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OF ERDŐS AND GRAHAM

SZ. TENGELY AND N. VARGA

Abstract. In this paper we provide bounds for the size of the
solutions of the Diophantine equations

x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)
= y2,

x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)(x + c)
= y3,

x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)(x + c)(x + d)
= y2,

where a, b, c, d ∈ Z are pairwise distinct integers.

1. introduction

Let us define

f(x, k, d) = x(x + d) · · · (x + (k − 1)d),

and consider the Diophantine equation

(1) f(x, k, d) = yl.

Erdős [6] and independently Rigge [17] proved that the equation
f(x, k, 1) = y2 has no integer solution. Erdős and Selfridge [7] extended
this result when d = 1, x ≥ 1 and k ≥ 2 and they stated that f(x, k, 1)
is never a perfect power. This type of Diophantine equations have been
studied intensively.

In the first case assume that l = 2. Euler solved the equation (1) with
k = 4 (see [4] pp. 440 and 635) and after that Obláth [16] extended this
result to the product of five terms in arithmetic progression, i.e. k = 5.
If d is a power of a prime number and k ≥ 4 Saradha and Shorey [20]
proved that (1) has no solutions. Laishram and Shorey [14] examined
the case where either d ≤ 1010, or d has at most six prime divisors.
Bennett, Bruin, Győry and Hajdu [2] solved (1) when 6 ≤ k ≤ 11.
Hirata-Kohno, Laishram, Shorey and Tijdeman [13] completely solved
the equation (1) with 3 ≤ k < 110. Combining their result with those
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2 SZ. TENGELY AND N. VARGA

of Tengely [23] all solutions of (1) with 3 ≤ k ≤ 100, P (b) < k are
determined, where P (u) denotes the greatest prime factor of u, with
the convention P (1) = 1.

Now assume for this paragraph that l ≥ 3. The literature of this
equation

(2) f(x, k, d) = byl,

with b > 0 and P (b) ≤ k is very rich. Saradha [19] proved that (2)
has no solution with k ≥ 4. Győry [9] studied the product of two and
three consecutive terms in arithmetic progression. Győry, Hajdu and
Saradha [11] proved that if k = 4, 5 and gcd(x, d) = 1 equation (2)
cannot be a perfect power. Hajdu, Tengely and Tijdeman [12] proved
that the product of k coprime integers in arithmetic progression cannot
be a cube when 2 < k < 39. If 3 < k < 35 and gcd(x, d) = 1 Győry,
Hajdu and Pintér [10] proved that for any positive integers x, d and k
the product f(x, k, d) cannot be a perfect power.

Erdős and Graham [5] asked if the Diophantine equation

r∏
i=1

f(xi, ki, 1) = y2

has, for fixed r ≥ 1 and {k1, k2, . . . , kr} with ki ≥ 4 for i = 1, 2, . . . , r, at
most finitely many solutions in positive integers (x1, x2, . . . , xr, y) with
xi + ki ≤ xi+1 for 1 ≤ i ≤ r − 1. Ska lba [21] provided a bound for the
smallest solution and estimated the number of solutions below a given
bound. Ulas [25] gave a counterexample when either r = ki = 4, or r ≥
6 and ki = 4. Bauer and Bennett [1] extended this result to the cases
r = 3 and r = 5. In the case ki = 5 and r ≥ 5 Bennett and Van Luijk
[3] constructed an infinite family such that the product

∏r
i=1 f(xi, ki, 1)

is always a perfect square. Luca and Walsh [15] considered the case
(r, ki) = (2, 4).

In our previous paper [24] we considered the equation

x(x + 1)(x + 2)(x + 3)

(x + a)(x + b)
= y2

where a, b ∈ Z, a ̸= b are parameters. We provided bounds for the size
of solutions and an algorithm to determine all solutions (x, y) ∈ Z2. The
proof based on Runge’s method and the result of Sankaranarayanan
and Saradha [18].
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In this paper we extended this latter result and study the following
three Diophantine equations

x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)
= y2,

x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)(x + c)
= y3,

x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)(x + c)(x + d)
= y2,

where a, b, c, d ∈ Z are pairwise distinct integers such that a, b, c, d /∈
{0, 1, 2, 3, 4, 5}. Bounds for the solutions of these equations are provided
in the following three theorems.

Theorem 1. If (x, y) ∈ Z2 is a solution of the Diophantine equation

x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)
= y2,

then either

x |
(
3 a2 + 2 ab + 3 b2 − 30 a− 30 b + 115

)2
ab

or
|x| ≤ 16t3 + 440t2,

where t = max{|a|, |b|}.

Theorem 2. If (x, y) ∈ Z2 is a solution of the Diophantine equation

x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)(x + c)
= y3,

then either
x | (a + b + c− 15)3abc

or
|x| ≤ 6t2 + 68t,

where t = max{|a|, |b|, |c|}.

Theorem 3. If (x, y) ∈ Z2 is a solution of the Diophantine equation

x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)(x + c)(x + d)
= y2,

then either
x | (a + b + c + d− 15)2abcd

or
|x| ≤ 12t2 + 132t,

where t = max{|a|, |b|, |c|, |d|}.
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We will use the following result of Fujiwara [8] to prove our state-
ments.

Lemma 1. Given p(z) =
∑n

i=0 aiz
i, an ̸= 0. Then

max{|ζ| : p(ζ) = 0} ≤ 2 max

{∣∣∣∣an−1

an

∣∣∣∣ , ∣∣∣∣an−2

an

∣∣∣∣1/2 , . . . , ∣∣∣∣a0an
∣∣∣∣1/n

}
.

2. Proof of Theorem 1

Now we deal with the equation

(3) F (x) =
x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)
= y2.

The polynomial part of the Puiseux expansion of F (x)1/2 is

P (x) = x2 − a + b− 15

2
x +

3a2 + 2ab + 3b2 − 30a− 30b + 115

8
.

Let

A(x) = x(x+1)(x+2)(x+3)(x+4)(x+5)−(x+a)(x+b)

(
P (x) − 1

8

)2

and

B(x) = x(x+1)(x+2)(x+3)(x+4)(x+5)−(x+a)(x+b)

(
P (x) +

1

8

)2

We have that degA = degB = 4 and the leading coefficient of A is
1/4 and the leading coefficient of B is −1/4. Denote by IA an interval
containing all zeroes of the polynomial A(x) and by IB the interval
containing all zeroes of B(x). We observe that if x < min{a, b} or
x > max{a, b} and we also have that x ̸∈ IA, x ̸∈ IB, then

A(x)

(x + a)(x + b)
and

B(x)

(x + a)(x + b)

have opposite signs. Therefore there are two possibilities. Either

F (x) −
(
P (x) − 1

8

)2

< 0,

F (x) −
(
P (x) +

1

8

)2

> 0
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or

F (x) −
(
P (x) − 1

8

)2

> 0,

F (x) −
(
P (x) +

1

8

)2

< 0.

We only handle the first case, the second case is very similar. Here we
obtain that (

P (x) +
1

8

)2

< F (x) = y2 <

(
P (x) − 1

8

)2

.

Hence
(8P (x) + 1)2 < (8y)2 < (8P (x) − 1)2.

The polynomial 8P (x) has integral coefficients, so if x is an integer,
then 8P (x) is an integer as well. For a fixed integer x there is only one
square integer between (8P (x) + 1)2 and (8P (x) − 1)2, it is 64P (x)2.
Thus y = P (x) and x divides the constant term of the polynomial
64x(x+ 1)(x+ 2)(x+ 3)(x+ 4)(x+ 5)− 64(x+ a)(x+ b)P (x)2, that is
x divides (

3 a2 + 2 ab + 3 b2 − 30 a− 30 b + 115
)2
ab.

It remains to provide an upper bound for the size of roots of A(x) =
1
4
x4 +a3x

3 +a2x
2 +a1x+a0 and B(x) = −1

4
x4 + b3x

3 + b2x
2 + b1x+ b0.

Let t = max{|a|, |b|}. We have that

|4a3| ≤ 8t3 + 60t2 + 114t + 45,

|4a2| ≤ 15

4
t4 + 60 t3 + 450 t2 + 855 t +

1135

4
,

|4a1| ≤ 9

4
t5 + 45 t4 + 282 t3 + 855 t2 +

3249

2
t + 480,

|4a0| ≤ 4 t6 + 60 t5 + 339 t4 + 855 t3 +
3249

4
t2.

Similarly we obtain that

|4b3| ≤ 8t3 + 60t2 + 116t + 30,

|4b2| ≤ 15

4
t4 + 60 t3 + 450 t2 + 870 t + 255,

|4b1| ≤ 9

4
t5 + 45 t4 + 283 t3 + 870 t2 + 1682 t + 480,

|4b0| ≤ 4 t6 + 60 t5 + 341 t4 + 870 t3 + 841 t2.

By Fujiwara’s result it follows that

max{|ζ| : A(ζ) = 0 or B(ζ) = 0} ≤ 16t3 + 440t2.
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3. Proof of Theorem 2

Now, we consider the equation

(4)
x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)(x + c)
= y3,

where a, b, c ∈ Z are pairwise distinct integers with a, b, c /∈ {0, 1, 2, 3, 4, 5}.
The polynomial part of the Puiseux expansion of(

x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)(x + c)

)1/3

is P (x) = x + 5 − a+b+c
3

. Define

A(x) = x(x+1)(x+2)(x+3)(x+4)(x+5)−(x+a)(x+b)(x+c)

(
P (x) − 1

3

)3

and

B(x) = x(x+1)(x+2)(x+3)(x+4)(x+5)−(x+a)(x+b)(x+c)

(
P (x) +

1

3

)3

.

We obtain that degA = degB = 5 and the leading coefficient of A is
1 and the leading coefficient of B is -1. Therefore

A(x)

(x + a)(x + b)(x + c)
and

B(x)

(x + a)(x + b)(x + c)

have opposite signs if |x| is larger than the maximum of the zeroes of
A(x)B(x) in absolute value. The following two possibilities can occur.
Either(
P (x) − 1

3

)3

<
x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)(x + c)
<

(
P (x) +

1

3

)3

or(
P (x) +

1

3

)3

<
x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)(x + c)
<

(
P (x) − 1

3

)3

.

In a similar way than in the proof of Theorem 1 one gets that y =
P (x) = x + 5 − a+b+c

3
. Hence x divides the constant coefficient of the

polynomial

27x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5) − 27(x + a)(x + b)(x + c)P (x)3,

that is
x | (a + b + c− 15)3abc.

It remains to determine a bound for the maximum of the zeroes of
A(x)B(x) in absolute value. We apply Fujiwara’s result to obtain such
a bound. We have that A(x) = x5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0 and
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B(x) = −x5 + b4x
4 + b3x

3 + b2x
2 + b1x + b0. Let t = max{|a|, |b|, |c|}.

First we compute bounds for the absolute value of the coefficients of
A(x) and B(x). These are as follows

|a4| ≤ 3t2 + 14t + 59/3,

|a3| ≤ 16/9t3 + 28t2 + 392/3t + 3331/27,

|a2| ≤ 29/9t4 + 112/3t3 + 392/3t2 + 2744/9t + 274,

|a1| ≤ 16/9t5 + 70/3t4 + 392/3t3 + 2744/9t2 + 120,

|a0| ≤ t6 + 14t5 + 196/3t4 + 2744/27t3

and

|b4| ≤ 3t2 + 16t + 1/3,

|b3| ≤ 16/9t3 + 32t2 + 512/3t + 1979/27,

|b2| ≤ 29/9t4 + 128/3t3 + 512/3t2 + 4096/9t + 274,

|b1| ≤ 16/9t5 + 80/3t4 + 512/3t3 + 4096/9t2 + 120,

|b0| ≤ t6 + 16t5 + 256/3t4 + 4096/27t3.

One needs to establish a bound for |a5−i|1/i and |b5−i|1/i, i = 1, 2, . . . , 5.
One has that max{|a5−i|1/i, |b5−i|1/i} ≤ 3t2 + 34t. Thus Fujiwara’s
bound implies that |x| ≤ 6t2 + 68t.

4. Proof of Theorem 3

Let us study the Diophantine equation

(5)
x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)(x + c)(x + d)
= y2,

where a, b, c, d ∈ Z are pairwise distinct integers with a, b, c, d /∈ {0, 1, 2, 3, 4, 5}.
The polynomial part of the Puiseux expansion of(

x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)(x + c)(x + d)

)1/2

is P (x) = x + 15−(a+b+c+d)
2

. Let

A(x) = x(x+1)(x+2)(x+3)(x+4)(x+5)−(x+a)(x+b)(x+c)(x+d)

(
P (x) − 1

2

)2

and

B(x) = x(x+1)(x+2)(x+3)(x+4)(x+5)−(x+a)(x+b)(x+c)(x+d)

(
P (x) +

1

2

)2

.
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The degree of A(x) is 5 and the leading coefficient is 1, the degree of
B(x) is also 5 and the leading coefficient is -1. So one has that

A(x)

(x + a)(x + b)(x + c)(x + d)
and

B(x)

(x + a)(x + b)(x + c)(x + d)

have opposite signs if |x| is larger than the maximum of the zeroes of
A(x)B(x) in absolute value. It follows that either(
P (x) − 1

2

)2

<
x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)(x + c)(x + d)
<

(
P (x) +

1

2

)2

or(
P (x) +

1

2

)2

<
x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)(x + c)(x + d)
<

(
P (x) − 1

2

)2

.

We conclude that if |x| is large, then y = P (x) = x + 15−(a+b+c+d)
2

and
x divides the constant term of the polynomial

4x(x+1)(x+2)(x+3)(x+4)(x+5)−4(x+a)(x+b)(x+c)(x+d)P (x)2.

That is

x | (a + b + c + d− 15)2abcd.

Now we compute bounds for |ai| and |bi|, i = 0, 1, . . . , 4, where A(x) =
x5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0 and B(x) = −x5 + b4x
4 + b3x

3 +
b2x

2 + b1x + b0. Let t = max{|a|, |b|, |c|, |d|}. We have that

|a4| ≤ 6t2 + 28t + 36,

|a3| ≤ 6t3 + 28t2 + 196t + 225,

|a2| ≤ 9t4 + 112t3 + 294t2 + 274,

|a1| ≤ 12t5 + 98t4 + 196t3 + 120,

|a0| ≤ 4t6 + 28t5 + 49t4

and

|b4| ≤ 6t2 + 32t + 21,

|b3| ≤ 6t3 + 32t2 + 256t + 225,

|b2| ≤ 9t4 + 128t3 + 384t2 + 274,

|b1| ≤ 12t5 + 112t4 + 256t3 + 120,

|b0| ≤ 4t6 + 32t5 + 64t4.

One obtains that max{|a5−i|1/i, |b5−i|1/i} ≤ 6t2 + 66t. Thus Fujiwara’s
bound implies that |x| ≤ 12t2 + 132t.
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5. Numerical results

In this section we provide complete solutions of the considered three
Diophantine equations for certain values of the parameters. We wrote
Sage [22] codes to compute all solutions (x, y) ∈ Z2 of the concrete
equations. It can be downloaded from
http://www.math.unideb.hu/∼tengely/RatFunErdosGraham.sage.

Theorem 4. Let a < b integers such that a, b ∈ {−10,−9, . . . , 14, 15}\
{0, 1, 2, 3, 4, 5}. The pairs [a, b] for which equation (3) has a non-trivial
solution are given by

[a, b] list of solutions [x, y]

[−10,−8] [[0, 0] , [3, 24] , [−1, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−10,−6] [[0, 0] , [1, 4] , [−2, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−9,−7] [[0, 0] , [2, 12] , [−2, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−9,−6] [[0, 0] , [−2, 0] , [−6, 2] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−7,−3] [[0, 0] , [−1, 0] , [−7, 6] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−6,−5] [[0, 0] , [1, 6] , [−1, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−6,−2] [[0, 0] , [1, 12] , [−2, 0] , [−8, 12] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−4,−2] [[0, 0] , [−1, 0] , [−10, 30] , [−6, 3] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−4, 7] [[0, 0] , [−1, 0] , [−10, 60] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−2, 9] [[0, 0] , [5, 60] , [−2, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[7, 9] [[0, 0] , [1, 3] , [5, 30] , [−1, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[7, 11] [[0, 0] , [3, 12] , [−2, 0] , [−6, 12] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[8, 12] [[0, 0] , [2, 6] , [−1, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[10, 11] [[0, 0] , [−1, 0] , [−6, 6] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[11, 14] [[0, 0] , [1, 2] , [−2, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[11, 15] [[0, 0] , [−2, 0] , [−6, 4] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[12, 14] [[0, 0] , [−2, 0] , [−7, 12] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[13, 15] [[0, 0] , [−1, 0] , [−8, 24] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

Theorem 5. Let a < b < c integers such that a, b, c ∈ {−7,−6, . . . , 12}\
{0, 1, 2, 3, 4, 5}. The triples [a, b, c] for which equation (4) has a non-
trivial solution are given by

[a, b, c] list of solutions [x, y]

[−7,−6,−4] [[0, 0] , [1,−2] , [−1, 0] , [−8,−2] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−7,−5,−1] [[0, 0] , [−2, 0] , [−9,−3] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−7,−2, 12] [[0, 0] , [−2, 0] , [−7, 2] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−7, 7, 12] [[0, 0] , [2,−2] , [−2, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−7, 9, 11] [[0, 0] , [1,−1] , [−2, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−6,−4, 12] [[0, 0] , [−2, 0] , [−6, 1] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−6,−3, 8] [[0, 0] , [1, 2] , [−1, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−6, 6, 10] [[0, 0] , [4,−6] , [−1, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−5,−1, 7] [[0, 0] , [−2, 0] , [−9,−6] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−5,−1, 11] [[0, 0] , [−1, 0] , [−9, 6] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−4,−3,−2] [[0, 0] , [−1, 0] , [−6,−1] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−4,−3, 7] [[0, 0] , [−1, 0] , [−6, 2] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−3, 8, 11] [[0, 0] , [−1, 0] , [−6,−2] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−2, 6, 10] [[0, 0] , [4, 6] , [−2, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−2, 8, 9] [[0, 0] , [1,−2] , [−1, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[6, 10, 12] [[0, 0] , [4, 3] , [−2, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[7, 8, 9] [[0, 0] , [1, 1] , [−2, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[9, 11, 12] [[0, 0] , [3, 2] , [−1, 0] , [−6, 2] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]
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Theorem 6. Let a < b < c < d integers such that a, b, c, d ∈ {−7,−6, . . . , 12}\
{0, 1, 2, 3, 4, 5}. The tuples [a, b, c, d] for which equation (5) has a non-
trivial solution are given by

[a, b, c, d] list of solutions [x, y]

[−7,−6,−5, 7] [[0, 0] , [−1, 0] , [−9, 3] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−7,−6,−4,−3] [[0, 0] , [1, 2] , [−1, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−7,−6,−4, 6] [[0, 0] , [−1, 0] , [−8, 2] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−7,−6, 10, 11] [[0, 0] , [−2, 0] , [−8, 4] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−7,−5,−1, 6] [[0, 0] , [−2, 0] , [−9, 3] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−7,−5, 6, 10] [[0, 0] , [4, 12] , [−2, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−7,−4,−1, 12] [[0, 0] , [2, 6] , [−2, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−7,−4, 7, 11] [[0, 0] , [3, 6] , [−2, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−7,−4, 7, 12] [[0, 0] , [2, 2] , [−2, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−7,−3,−2, 6] [[0, 0] , [−2, 0] , [−7, 2] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−7,−3, 6, 12] [[0, 0] , [2, 3] , [−2, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−7,−3, 8, 11] [[0, 0] , [−2, 0] , [−7, 3] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−7,−2, 9, 11] [[0, 0] , [1, 1] , [−2, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−7,−2, 9, 12] [[0, 0] , [−2, 0] , [−7, 2] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−7,−1, 8, 12] [[0, 0] , [−2, 0] , [−7, 3] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−7, 6, 9, 12] [[0, 0] , [−2, 0] , [−7, 6] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−6,−5, 7, 8] [[0, 0] , [−2, 0] , [−9, 12] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−6,−5, 10, 11] [[0, 0] , [4, 12] , [−2, 0] , [−9, 12] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−6,−5, 11, 12] [[0, 0] , [3, 4] , [−2, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−6,−4, 7, 9] [[0, 0] , [−1, 0] , [−10, 15] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−6,−4, 7, 12] [[0, 0] , [−2, 0] , [−6, 1] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−6,−4, 8, 9] [[0, 0] , [−2, 0] , [−6, 1] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−6,−3, 7, 8] [[0, 0] , [1, 1] , [−1, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−6,−3, 8, 12] [[0, 0] , [2, 3] , [−2, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−6,−2,−1, 7] [[0, 0] , [−1, 0] , [−8, 4] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−6,−2, 9, 12] [[0, 0] , [−2, 0] , [−8, 6] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−5,−3,−1, 8] [[0, 0] , [−1, 0] , [−9, 6] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−5,−3, 8, 9] [[0, 0] , [1, 1] , [−1, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−5,−1, 6, 8] [[0, 0] , [−1, 0] , [−9, 12] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−5,−1, 10, 12] [[0, 0] , [−2, 0] , [−9, 12] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−4,−3, 7, 8] [[0, 0] , [−1, 0] , [−6, 2] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−4,−3, 8, 10] [[0, 0] , [−1, 0] , [−6, 1] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−4,−3, 9, 11] [[0, 0] , [1, 1] , [−2, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−4,−2,−1, 9] [[0, 0] , [5, 30] , [−1, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−4,−2, 6, 9] [[0, 0] , [−1, 0] , [−10, 15] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−4,−2, 9, 11] [[0, 0] , [5, 15] , [−2, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−4,−1, 7, 9] [[0, 0] , [5, 15] , [−1, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−4, 6, 7, 9] [[0, 0] , [−1, 0] , [−10, 30] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−3,−2, 8, 9] [[0, 0] , [1, 2] , [−1, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−3,−2, 8, 11] [[0, 0] , [−1, 0] , [−6, 1] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−3,−2, 10, 11] [[0, 0] , [4, 12] , [−2, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−3,−1, 6, 10] [[0, 0] , [4, 12] , [−1, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−3, 6, 8, 10] [[0, 0] , [4, 6] , [−2, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−2, 6, 7, 11] [[0, 0] , [3, 4] , [−2, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−2, 10, 11, 12] [[0, 0] , [4, 3] , [−1, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[−1, 6, 10, 12] [[0, 0] , [4, 3] , [−2, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−1, 7, 8, 12] [[0, 0] , [2, 2] , [−2, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]

[−1, 9, 11, 12] [[0, 0] , [3, 2] , [−1, 0] , [−5, 0] , [−4, 0] , [−3, 0] , [−2, 0]]

[8, 9, 11, 12] [[0, 0] , [−2, 0] , [−6, 2] , [−5, 0] , [−4, 0] , [−3, 0] , [−1, 0]]
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TÁMOP 4.2.4. A/2-11-1-2012-0001 ”National Excellence Program”.

References

[1] M. Bauer and M. A. Bennett. Applications of the hypergeometric method
to the generalized Ramanujan-Nagell equation. Ramanujan J., 6(2):209–270,
2002.
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