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Background

Let us define

f (x , k , d) = x(x + d) · · · (x + (k − 1)d).

� Erdős and independently Rigge proved that f (x , k, 1) is never a
perfect square.

� A celebrated result of Erdős and Selfridge states that f (x , k , 1) is
never a perfect power of an integer, provided x ≥ 1 and k ≥ 2.

� Many generalizations in the literature.

� Euler proved that a product of four terms in arithmetic progression
is never a square.

� Obláth obtained a similar statement for k = 5.
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� A celebrated result of Erdős and Selfridge states that f (x , k , 1) is
never a perfect power of an integer, provided x ≥ 1 and k ≥ 2.

� Many generalizations in the literature.

� Euler proved that a product of four terms in arithmetic progression
is never a square.
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Background

� Many nice results by Bruin, Bennett, Győry, Hajdu, Laishram,
Pintér, Saradha, Shorey and others related to the Diophantine
equation

� f (x , k , d) = by l

� Techniques: Baker’s method, modular approach, theory of elliptic
curves, Chabauty’s method, high degree Thue equations.

Erdős and Graham asked if the Diophantine equation

r∏
i=1

f (xi , ki , 1) = y2

has, for fixed r ≥ 1 and {k1, k2, . . . , kr} with ki ≥ 4 for
i = 1, 2, . . . , r , at most finitely many solutions in positive integers
(x1, x2, . . . , xr , y) with xi + ki ≤ xi+1 for 1 ≤ i ≤ r − 1.
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Erdős-Graham problem

� Ska lba (2003) provided a bound for the smallest solution and
estimated the number of solutions below a given bound.

� Ulas (2005) answered the above question of Erdős and Graham in
the negative when either r = ki = 4, or r ≥ 6 and ki = 4.

� Bauer and Bennett (2007) extended this result to the cases r = 3
and r = 5.

� Luca and Walsh (2007) studied the case (r , ki ) = (2, 4).

� Bennett and Van Luijk (2012) constructed an infinite family of
r ≥ 5 non-overlapping blocks of five consecutive integers such that
their product is always a perfect square.
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Erdős-Graham problem

� Ska lba (2003) provided a bound for the smallest solution and
estimated the number of solutions below a given bound.

� Ulas (2005) answered the above question of Erdős and Graham in
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Product of two blocks

We deal with the Diophantine equation

x(x + 1)(x + 2)(x + 3)(x + k)(x + k + 1)(x + k + 2)(x + k + 3) = y2.

Theorem

If the above equation has a positive integer solution x , then

x < 2k − 2.

The only solution of the above Diophantine equation with
1 ≤ x ≤ 106 is (x , k , y) = (33, 1647, 3361826160).

This research was supported by the European Union and the State of

Hungary, co-financed by the European Social Fund in the framework of

TÁMOP 4.2.4. A/2-11-1-2012-0001 ’National Excellence Program’.
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Product of two blocks

The equation

x(x + 1)(x + 2)(x + 3)(x + k)(x + k + 1)(x + k + 2)(x + k + 3) = y2

can be rewritten as

X (X + k + 2)(X + 2k + 2)(X + 3k) = y2,

where X = x2 + (k + 3)x . Runge’s method can be applied.
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Application of Runge’s method

Polynomial part of the Puiseux expansion:

X 2 + (3k + 2)X + k2 + 3k .

Define

F (X ) = X (X + k + 2)(X + 2k + 2)(X + 3k),

P1(X ) = X 2 + (3k + 2)X + k2 + 3k − 1,

P2(X ) = X 2 + (3k + 2)X + k2 + 3k + 1.
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Application of Runge’s method

We have that

F (X )− P1(X )2 = 2X 2 − 2(2k2 − 3k − 2)X − k4 − 6k3 − 7k2 + 6k − 1,

F (X )− P2(X )2 = −2X 2 − 2(2k2 + 3k + 2)X − k4 − 6k3 − 11k2 − 6k − 1.

That is

F (X )− P1(X )2 > 0 if X > C1(k),

F (X )− P2(X )2 < 0 if X > C2(k).

We obtain that
P1(X )2 < F (X ) < P2(X )2

if X is large enough.
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Bound for the solutions

We got that
P1(X )2 < F (X ) < P2(X )2.

We also know that F (X ) = y2. Hence if X is large, then

y = X 2 + (3k + 2)X + k2 + 3k .

Therefore

0 = F (X )− y2 = −4k2X − k4 − 6k3 − 9k2.

That is X = −
(
k+3
2

)2

9 of 19



Large solutions

It is easy to see that k has to be odd, so k = 2t + 1 and
X = −(t + 2)2.
We also have that

x2 + (2t + 4)x = −(t + 2)2.

Hence we obtain that
x = −t − 2

and

(−t−2)(−t−1)(−t)(−t+1)(t−1)(t)(t+1)(t+2) = ((t − 1)t(t + 1)(t + 2))2 .

Remark: it is a negative solution of the equation and we assumed
that x is positive.
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Small solutions

Fujiwara’s result:

Lemma

Given p(z) =
∑n

i=0 aiz
i , an 6= 0. Then

max{|ζ| : p(ζ) = 0} ≤ 2 max

{∣∣∣∣an−1

an

∣∣∣∣ , ∣∣∣∣an−2

an

∣∣∣∣1/2 , . . . , ∣∣∣∣a0an
∣∣∣∣1/n
}
.

Application of Fujiwara’s lemma:

F (X )−P1(X )2 ⇒ |X | ≤ 2 max

{
|2k2 − 3k − 2|,

∣∣∣∣−k4 − 6k3 − 7k2 + 6k − 1

2

∣∣∣∣1/2
}

F (X )−P2(X )2 ⇒ |X | ≤ 2 max

{
|2k2 + 3k + 2|,

∣∣∣∣−k4 − 6k3 − 11k2 − 6k − 1

2

∣∣∣∣1/2
}
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Small solutions

We have

F (X )− P1(X )2 ⇒ |X | ≤ 2 max

{
|2k2 − 3k − 2|,

∣∣∣∣k2 + 3k − 1√
2

∣∣∣∣}

F (X )− P2(X )2 ⇒ |X | ≤ 2 max

{
|2k2 + 3k + 2|,

∣∣∣∣k2 + 3k + 1√
2

∣∣∣∣}
Upper bound for X is 4k2 + 6k + 4. That is

x2 + (k + 3)x < 4k2 + 6k + 4.

An upper bound for x is 2k − 2.
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Elliptic curves

Certain estimates are valid if k > 10⇒ genus 1 model:

X (X + k + 2)(X + 2k + 2)(X + 3k) = y2.

Using the MAGMA procedure IntegralQuarticPoints([1, 6k +
4, 11k2 + 18k + 4, 6k3 + 18k2 + 12k , 0], [0, 0]); it is possible to
determine all integral points on these curves.

k x2 + (k + 3)x = X ∈
5 {-21,-16,-15,-12,-9,-7,3,0}
6 {-28,-18,-14,-12,-8,2,0}
7 {-36,-25,-21,-16,-12,-9,0}
8 {-45,-24,-18,-15,-10,0}
9 {-55,-36,-27,-20,-15,-11,1,0}

10 {-66,-30,-22,-18,-12,0}

We only obtain solutions such that x ≤ 0.
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Algorithm

� If k is ”small”, then x < 2k − 2 is small ⇒ brute force.

� If k is ”large”, then
√

2k − 2 ≤ p1 and p2 is the next prime
following p1.

� That is p1p2 > 2k − 2.

� S1 = {s : s(s + 1)(s + 2)(s + 3)(s + k)(s + k + 1)(s + k + 2)(s +
k + 3) is a square in Fp1},

� S2 = {s : s(s + 1)(s + 2)(s + 3)(s + k)(s + k + 1)(s + k + 2)(s +
k + 3) is a square in Fp2}.

� SOL = {CRT ([a, b], [p1, p2]) : a ∈ S1, b ∈ S2}.
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Examples

Let k = 2013. We have p1 = 67 and p2 = 71.
S1 has 41 elements and S2 has 39 elements.
SOL has 1360 elements less than or equal 2 · 2013− 2. We obtain no
solution for the original equation.

Let k = 2013 · 9 · 4 = 72468. Here we use the primes p1 = 383 and
p2 = 389.

|S1| = 191 |S2| = 217 |SOL| = 41447.

Improvement: 3
√

2 · 72468− 2 ≈ 41.7⇒ p1 = 41, p2 = 47, p3 = 53,
then we have

|SOL| = 12075.
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Product of two blocks of length five

Consider the equation
F (x) = y2,

where F (x) = x(x + 1)(x + 2)(x + 3)(x + 4)(x +k)(x +k + 1)(x +k +
2)(x + k + 3)(x + k + 4). Polynomial part of the Puiseux expansion

P(x) = x5 +

(
5

2
k + 10)x4 + (

15

8
k2 + 20k + 35

)
x3 +(

5

16
k3 +

45

4
k2 +

105

2
k + 50

)
x2 +(

− 5

128
k4 +

5

4
k3 +

145

8
k2 + 50k + 24

)
x +

3

256
k5 − 5

64
k4 +

5

16
k3 +

25

4
k2 + 12k .
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Application of Runge’s method

We have

F (x)−
(
P(x)− 1

256

)2

> 0

F (x)−
(
P(x) +

1

256

)2

< 0,

if x > C+. We have also

F (x)−
(
P(x)− 1

256

)2

< 0

F (x)−
(
P(x) +

1

256

)2

> 0,

if x > C−.
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Large solutions

We get that(
P(x)− 1

256

)2

< F (x) <

(
P(x) +

1

256

)2

,

that is
(256P(x)− 1)2 < (256y)2 < (256P(x) + 1)2.

It follows that y = P(x) if x > C+. If there is an integral solution x ,
then

x |k2(k + 4)2(3k3 − 32k2 + 208k + 768).
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Other approach

Genus 2 model:

X (X + k + 3)(X + 2k + 4)(X + 3k + 3)(X + 4k) = y2,

where X = x2 + (k + 4)x . Computing integral points on genus 2
curves: Bugeaud, Mignotte, Siksek, Stoll and Tengely. One needs
basis of Mordell-Weil group of the Jacobian.
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