Arithmetic Progressions on Algebraic Curves

Szabolcs Tengely
tengely@science.unideb.hu http://www.math.unideb.hu/~tengely Number Theory and Cryptography Days
Selye University Komárno

This research was supported by the European Union and the State of Hungary, co-financed by the European
Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 'National Excellence Program'.

Summary of the talk

Earlier results

Huff curves

Progressions on Huff curves

Hessian curves

Progressions on Hessian curves

APs on curves

An arithmetic progression on a curve

$$
F(x, y)=0
$$

is an arithmetic progression in either the x or y coordinates. One can pose the following natural question. What is the longest arithmetic progression in the x coordinates? In case of linear polynomials, Fermat claimed and Euler proved that four distinct squares cannot form an arithmetic progression.

Genus 0 curves

Allison found an infinite family of quadratics containing an integral arithmetic progression of length eight. The curve is

$$
y^{2}=\frac{1}{2}\left(k^{2}-l^{2}\right) x^{2}-\frac{5}{2}\left(k^{2}-l^{2}\right) x+\left(3 k^{2}-2 l^{2}\right)
$$

and the AP is as follows

$$
\left(-1,6 k^{2}-5 l^{2}\right),\left(0,3 k^{2}-2 l^{2}\right),\left(1, k^{2}\right),\left(2, l^{2}\right),\left(3, l^{2}\right),\left(4, k^{2}\right),\left(5,3 k^{2}-2 l^{2}\right),\left(6,6 k^{2}-5 l^{2}\right) .
$$

Genus 0 curves

Arithmetic progressions on Pellian equations $x^{2}-d y^{2}=m$ have been considered by many mathematicians. Dujella, Pethő and Tadić proved that for any four-term arithmetic progression, except $\{0,1,2,3\}$ and $\{-3,-2,-1,0\}$, there exist infinitely many pairs (d, m) such that the terms of the given progression are y-components of solutions. Pethő and Ziegler dealt with 5-term progressions on Pellian equations.

Genus 0 curves

Aguirre, Dujella and Peral constructed 6-term AP on Pellian equations parametrized by points on elliptic curve having positive rank.
Pethő and Ziegler posed several open problems. One of them is as follows: "Can one prove or disprove that there are d and m with $d>0$ and not a perfect square such that $y=1,3,5,7,9$ are in arithmetic progression on the curve $x^{2}-d y^{2}=m$?"

Genus 0 curves

Recenlty, González-Jiménez answered the question: there is not m and d not a perfect square such that $y=1,3,5,7,9$ are in arithmetic progression on the curve $x^{2}-d y^{2}=m$. He constructed the related diagonal genus 5 curve and he applied covering techniques and the so-called elliptic Chabauty's method.

Genus 1 Weierstrass curves

$$
y^{2}=x^{3}+A x+B
$$

Bremner provided an infinite family of elliptic curve of Weierstrass form with 8 points in arithmetic progression. González-Jiménez showed that these APs cannot be extended to 9 points APs. Bremner, Silverman and Tzanakis dealt with the congruent number curve $y^{2}=x^{3}-n^{2} x$, they considered integral arithmetic progressions.

Genus 1 general cubic curves

$$
y^{2}=F(x)
$$

If F is a cubic polynomial, then the problem is to determine arithmetic progressions on elliptic curves. Bremner and Campbell found distinct infinite families of elliptic curves, with arithmetic progression of length eight.

Genus 1 quartic curves

Campbell produced infinite families of quartic curves containing an arithmetic progression of length 9 . Ulas constructed an infinite family of quartics containing a progression of length 12. Restricting to quartics possessing central symmetry MacLeod discovered four examples of length 14 progressions (e.g. $y^{2}=-17 x^{4}+3130 x^{2}+8551, x=-13,-11, \ldots, 13$.) Alvarado extended MacLeod's list by determining 11 more examples of length 14 progressions (e.g. $y^{2}=627 x^{4}-87870 x^{2}+3312859$)

Genus 1 Edwards curves

$$
E_{d}: \quad x^{2}+y^{2}=1+d x^{2} y^{2} .
$$

Moody proved that there are infinitely many Edwards curves with 9 points in arithmetic progression. Bremner and independently González-Jiménez proved using elliptic Chabauty's method that Moody's examples cannot be extended to longer APs.

Genus 1 Huff curves

$$
H_{a, b}: \quad x\left(a y^{2}-1\right)=y\left(b x^{2}-1\right) .
$$

Moody produced six infinite families of Huff curves having the property that each has rational points with x-coordinate $x=-4,-3, \ldots, 3,4$. That is he obtained APs of length 9 .

Summary and genus 2 cases

$m(d)$: the largest integer k such that there is a polynomial g_{d} of degree d with the curve $y^{2}=g_{d}(x)$ possessing an AP of length k; $M(d)$: the largest k such that there is an infinite family of polynomials of degree d with each member possessing an AP of length k.

d	1	2	3	4	5	6
$m(d)$	3	≥ 8	≥ 8	≥ 14	≥ 12	≥ 18
$M(d)$	3	≥ 8	≥ 8	≥ 12	≥ 12	≥ 16

Ulas: $m(5) \geq 12, M(5) \geq 11, m(6) \geq 18, M(6) \geq 16$
Alvarado: $M(5) \geq 12$.

A Diophantine problem

Rational distance sets

Given $a, b \in \mathbb{Q}^{*}$ such that $a^{2} \neq b^{2}$. Determine the set of points $(x, 0) \in \mathbb{Q}^{2}$ satisfying that

$$
d((0, \pm a),(x, 0)) \text { and } d((0, \pm b),(x, 0))
$$

are rational numbers.

A Diophantine problem

If $a=2, b=5$, then $\left(\frac{8}{3}, 0\right)$ is fine, since the two distances are $\frac{10}{3}$ and $\frac{17}{3}$.

Huff curves

Rational points on curves

Consider the Huff curve

$$
a x\left(y^{2}-1\right)=b y\left(x^{2}-1\right)
$$

If there is a rational point (x, y) on the curve, then the point

$$
P=\left(\frac{2 b y}{y^{2}-1}, 0\right)
$$

is in the distance set.

Huff curves

$(2,4)$ is on the curve $2 x\left(y^{2}-1\right)=5 y\left(x^{2}-1\right)$, hence

$$
\left(\frac{2 \cdot 5 \cdot 4}{4^{2}-1}, 0\right)=\left(\frac{8}{3}, 0\right)
$$

is in the distance set.

Generalized Huff curves

Wu and Feng considered the curve

$$
H_{a, b}: \quad x\left(a y^{2}-1\right)=y\left(b x^{2}-1\right) .
$$

Moody constructed rational arithmetic progressions of length 9:

$$
x \in\{-4,-3, \ldots, 3,4\}
$$

Integral arithmetic progressions

We look for integral arithmetic progressions: $x_{1}, x_{2}, x_{3}, \ldots$ such that $\left(x_{i}, y_{i}\right) \in \mathbb{Z}^{2}$ are points on the curve. We have that

$$
b y x^{2}-\left(a y^{2}-1\right) x-y=0
$$

Therefore $F(y)=a^{2} y^{4}+(4 b-2 a) y^{2}+1=t^{2}$ for some $t \in \mathbb{Z}$.

Runge's method

We define

$$
\begin{aligned}
& P_{1}(y)=a y^{2}-\frac{a-2 b+1}{a} \\
& P_{2}(y)=a y^{2}-\frac{a-2 b-1}{a} .
\end{aligned}
$$

We obtain that

$$
\begin{aligned}
& F(y)-P_{1}(y)^{2}=-2 y^{2}+\frac{4 b}{a}-\frac{4 b^{2}}{a^{2}}+\frac{2}{a}-\frac{4 b}{a^{2}}-\frac{1}{a^{2}} \\
& F(y)-P_{2}(y)^{2}=2 y^{2}+\frac{4 b}{a}-\frac{4 b^{2}}{a^{2}}-\frac{2}{a}+\frac{4 b}{a^{2}}-\frac{1}{a^{2}}
\end{aligned}
$$

Runge's method

It follows that $P_{2}(y)^{2}<F(y)=t^{2}<P_{1}(y)^{2}$ if $|y|$ is "large". That is

$$
\left(a^{2} y^{2}-(a-2 b-1)\right)^{2}<(a t)^{2}<\left(a^{2} y^{2}-(a-2 b+1)\right)^{2} .
$$

Hence $t=a y^{2}-\frac{a-2 b}{a}$. From the equation $F(y)=t^{2}$ we obtain that $\frac{a-2 b}{a}= \pm 1$. Thus $b=0$ or $a=b$. If $b=0$, then
$y \in\{-1,0,1\}$. If $a=b$, then $x=y$ or $a x y=-1$.

Runge's method

If y is not "large": we may assume that $|b|<|a|$. We have

$$
\begin{aligned}
& F(y)-P_{1}(y)^{2}=-2 y^{2}+\frac{4 b}{a}-\frac{4 b^{2}}{a^{2}}+\frac{2}{a}-\frac{4 b}{a^{2}}-\frac{1}{a^{2}} \\
& F(y)-P_{2}(y)^{2}=2 y^{2}+\frac{4 b}{a}-\frac{4 b^{2}}{a^{2}}-\frac{2}{a}+\frac{4 b}{a^{2}}-\frac{1}{a^{2}}
\end{aligned}
$$

Thus

$$
y \in\{-2,-1,0,1,2\} \text { and } x \in\{-2,-1,0,1,2\}
$$

Hessian curves

Genus 1 curve

Hessian form of an elliptic curve:

$$
x^{3}+y^{3}+1=d x y .
$$

Recently, Edwards curves, Hessian curves and Huff curves turned out to have applications in elliptic curve cryptography.

Runge's method

We have that $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$, hence Runge's condition is satisfied. Let $F(x, y)=x^{3}+y^{3}-d x y+1$ and

$$
\begin{aligned}
& x=\frac{1}{t} \\
& y=\frac{s}{t}
\end{aligned}
$$

We obtain that $F\left(\frac{1}{t}, \frac{s}{t}\right)=\frac{1}{t^{3}}\left(1+s^{3}-d s t+t^{3}\right)$.

Runge's method

We apply Hensel lifting:

$$
\begin{aligned}
& 1+s^{3}-d s t+t^{3}=\left((s+1)+a_{1} t+a_{2} t^{2}+\ldots\right) \times \\
& \left(\left(s^{2}-s+1\right)+\left(b_{1} s+c_{1}\right) t+\left(b_{2} s+c_{2}\right) t^{2}+\ldots\right) .
\end{aligned}
$$

That is

$$
\begin{aligned}
& g_{1}=s+1+\frac{d}{3} t+\left(\frac{1}{3}-\frac{1}{81} d^{3}\right) t^{3}+O\left(t^{4}\right) \\
& g_{2}=s^{2}-s+1+\left(-\frac{1}{3} d-\frac{1}{3} d s\right) t+\frac{1}{9} d^{2} t^{2}+\left(\frac{2}{3}-\frac{2}{81} d^{3}-\left(\frac{1}{3}-\frac{1}{81} d^{3}\right) s\right) t^{3}+O\left(t^{4}\right)
\end{aligned}
$$

Runge's method

We determine a polynomial that vanishes on the branches given by g_{1}. Let $P(x, y)=A_{0}+B_{0} x+\left(A_{1}+B_{1} x\right) y+\left(A_{2}+B_{2} x\right) y^{2}$. We get the following system of equations:

$$
\begin{aligned}
\frac{1}{3} A_{2} d-A_{1}+B_{0} & =0 \\
\frac{1}{9} A_{2} d^{2}-\frac{1}{3} A_{1} d+A_{0} & =0 \\
\frac{1}{81} A_{2} d^{3}+\frac{1}{3} A_{2} & =0
\end{aligned}
$$

That is $P_{1}(x, y)=3 x+3 y+d$.

Runge's method

We also determine a polynomial that vanishes on the branches given by g_{2}. Here we obtain that

$$
P_{2}(x, y)=9\left(x^{2}-x y+y^{2}\right)-3 d(x+y)+d^{2} .
$$

We have that $P_{i}(x, y) \rightarrow 0$ as we move to infinity along one of the branches, that is $P_{i}(x, y)=0$ if y is "large".

Runge's method

Compute when y is "large" enough:
$\operatorname{Res}_{y}\left(F, P_{1}-1\right)=-27 x^{2}+(-9 d+9) x+d^{3}-3 d^{2}+3 d-28$,
$\operatorname{Res}_{y}\left(F, P_{1}+1\right)=27 x^{2}+(9 d+9) x+d^{3}+3 d^{2}+3 d-26$,
$\operatorname{Res}_{y}\left(F, P_{2}-1\right)=27 x^{2}+\left(-9 d^{3}+9 d+243\right) x+\ldots$,
$\operatorname{Res}_{y}\left(F, P_{2}+1\right)=27 x^{2}+\left(9 d^{3}+9 d-243\right) x+\ldots$.
We get a bound (if $x \geq 4$):

$$
-\frac{1}{6} d+\frac{1}{6}-h(d) \leq x \leq-\frac{1}{6} d+\frac{1}{6}+h(d)
$$

where $h(d)=\frac{1}{18} \sqrt{12 d^{3}-27 d^{2}+18 d-327}$.

AP of length 5

We wrote a Sage code to find arithmetic progressions on Hessian curves. If $-1000 \leq d \leq 1000$, then there is a d such that a progression of length 5 exists. It is $d=-25$, on the curve $x^{3}+y^{3}+25 x y+1$ there are 12 integral points. The points corresponding to the APs:

$$
(-19,27),(-13,-9),(-7,-2), P_{(-1)},(5,-1)
$$

where

$$
P_{(-1)} \in\{(-1,-5),(-1,0),(-1,5)\} .
$$

APs containing 5

Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots \in H(\mathbb{Z})$ points on the Hessian curve

$$
H: \quad x^{3}+y^{3}-d x y+1,
$$

such that x_{1}, x_{2}, \ldots form an AP. Assume that $x_{i}=5$ for some i. We have that $d \in\{-25,3,19,41,87,3175\}$.

APs containing 5

d	APs
-25	length 5: $(-19,27),(-13,-9),(-7,-2),(-1,-5),(5,-1)$
3	singular curve, infinite AP: $(x,-1-x)$
19	length 2, trivial APs
41	length 4: $(-1,0),(4,-13),(9,2),(14,5)$, length 3: $(-1,0),(2,9),(5,14)$
87	length 2, trivial APs
3175	length 2, trivial APs

If $d \neq 3$, then the longest AP containg 5 has length 5 .

