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APs on curves

An arithmetic progression on a curve

F (x , y) = 0,

is an arithmetic progression in either the x or y coordinates. One
can pose the following natural question. What is the longest
arithmetic progression in the x coordinates? In case of linear
polynomials, Fermat claimed and Euler proved that four distinct
squares cannot form an arithmetic progression.
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Genus 0 curves

Allison found an infinite family of quadratics containing an integral
arithmetic progression of length eight. The curve is

y2 =
1

2
(k2 − l2)x2 − 5

2
(k2 − l2)x + (3k2 − 2l2),

and the AP is as follows

(−1, 6k2 − 5l2), (0, 3k2 − 2l2), (1, k2), (2, l2), (3, l2), (4, k2), (5, 3k2 − 2l2), (6, 6k2 − 5l2).
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Arithmetic progressions on Pellian equations x2 − dy2 = m have
been considered by many mathematicians. Dujella, Pethő and
Tadić proved that for any four-term arithmetic progression, except
{0, 1, 2, 3} and {−3,−2,−1, 0}, there exist infinitely many pairs
(d ,m) such that the terms of the given progression are
y -components of solutions. Pethő and Ziegler dealt with 5-term
progressions on Pellian equations.
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Aguirre, Dujella and Peral constructed 6-term AP on Pellian
equations parametrized by points on elliptic curve having positive
rank.
Pethő and Ziegler posed several open problems. One of them is as
follows: ”Can one prove or disprove that there are d and m with
d > 0 and not a perfect square such that y = 1, 3, 5, 7, 9 are in
arithmetic progression on the curve x2 − dy2 = m?”
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Recenlty, González-Jiménez answered the question: there is not m
and d not a perfect square such that y = 1, 3, 5, 7, 9 are in
arithmetic progression on the curve x2 − dy2 = m. He constructed
the related diagonal genus 5 curve and he applied covering
techniques and the so-called elliptic Chabauty’s method.
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Genus 1 Weierstrass curves

y2 = x3 + Ax + B

Bremner provided an infinite family of elliptic curve of Weierstrass
form with 8 points in arithmetic progression. González-Jiménez
showed that these APs cannot be extended to 9 points APs.
Bremner, Silverman and Tzanakis dealt with the congruent
number curve y2 = x3 − n2x , they considered integral arithmetic
progressions.
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Genus 1 general cubic curves

y2 = F (x)

If F is a cubic polynomial, then the problem is to determine
arithmetic progressions on elliptic curves. Bremner and Campbell
found distinct infinite families of elliptic curves, with arithmetic
progression of length eight.
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Genus 1 quartic curves

Campbell produced infinite families of quartic curves containing an
arithmetic progression of length 9. Ulas constructed an infinite
family of quartics containing a progression of length 12.
Restricting to quartics possessing central symmetry MacLeod
discovered four examples of length 14 progressions (e.g.
y2 = −17x4 + 3130x2 + 8551, x = −13,−11, . . . , 13.) Alvarado
extended MacLeod’s list by determining 11 more examples of
length 14 progressions (e.g. y2 = 627x4 − 87870x2 + 3312859)
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Genus 1 Edwards curves

Ed : x2 + y2 = 1 + dx2y2.

Moody proved that there are infinitely many Edwards curves with 9
points in arithmetic progression. Bremner and independently
González-Jiménez proved using elliptic Chabauty’s method that
Moody’s examples cannot be extended to longer APs.
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Genus 1 Huff curves

Ha,b : x(ay2 − 1) = y(bx2 − 1).

Moody produced six infinite families of Huff curves having the
property that each has rational points with x-coordinate
x = −4,−3, . . . , 3, 4. That is he obtained APs of length 9.
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Summary and genus 2 cases

m(d) : the largest integer k such that there is a polynomial gd of
degree d with the curve y2 = gd(x) possessing an AP of length k;
M(d) : the largest k such that there is an infinite family of
polynomials of degree d with each member possessing an AP of
length k .

d 1 2 3 4 5 6

m(d) 3 ≥ 8 ≥ 8 ≥ 14 ≥ 12 ≥ 18

M(d) 3 ≥ 8 ≥ 8 ≥ 12 ≥ 12 ≥ 16

Ulas: m(5) ≥ 12,M(5) ≥ 11,m(6) ≥ 18,M(6) ≥ 16
Alvarado: M(5) ≥ 12.
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A Diophantine problem

Rational distance sets

Given a, b ∈ Q∗ such that a2 6= b2. Determine the set of points
(x , 0) ∈ Q2 satisfying that

d((0,±a), (x , 0)) and d((0,±b), (x , 0))

are rational numbers.
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A Diophantine problem

If a = 2, b = 5, then ( 8
3 , 0) is

fine, since the two distances are
10
3 and 17

3 .
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Huff curves

Rational points on curves

Consider the Huff curve

ax(y2 − 1) = by(x2 − 1).

If there is a rational point (x , y) on the curve, then the point

P =

(
2by

y2 − 1
, 0

)
is in the distance set.
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Huff curves

(2, 4) is on the curve
2x(y2 − 1) = 5y(x2 − 1), hence(

2 · 5 · 4
42 − 1

, 0

)
=

(
8

3
, 0

)
is in the distance set.
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Generalized Huff curves

Wu and Feng considered the curve

Ha,b : x(ay2 − 1) = y(bx2 − 1).

Moody constructed rational arithmetic progressions of length 9:

x ∈ {−4,−3, . . . , 3, 4}.
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Integral arithmetic progressions

We look for integral arithmetic progressions: x1, x2, x3, . . . such
that (xi , yi ) ∈ Z2 are points on the curve. We have that

byx2 − (ay2 − 1)x − y = 0.

Therefore F (y) = a2y4 + (4b − 2a)y2 + 1 = t2 for some t ∈ Z.
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Runge’s method

We define

P1(y) = ay2 − a− 2b + 1

a
,

P2(y) = ay2 − a− 2b − 1

a
.

We obtain that

F (y)− P1(y)2 = −2 y2 +
4 b

a
− 4 b2

a2
+

2

a
− 4 b

a2
− 1

a2
,

F (y)− P2(y)2 = 2 y2 +
4 b

a
− 4 b2

a2
− 2

a
+

4 b

a2
− 1

a2
.
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Runge’s method

It follows that P2(y)2 < F (y) = t2 < P1(y)2 if |y | is ”large”. That
is

(a2y2 − (a− 2b − 1))2 < (at)2 < (a2y2 − (a− 2b + 1))2.

Hence t = ay2 − a−2b
a . From the equation F (y) = t2 we obtain

that a−2b
a = ±1. Thus b = 0 or a = b. If b = 0, then

y ∈ {−1, 0, 1}. If a = b, then x = y or axy = −1.
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Runge’s method

If y is not ”large”: we may assume that |b| < |a|. We have

F (y)− P1(y)2 = −2 y2 +
4 b

a
− 4 b2

a2
+

2

a
− 4 b

a2
− 1

a2
,

F (y)− P2(y)2 = 2 y2 +
4 b

a
− 4 b2

a2
− 2

a
+

4 b

a2
− 1

a2
.

Thus
y ∈ {−2,−1, 0, 1, 2} and x ∈ {−2,−1, 0, 1, 2}.
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Hessian curves

Genus 1 curve

Hessian form of an elliptic curve:

x3 + y3 + 1 = dxy .

Recently, Edwards curves, Hessian curves and Huff curves turned
out to have applications in elliptic curve cryptography.
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Runge’s method

We have that x3 + y3 = (x + y)(x2 − xy + y2), hence Runge’s
condition is satisfied. Let F (x , y) = x3 + y3 − dxy + 1 and

x =
1

t
,

y =
s

t
.

We obtain that F ( 1
t ,

s
t ) = 1

t3 (1 + s3 − dst + t3).
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Runge’s method

We apply Hensel lifting:

1 + s3 − dst + t3 =
(
(s + 1) + a1t + a2t

2 + . . .
)
×(

(s2 − s + 1) + (b1s + c1)t + (b2s + c2)t2 + . . .
)
.

That is

g1 = s + 1 +
d

3
t +

(
1

3
−

1

81
d3

)
t3 + O(t4),

g2 = s2 − s + 1 +

(
−

1

3
d −

1

3
ds

)
t +

1

9
d2t2 +

(
2

3
−

2

81
d3 − (

1

3
−

1

81
d3)s

)
t3 + O(t4).
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Runge’s method

We determine a polynomial that vanishes on the branches given by
g1. Let P(x , y) = A0 + B0x + (A1 + B1x)y + (A2 + B2x)y2. We
get the following system of equations:

1

3
A2d − A1 + B0 = 0,

1

9
A2d

2 − 1

3
A1d + A0 = 0,

1

81
A2d

3 +
1

3
A2 = 0.

That is P1(x , y) = 3x + 3y + d .
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Runge’s method

We also determine a polynomial that vanishes on the branches
given by g2. Here we obtain that

P2(x , y) = 9(x2 − xy + y2)− 3d(x + y) + d2.

We have that Pi (x , y)→ 0 as we move to infinity along one of the
branches, that is Pi (x , y) = 0 if y is ”large”.
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Runge’s method

Compute when y is ”large” enough:

Resy (F ,P1 − 1) = −27x2 + (−9d + 9)x + d3 − 3d2 + 3d − 28,

Resy (F ,P1 + 1) = 27x2 + (9d + 9)x + d3 + 3d2 + 3d − 26,

Resy (F ,P2 − 1) = 27x2 + (−9d3 + 9d + 243)x + . . . ,

Resy (F ,P2 + 1) = 27x2 + (9d3 + 9d − 243)x + . . . .

We get a bound (if x ≥ 4):

−1

6
d +

1

6
− h(d) ≤ x ≤ −1

6
d +

1

6
+ h(d),

where h(d) = 1
18

√
12d3 − 27d2 + 18d − 327.
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AP of length 5

We wrote a Sage code to find arithmetic progressions on Hessian
curves. If −1000 ≤ d ≤ 1000, then there is a d such that a
progression of length 5 exists. It is d = −25, on the curve
x3 + y3 + 25xy + 1 there are 12 integral points. The points
corresponding to the APs:

(−19, 27), (−13,−9), (−7,−2),P(−1), (5,−1),

where
P(−1) ∈ {(−1,−5), (−1, 0), (−1, 5)}.
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APs containing 5

Let (x1, y1), (x2, y2), . . . ∈ H(Z) points on the Hessian curve

H : x3 + y3 − dxy + 1,

such that x1, x2, . . . form an AP. Assume that xi = 5 for some i .
We have that d ∈ {−25, 3, 19, 41, 87, 3175}.
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APs containing 5

d APs
-25 length 5: (−19, 27), (−13,−9), (−7,−2), (−1,−5), (5,−1)
3 singular curve, infinite AP: (x,−1 − x)

19 length 2, trivial APs
41 length 4: (−1, 0), (4,−13), (9, 2), (14, 5), length 3: (−1, 0), (2, 9), (5, 14)
87 length 2, trivial APs

3175 length 2, trivial APs

If d 6= 3, then the longest AP containg 5 has length 5.
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