-3,0],[-1,0]]$
[-1, 9, 11, 12]	$[[0,0],[3,2],[-1,0],[-5,0],[-4,0],[-3,0],[-2,0]]$
[8, 9, 11, 12]	$[[0,0],[-2,0],[-6,2],[-5,0],[-4,0],[-3,0],[-1,0]]$

Acknowledgement. Szabolcs Tengely was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TAMOP 4.2.4. A/2-11-1-2012-0001 "National Excellence Program".

Nóra Varga was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 "National Excellence Program".

References

[1] M. Bauer and M. A. Bennett. Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation. Ramanujan J., 6(2):209-270, 2002.
[2] M. A. Bennett, N. Bruin, K. Győry, and L. Hajdu. Powers from products of consecutive terms in arithmetic progression. Proc. London Math. Soc. (3), 92(2):273-306, 2006.
[3] M. A. Bennett and R. Van Luijk. Squares from blocks of consecutive integers: a problem of Erdős and Graham. Indag. Math., New Ser., 23(1-2):123-127, 2012.
[4] L.E. Dickson. History of the theory of numbers. Vol II: Diophantine analysis. Chelsea Publishing Co., New York, 1966.
[5] P. Erdős and R. L. Graham. Old and new problems and results in combinatorial number theory. , 1980.
[6] P. Erdős. Note on the product of consecutive integers (II). J. London Math. Soc., 14:245-249, 1939.
[7] P. Erdős and J. L. Selfridge. The product of consecutive integers is never a power. Illinois J. Math., 19:292-301, 1975.
[8] M. Fujiwara. Über die obere Schranke des absoluten Betrages der Wurzeln einer algebraischen Gleichung. Tôhoku Math. J., 10:167-171, 1916.
[9] K. Győry. On the diophantine equation $n(n+1) \ldots(n+k-1)=b x^{\ell}$. Acta Arith., 83(1):87-92, 1998.
[10] K. Győry, L. Hajdu, and Á. Pintér. Perfect powers from products of consecutive terms in arithmetic progression. Compos. Math., 145(4):845-864, 2009.
[11] K. Győry, L. Hajdu, and N. Saradha. On the Diophantine equation $n(n+$ d) $\cdots(n+(k-1) d)=b y^{l}$. Canad. Math. Bull., 47(3):373-388, 2004.
[12] L. Hajdu, Sz. Tengely, and R. Tijdeman. Cubes in products of terms in arithmetic progression. Publ. Math. Debrecen, 74(1-2):215-232, 2009.
[13] N. Hirata-Kohno, S. Laishram, T. N. Shorey, and R. Tijdeman. An extension of a theorem of Euler. Acta Arith., 129(1):71-102, 2007.
[14] S. Laishram and T. N. Shorey. The equation $n(n+d) \cdots(n+(k-1) d)=b y^{2}$ with $\omega(d) \leq 6$ or $d \leq 10^{10}$. Acta Arith., 129(3):249-305, 2007.
[15] F. Luca and P.G. Walsh. On a diophantine equation related to a conjecture of Erdős and Graham. Glas. Mat., III. Ser., 42(2):281-289, 2007.
[16] R. Obláth. Über das Produkt fünf aufeinander folgender Zahlen in einer arithmetischen Reihe. Publ. Math. Debrecen, 1:222-226, 1950.
[17] O. Rigge. Über ein diophantisches problem. In 9th Congress Math. Scand., pages 155-160. Mercator 1939, Helsingfors 1938.
[18] A. Sankaranarayanan and N. Saradha. Estimates for the solutions of certain Diophantine equations by Runge's method. Int. J. Number Theory, 4(3):475493, 2008.
[19] N. Saradha. On perfect powers in products with terms from arithmetic progressions. Acta Arith., 82(2):147-172, 1997.
[20] N. Saradha and T. N. Shorey. Almost squares in arithmetic progression. Compositio Math., 138(1):73-111, 2003.
[21] M. Skałba. Products of disjoint blocks of consecutive integers which are powers. Colloq. Math., 98(1):1-3, 2003.
[22] W. A. Stein et al. Sage Mathematics Software (Version 6.0). The Sage Development Team, 2014. http://www.sagemath.org.
[23] Sz. Tengely. Note on the paper: "An extension of a theorem of Euler" [Acta Arith. 129 (2007), no. 1, 71-102; mr2326488] by N. Hirata-Kohno, S. Laishram, T. N. Shorey and R. Tijdeman. Acta Arith., 134(4):329-335, 2008.
[24] Sz. Tengely and N. Varga. On a generalization of a problem of Erdős and Graham. Publ. Math. Debrecen, 2014. to appear.
[25] M. Ulas. On products of disjoint blocks of consecutive integers. Enseign. Math. (2), 51(3-4):331-334, 2005.

Mathematical Institute
University of Derecen
P.O.Box 12

4010 Debrecen
Hungary
E-mail address: tengely@science.unideb.hu
Mathematical Institute
MTA-DE Research Group "Equations, Functions and Curves" Hungarian Academy of Sciences and University of Debrecen P.O.Box 12

4010 Debrecen
Hungary
E-mail address: nvarga@science.unideb.hu

[^0]: 2000 Mathematics Subject Classification. Primary 11D61; Secondary 11Y50.
 Key words and phrases. Diophantine equations.

