
ON A PROBLEM OF ERDŐS AND GRAHAM

SZ. TENGELY

Abstract. In this paper we provide bounds for the size of the
solutions of the Diophantine equation

x(x+ 1)(x+ 2)(x+ 3)(x+ k)(x+ k+ 1)(x+ k+ 2)(x+ k+ 3) = y2,

where 4 ≤ k ∈ N is a parameter. We also determine all integral
solutions for 1 ≤ k ≤ 106.

1. introduction

Let us define

f(x, k, d) = x(x+ d) · · · (x+ (k − 1)d).

Erdős [6] and independently Rigge [17] proved that f(x, k, 1) is never
a perfect square. A celebrated result of Erdős and Selfridge [7] states
that f(x, k, 1) is never a perfect power of an integer, provided x ≥ 1
and k ≥ 2. That is, they completely solved the Diophantine equation

(1) f(x, k, d) = yl

with d = 1. The literature of this type of Diophantine equations is very
rich. First consider some results related to l = 2. Euler proved (see [4]
pp. 440 and 635) that a product of four terms in arithmetic progression
is never a square solving (1) with k = 4, l = 2. Obláth [16] obtained
a similar statement for k = 5. Saradha and Shorey [21] proved that
(1) has no solutions with k ≥ 4, provided that d is a power of a prime
number. Laishram and Shorey [14] extended this result to the case
where either d ≤ 1010, or d has at most six prime divisors. Bennett,
Bruin, Győry and Hajdu [2] solved (1) with 6 ≤ k ≤ 11 and l = 2.
Hirata-Kohno, Laishram, Shorey and Tijdeman [13] completely solved
(1) with 3 ≤ k < 110.

Now assume for this paragraph that l ≥ 3. Many authors have con-
sidered the more general equation

(2) f(x, k, d) = byl,
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where b > 0 and the greatest prime factor of b does not exceed k.
Saradha [20] proved that (2) has no solution with k ≥ 4. Győry [9]
studied the cases k = 2, 3, he determined all solutions. Győry, Hajdu
and Saradha [10] proved that the product of four or five consecutive
terms of an arithmetical progression of integers cannot be a perfect
power, provided that the initial term is coprime to the difference. Ha-
jdu, Tengely and Tijdeman [11] proved that the product of k coprime
integers in arithmetic progression cannot be a cube when 2 < k < 39.
Győry, Hajdu and Pintér proved that for any positive integers x, d and k
with gcd(x, d) = 1 and 3 < k < 35, the product x(x+d) · · · (x+(k−1)d)
cannot be a perfect power.

Erdős and Graham [5] asked if the Diophantine equation
r∏

i=1

f(xi, ki, 1) = y2

has, for fixed r ≥ 1 and {k1, k2, . . . , kr} with ki ≥ 4 for i = 1, 2, . . . , r,
at most finitely many solutions in positive integers (x1, x2, . . . , xr, y)
with xi + ki ≤ xi+1 for 1 ≤ i ≤ r − 1. Ska lba [23] provided a bound
for the smallest solution and estimated the number of solutions below
a given bound. Ulas [27] answered the above question of Erdős and
Graham in the negative when either r = ki = 4, or r ≥ 6 and ki = 4.
Bauer and Bennett [1] extended this result to the cases r = 3 and
r = 5. Bennett and Van Luijk [3] constructed an infinite family of
r ≥ 5 non-overlapping blocks of five consecutive integers such that
their product is always a perfect square. Luca and Walsh [15] studied
the case (r, ki) = (2, 4).

In this paper we consider the Diophantine equation

(3) x(x+ 1)(x+ 2)(x+ 3)(x+k)(x+k+ 1)(x+k+ 2)(x+k+ 3) = y2,

where 4 ≤ k ∈ N is a parameter. We provide bounds for the size of
solutions and an algorithm to determine all solutions (x, y) ∈ N2. The
method of proof is based on Runge’s method [8, 12, 18, 19, 22, 26, 28].

Theorem 1. If (x, y) ∈ N2 is a solution of (3) then

1 ≤ x ≤ 1.08k.

We apply the above theorem to determine all positive integral solu-
tions of (3) with 4 ≤ k ≤ 106.

Theorem 2. The only solution (x, y) ∈ N2 of (3) with 4 ≤ k ≤ 106 is

(x, y) = (33, 3361826160)

with k = 1647.
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2. proof of the results

Proof of Theorem 1. We apply Runge’s method and we prove that large
solutions do not exists and we provide bound for size of the possible
small solutions. A solution to the equation (3) gives rise a solution to
the equation

(4) F (X) := X(X + k + 2)(X + 2k + 2)(X + 3k) = Y 2,

where X = x2+(k+3)x. The polynomial part of the Puiseux expansion
of F (X)(1/2) is

P (X) = X2 + (3k + 2)X + k2 + 3k.

We obtain that

F (X)− (P (X)− 1)2 = 2X2 − (4k2 − 6k + 4)X − k4 − 6k3 − 7k2 + 6k − 1,

F (X)− (P (X) + 1)2 = −2X2 − (4k2 + 6k + 4)X − k4 − 6k3 − 11k2 − 6k − 1.

Let α1, α2 be the roots of the quadratic polynomial F (X)−(P (X)−1)2

and α3, α4 be the roots of F (X)−(P (X)+1)2. We define βi, i = 1, 2, 3, 4
as follows

βi =

{
|αi| if αi ∈ R,
0 otherwise.

It follows that

F (X)− (P (X)− 1)2 > 0, if X /∈ [min
i
{βi},max

i
{βi}]

and

F (X)− (P (X) + 1)2 < 0, if X /∈ [min
i
{βi},max

i
{βi}].

Hence we get that

(P (X)− 1)2 < F (X) < (P (X) + 1)2, if X /∈ [min
i
{βi},max

i
{βi}].

If (X, Y ) is a solution of (4) with X /∈ [mini{βi},maxi{βi}], then

Y = P (X).

It implies that

0 = F (X)− P (X)2 = −4k2X − k4 − 6k3 − 9k2.

That is

X = −
(
k + 3

2

)2

.

Since X = x2 + (k + 3)x we get that

x =
−k − 3

2
.
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It means that if there exists a large solution, then k has to be odd,

x = −k−3
2

and y = (k−3)(k−1)(k+1)(k+3)
16

. It is a contradiction since k ≥ 4

and therefore 0 > −k−3
2

= x.
It remains to deal with the small solutions that is those with

X ∈ [min
i
{βi},max

i
{βi}].

Hence we need to compute the roots of the polynomials F (X)−(P (X)−
1)2 and F (X)− (P (X) + 1)2. These are as follows

α1 = k2 − 3

2
k − 1− 1

2

√
6 k4 + 15 k2 + 6,

α2 = k2 − 3

2
k − 1 +

1

2

√
6 k4 + 15 k2 + 6,

α3 = −k2 − 3

2
k − 1− 1

2

√
2 k4 − 5 k2 + 2,

α4 = −k2 − 3

2
k − 1 +

1

2

√
2 k4 − 5 k2 + 2.

Since k ≥ 4, we obtain that 6 k4 + 15 k2 + 6 ≥ 0 and 2 k4−5 k2 + 2 ≥ 0.
Therefore α1, α2, α3, α4 ∈ R and we have

α3 < α4 < α1 < α2.

We need to solve the system of inequalities

0 ≤ x2 + (k + 3)x− α3,

0 ≥ x2 + (k + 3)x− α2.

The first inequality is true for all x ≥ 1. The second inequality implies
that

−1

2
k − 1

2

√
5 k2 + 2

√
6 k4 + 15 k2 + 6 + 5− 3

2
≤ x

and

x ≤ −1

2
k +

1

2

√
5 k2 + 2

√
6 k4 + 15 k2 + 6 + 5− 3

2
.

The lower bound is negative if k > 0, hence we have that x > 0, in
case of the upper bound we obtain that x ≤ 1.08k if k ≥ 4. �

3. Algorithm to solve (3) for fixed k

Theorem 1 says that if there is a solution (x, y) ∈ N2 of the Dio-
phantine equation (3), then 1 ≤ x ≤ 1.08k. If k is small, then one
can easily enumerate all solutions since the bound is linear in k. For
larger values of k one can apply a sieve method similar to the Sieve of
Eratosthenes, which eliminates composite numbers using small primes.
There are many generalizations of the Sieve of Eratosthenes to solve
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different problems in number theory, cryptography (see e.g. [24] III.4.).
We followed the steps described below to solve completely (3) in case
of 4 ≤ k ≤ 106.

(i) Define
f(x) = x(x+1)(x+2)(x+3)(x+k)(x+k+1)(x+k+2)(x+k+3),
F (p) = {a : a ∈ [0 . . . p − 1] and f(a) mod p is a square in Fp}
and for a given interval I
SI = {a : a ∈ I ∩ N such that f(a) is a square}.

(ii) If 4 ≤ k ≤ 1000 one computes S[1,1.08k] by direct enumeration.

(iii) If k > 1000. Let N = log30 1.08k and M = N
√

1.08k.
(iv) Let p1, p2, . . . , p2N be primes such that

p1 < p2 < . . . < pN ≤M < pN+1 < . . . < p2N .
(v) Compute F (pi) for all i = 1, 2, . . . , 2N.

(vi) Sort the sets F (pi) such that

|F (pij)|
pij

<
|F (pij+1

)|
pij+1

.

(vii) Using the Chinese remainder theorem determine I = {a : a ∈
[1, 1.08k]∩N, a mod pi1 ∈ F (pi1), a mod pi2 ∈ F (pi2), . . . , a mod
piN ∈ F (piN )}.

(viii) Compute SI .

Note that here we used small primes around 30 having product about
1.08k. For very small primes |F (p)|/p is close to one since in this case
for a given a ∈ [0, . . . , p − 1] we have that a is a root of f(x). As an
example consider the case k = 1647. Here we have pi1 = 47, pi2 = 37
and

|F (pi1)|
pi1

≈ 0.4468,
|F (pi2)|
pi2

≈ 0.5676.

Using the Chinese remainder theorem we obtain a set I having cardi-
nality 441. So the cardinality of the search space is reduced by a factor
about 4. We implemented the above algorithm in Sage [25]. The code
can be downloaded from
http://www.math.unideb.hu/∼tengely/ErdosGraham.sage.
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[21] N. Saradha and T. N. Shorey. Almost squares in arithmetic progression. Com-
positio Math., 138(1):73–111, 2003.

[22] A. Schinzel. An improvement of Runge’s theorem on Diophantine equations.
Comment. Pontificia Acad. Sci., 2(20):1–9, 1969.

[23] M. Ska lba. Products of disjoint blocks of consecutive integers which are powers.
Colloq. Math., 98(1):1–3, 2003.

[24] Nigel P. Smart. The algorithmic resolution of Diophantine equations, volume 41
of London Mathematical Society Student Texts. Cambridge University Press,
Cambridge, 1998.

[25] W. A. Stein et al. Sage Mathematics Software (Version 6.0). The Sage Devel-
opment Team, 2014. http://www.sagemath.org.

[26] Sz. Tengely. On the Diophantine equation F (x) = G(y). Acta Arith.,
110(2):185–200, 2003.

[27] M. Ulas. On products of disjoint blocks of consecutive integers. Enseign. Math.
(2), 51(3-4):331–334, 2005.

[28] P. G. Walsh. A quantitative version of Runge’s theorem on Diophantine equa-
tions. Acta Arith., 62(2):157–172, 1992.

Mathematical Institute
University of Derecen
P.O.Box 12
4010 Debrecen
Hungary
E-mail address: tengely@science.unideb.hu


	1. introduction
	2. proof of the results
	3. Algorithm to solve (3) for fixed k
	References

