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Abstract. In this paper we provide bounds for the size of the
integral points on Hessian curves

Hd : x3 + y3 − dxy + 1 = 0

where d ∈ Z is a parameter and we also study the integral points
on Huff curves

Ha,b : x(ay2 − 1) = y(bx2 − 1)

with a, b ∈ Z. We also deal with integral points on these types of
curves with x-coordinates forming arithmetic progressions.

1. introduction

Siegel [29] in 1926 proved that the equation

y2 = a0x
n + a1x

n−1 + . . .+ an =: f(x)

has only a finite number of integer solutions if f has at least three simple
roots. In 1929 Siegel [30] classified all irreducible algebraic curves over
Q on which there are infinitely many integral points. These curves must
be of genus 0 and have at most 2 infinite valuations. These results are
ineffective, that is, their proofs do not provide any algorithm for finding
the solutions. In the 1960’s Baker [4, 6] gave explicit lower bounds for
linear forms in logarithms of the form

Λ =
n∑

i=1

bi logαi 6= 0

where bi ∈ Z for i = 1, . . . , n and α1, . . . , αn are algebraic numbers
( 6= 0, 1), and logαi, . . . , logαn denote fixed determinations of the log-
arithms. Baker [5] used his fundamental inequalities concerning linear
forms in logarithms to derive bounds for the solutions of the elliptic
equation y2 = ax3 + bx2 + cx+d. This bound were improved by several
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authors see e.g. [10, 20]. Baker and Coates [7] extended this result to
general genus 1 curves. Lang proposed [22] proposed a different method
to prove the finiteness of integral points on genus 1 curves. This method
makes use of the group structure of the genus 1 curve. Stroeker and
Tzanakis [32] and independently Gebel, Pethő and Zimmer [16] worked
out an efficient algorithm based on this idea to determine all integral
points on elliptic curves. The elliptic logarithm method for determin-
ing all integer points on an elliptic curve has been applied to a variety
of elliptic equations (see e.g. [33, 34, 35, 36, 37]). The disadvantage
of this approach is that there is no known algorithm to determine the
rank of the so-called Mordell-Weil group of an elliptic curve, which
is necessary to determine all integral points on the curve. There are
other methods that can be used in certain cases to determine all inte-
gral solutions of genus 1 curves. Poulakis [27] provided an elementary
algorithm to determine all integral solutions of equations of the form
y2 = f(x), where f(x) is quartic monic polynomial with integer coeffi-
cients. Using the theory of Pellian equations, Kedlaya [21] described a
method to solve the system of equations{

x2 − a1y2 = b1,

P (x, y) = z2,

where P is a given integer polynomial.
An arithmetic progression on a curve

F (x, y) = 0,

is an arithmetic progression in either the x or y coordinates. One can
pose the following natural question. What is the longest arithmetic
progression in the x coordinates? In case of linear polynomials, Fermat
claimed and Euler proved that four distinct squares cannot form an
arithmetic progression. Allison [2] found an infinite family of quadratics
containing an integral arithmetic progression of length eight. The curve
is

y2 =
1

2
(k2 − l2)x2 − 5

2
(k2 − l2)x+ (3k2 − 2l2),

and the arithmetic progression is as follows

(−1, 6k2 − 5l2), (0, 3k2 − 2l2), (1, k2), (2, l2), (3, l2), (4, k2), (5, 3k2 − 2l2), (6, 6k2 − 5l2).

Arithmetic progressions on Pellian equations x2 − dy2 = m have been
considered by many mathematicians. Dujella, Pethő and Tadić [15]
proved that for any four-term arithmetic progression, except {0, 1, 2, 3}
and {−3,−2,−1, 0}, there exist infinitely many pairs (d,m) such that
the terms of the given progression are y-components of solutions. Pethő
and Ziegler [26] dealt with 5-term progressions on Pellian equations.
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Aguirre, Dujella and Peral [1] constructed 6-term arithmetic progres-
sion on Pellian equations parametrized by points on elliptic curve hav-
ing positive rank. Pethő and Ziegler posed several open problems. One
of them is as follows: ”Can one prove or disprove that there are d
and m with d > 0 and not a perfect square such that y = 1, 3, 5, 7, 9
are in arithmetic progression on the curve x2 − dy2 = m?” Recenlty,
González-Jiménez [17] answered the question: there is not m and d not
a perfect square such that y = 1, 3, 5, 7, 9 are in arithmetic progres-
sion on the curve x2 − dy2 = m. He constructed the related diagonal
genus 5 curve and he applied covering techniques and the so-called el-
liptic Chabauty’s method. Bremner [11] provided an infinite family
of elliptic curve of Weierstrass form with 8 points in arithmetic pro-
gression. González-Jiménez [17] showed that these arithmetic progres-
sions cannot be extended to 9 points arithmetic progressions. Brem-
ner, Silverman and Tzanakis [13] dealt with the congruent number
curve y2 = x3 − n2x, they considered integral arithmetic progres-
sions. If F is a cubic polynomial, then the problem is to determine
arithmetic progressions on elliptic curves. Bremner and Campbell [14]
found distinct infinite families of elliptic curves, with arithmetic pro-
gression of length eight. Campbell [14] produced infinite families of
quartic curves containing an arithmetic progression of length 9. Ulas
[38] constructed an infinite family of quartics containing a progres-
sion of length 12. Restricting to quartics possessing central symmetry
MacLeod [23] discovered four examples of length 14 progressions (e.g.
y2 = −17x4 + 3130x2 + 8551, x = −13,−11, . . . , 13.) Alvarado [3] ex-
tended MacLeod’s list by determining 11 more examples of length 14
progressions (e.g. y2 = 627x4− 87870x2 + 3312859) Moody [24] proved
that there are infinitely many Edwards curves with 9 points in arith-
metic progression. Bremner [12] and independently González-Jiménez
[17, 18] proved using elliptic Chabauty’s method that Moody’s exam-
ples cannot be extended to longer arithmetic progressions. Moody [25]
produced six infinite families of Huff curves having the property that
each has rational points with x-coordinate x = −4,−3, . . . , 3, 4. That
is he obtained arithmetic progressions of length 9.

2. main results

We consider the cases d ∈ {0, 1, 2, 3} separately since the general
bounds are not valid for these values. Here we use the Magma [9]
procedure SIntegralDesbovesPoints to determine all integral points
except when d = 3.
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Lemma 1. The sets of integral points on the curves Hd for d ∈ {0, 1, 2, 3}
are as follows

{(−1, 0), (0,−1)} if d ∈ {0, 1, 2},
{(x,−1− x) : x ∈ Z} ∪ {(1, 1)} if d = 3.

Proof. If d ∈ {0, 1, 2}, then the procedure SIntegralDesbovesPoints

provides the appropriate sets of integral solutions. If d = 3, then the
curve H3 is singular. We have that

x3 + y3 − 3xy + 1 = (x+ y + 1)(x2 − xy + y2 − x− y + 1).

The factor x + y + 1 yields the points (x,−1 − x), the second factor
has only one integral solution (1, 1). �

Theorem 1. Let (x, y) be an integral point on the curve Hd, where
d ∈ Z \ {0, 1, 2, 3}. If d ≤ −1, then

min(α2, β1) ≤ x ≤ max(α1, β2).

If d ≥ 4, then

min(α1, γ1) ≤ x ≤ max(α2, γ2),

where

α1 =
1

3

(
2 d3 − 2d

√
d4 − 27 d− 27

) 1
3
,

α2 =
1

3

(
2 d3 + 2d

√
d4 − 27 d− 27

) 1
3
,

β1 = −1

6
d− 1

18

√
−12 d3 − 27 d2 − 18 d+ 321− 1

6
,

β2 = −1

6
d+

1

18

√
−12 d3 − 27 d2 − 18 d+ 321− 1

6
,

γ1 = −1

6
d− 1

18

√
12 d3 − 27 d2 + 18 d− 327 +

1

6
,

γ2 = −1

6
d+

1

18

√
12 d3 − 27 d2 + 18 d− 327 +

1

6
.

We apply the above theorem to determine all non-trivial arithmetic
progression in case of −1000 ≤ d ≤ 1000, d 6= 3. We note that if
d = −t2, then the points (−t,−1), (0,−1), (t, 1) are on the curve Hd,
hence there exist arithmetic progressions of length 3.

Theorem 2. Let −1000 ≤ d ≤ 1000, d 6= 3, d 6= −t2 for t ∈ N. The
complete list of values of d for which there exist non-trivial arithmetic
progressions are given by the following table.
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d integral points length of AP

−25 (−19, 27),(−13,−9),(−9,−13),(−7,−2),(−5,−1),(−2,−7), 5
(−1, 5),(−1, 0),(−1,−5), (0,−1),(5,−1),(27,−19)

5 (−1, 0), (0,−1), (1, 2), (2, 1) 4

41 (−13, 4), (−1, 0), (0,−1), (2, 9), (4,−13), (5, 14), (9, 2), (14, 5) 4

In the following theorem we characterize the integral points on the
curve Ha,b.

Theorem 3. The Diophantine equation

Ha,b : x(ay2 − 1) = y(bx2 − 1)

with a, b, x, y ∈ Z has the following solutions

(a, b, x, y) = (a, a, x, x) with a, x ∈ Z,
(a, b, x, y) = (1, 1,−1, 1),

(a, b, x, y) = (1, 1, 1,−1),

(a, b, x, y) = (−1,−1,−1, 1),

(a, b, x, y) = (−1,−1, 1,−1),

(a, b, x, y) = (a, 2− a,−1, 1) with a ∈ Z,
(a, b, x, y) = (a, 2− a, 1,−1) with a ∈ Z.

A direct consequence of the above theorem is as follows.

Corollary 1. Let (x1, y1), (x2, y2), (x3, y3) be solutions of the equation
Ha,b for some a, b ∈ Z such that (x1, x2, x3) forms an arithmetic pro-
gression and at most one solution (xi, yi) satisfies the condition xi = yi.
Then (x1, x2, x3) = (−3,−1, 1), (−1, 0, 1), (1, 0,−1) or (1,−1,−3).

3. proof of the results

Proof of Theorem 1. The polynomial Hd(x, y) = x3 + y3 − dxy + 1
satisfies Runge’s condition [19, 28]. The highest degree part is given
by x3 + y3 = (x+ y)(x2 − xy + y2). We follow the algorithm described
in [8] to provide bounds for the size of the integral solutions. Let

x =
1

t
, y =

s

t
.

We obtain that Hd(
1
t
, s
t
) = 1

t3
(1+s3−dst+ t3). We apply Hensel lifting

1 + s3 − dst+ t3 =
(
(s+ 1) + a1t+ a2t

2 + . . .
)
×(

(s2 − s+ 1) + (b1s+ c1)t+ (b2s+ c2)t
2 + . . .

)
.

It turns out that the factors are up to order 4 as follows

g1 = s+ 1 +
d

3
t+

(
1

3
−

1

81
d3

)
t3 +O(t4),

g2 = s2 − s+ 1 +

(
−
1

3
d−

1

3
ds

)
t+

1

9
d2t2 +

(
2

3
−

2

81
d3 − (

1

3
−

1

81
d3)s

)
t3 +O(t4).
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We determine a polynomial that vanishes on the branches given by g1.
Let P (x, y) = A0 +B0x+ (A1 +B1x)y + (A2 +B2x)y2. Define

p(t, s) = t3P

(
1

t
,
s

t

)
.

We compute p mod g1 to get the following system of equations:

1

3
A2d− A1 +B0 = 0,

1

9
A2d

2 − 1

3
A1d+ A0 = 0,

1

81
A2d

3 +
1

3
A2 = 0.

That is P1(x, y) = 3x + 3y + d. We also determine a polynomial that
vanishes on the branches given by g2. Here we obtain that

P2(x, y) = 9(x2 − xy + y2)− 3d(x+ y) + d2.

We have that Pi(x, y) → 0 as we move to infinity along one of the
branches, that is Pi(x, y) = 0 if y is ”large”. There are three possi-
bilities. First we deal with the ”small” solutions, that is x ∈ Z lie in
between the smallest real root and the largest real root of the discrim-
inant of Hd with respect to y. We have that

discy(x
3 + y3 − dxy + 1) = −27x6 + (4d3 − 54)x3 − 27.

The real roots of this polynomial are

α1 =
1

3

(
2 d3 − 2d

√
d4 − 27 d− 27

) 1
3
,

α2 =
1

3

(
2 d3 + 2d

√
d4 − 27 d− 27

) 1
3
.

Now we consider the case of ”large” solutions. We have that

Resy(Hd, P1 − 1) = −27x2 + (−9d+ 9)x+ d3 − 3d2 + 3d− 28,

Resy(Hd, P1 + 1) = 27x2 + (9d+ 9)x+ d3 + 3d2 + 3d− 26,

Resy(Hd, P2 − 1) = 27x2 + (−9d3 + 9d+ 243)x+ d6 − 3d4 − 54d3 + 3d2 + 81d+ 728,

Resy(Hd, P2 + 1) = 27x2 + (9d3 + 9d− 243)x+ d6 + 3d4 − 54d3 + 3d2 − 81d+ 730.

The real zeros of Resy(Hd, P1 + 1) are

β1 = −1

6
d− 1

18

√
−12 d3 − 27 d2 − 18 d+ 321− 1

6
,

β2 = −1

6
d+

1

18

√
−12 d3 − 27 d2 − 18 d+ 321− 1

6
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and the real zeros of Resy(Hd, P1 − 1) are

γ1 = −1

6
d− 1

18

√
12 d3 − 27 d2 + 18 d− 327 +

1

6
,

γ2 = −1

6
d+

1

18

√
12 d3 − 27 d2 + 18 d− 327 +

1

6
.

We note that the last two polynomials Resy(Hd, P2−1) and Resy(Hd, P2+
1) have real roots only in cases 0 < d < 4. Lemma 1 provides the list
of integral points on these curves. If (x, y) is an integral point with

min(α2, β1) ≤ x ≤ max(α1, β2) when d ≤ −1

or

min(α1, γ1) ≤ x ≤ max(α2, γ2) when d ≥ 4,

then |P1(x, y)| < 1 or |P2(x, y)| < 1. In other words, we have P1(x, y) =
0 or P2(x, y) = 0 for such points. To determine these points we need to
compute the integral solutions of Resy(Hd, P1) and Resy(Hd, P1). We
have that

Resy(Hd, P1) = (d− 3)(d2 + 3d+ 9),

Resy(Hd, P2) = (d− 3)2(d2 + 3d+ 9)2.

Therefore the only possible d is 3, which is handled in Lemma 1. �

Proof of Theorem 2. We implemented an algorithm in Sage [31] based
on Theorem 1 to determine all integral points on Hd. �

Proof of Theorem 3. Consider the case a = b. We obtain that

axy(y − x) = x− y.

Therefore x = y is a solution for all x ∈ Z. Assume that x 6= y. We get
that axy = −1. Hence (a, b, x, y) ∈ {(−1,−1,∓1,±1), (1, 1,∓1,±1)}
are the possible solutions of the equation, and one can check that these
are in fact solutions.

We may assume that |a| > |b|. We rewrite the equation in the form

byx2 + (1− ay2)x− y = 0.

Thus there exists an integer t such that

(1) F (y) := a2y4 + (4b− 2a)y2 + 1 = t2.

This equation satisfies Runge’s condition so we apply Runge’s method
to determine all the integral solutions. Define P (y) = ay2 + 2b−a

a
. We
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have that

F (y)−
(
P (y)− 1

a

)2

= 2y2 +
4b

a
− 2

a
− 4b2

a2
+

4b

a2
− 1

a2
,

F (y)−
(
P (y) +

1

a

)2

= −2y2 +
4b

a
+

2

a
− 4b2

a2
− 4b

a2
− 1

a2
.

These two quadratic polynomials have opposite signs if |y| ≥ 3, since
|a| > |b|. Therefore one has that(

P (y)− 1

a

)2

< F (y) = t2 <

(
P (y) +

1

a

)2

if |y| ≥ 3. It yields that t = ay2 + 2b−a
a
. Equation (1) implies that b = 0.

In this case

y ∈

{
−1

2ax
±
√

1

4a2x2
+

1

a

}
and we obtain that |y| ≤ 1. It remains to check the cases y ∈ {0,±1,±2}.
One gets that (x, y) = (∓1,±1) and b = 2− a. �
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