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Background

Let us define

f(x,k,d) =x(x+d)---(x+ (k—1)d).

® Erd6s and independently Rigge proved that f(x, k, 1) is never a
perfect square.
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f(x,k,d) =x(x+d)---(x+ (k—1)d).

® Erd6s and independently Rigge proved that f(x, k, 1) is never a
perfect square.

® A celebrated result of Erdés and Selfridge states that f(x, k, 1) is
never a perfect power of an integer, provided x > 1 and kK > 2.

® Many generalizations in the literature.

® Euler proved that a product of four terms in arlthmetlc progressmn
IS never a square. | |

® Oblath obtained a similar statement for kK = 5.
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Background

® Many nice results by Bruin, Bennett, Gyory, Hajdu, Laishram,
Pintér, Saradha, Shorey and others related to the Diophantine

equation

" f(x,k,d) = by

® Techniques: Baker's method, modular approach, theory of elliptic
curves, Chabauty's method, high degree Thue equations.

3 of 19




Background

® Many nice results by Bruin, Bennett, Gyory, Hajdu, Laishram,
Pintér, Saradha, Shorey and others related to the Diophantine

equation

" f(x,k,d) = by

® Techniques: Baker's method, modular approach, theory of elliptic
curves, Chabauty's method, high degree Thue equations.

Erdos and Graham asked if the Diophantine equation

]f[ f(X,', k,', 1) —
=1

has, for fixed r > 1 and {ki, ko,..., k. } with k; > 4 for

i =1,2,...,r, at most finitely many solutions in positive mtegers
(X17X27°° Xray) WIthX,—|—k <X,_|_1 for1< <r—1 |
3 of 19



Erdos-Graham problem

m Skatba (2003) provided a bound for the smallest solution and
estimated the number of solutions below a given bound.
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m Skatba (2003) provided a bound for the smallest solution and
estimated the number of solutions below a given bound.

® Ulas (2005) answered the above question of Erd6és and Graham in
the negative when either r = k; =4, or r > 6 and k; = 4.

® Bauer and Bennett (2007) extended this result to the cases r = 3
and r = b.

® Luca and Walsh (2007) studied the case (r, ki) = (2,4).

® Bennett and Van Luijk (2012) constructed an infinite family of
r > 5 non-overlapping blocks of five consecutive mtegers such that
their product is always a perfect square.
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Product of two blocks

We deal with the Diophantine equation

x(x+1D)(x+2)(x+3)(x+k)(x+k+1)(x+k+2)(x+k+3) =

Theorem

If the above equation has a positive integer solution x, then
x < 2k — 2.

The only solution of the above Diophantine equation Wlth
1 < x <10°is (x, k,y) = (33,1647,3361826160). "

P« DN
A
,

This research was supported by the European Union and the State of _
Hungary co-financed by the European Social Fund in the framew@rk of
TAMOP 4.2.4. A/2-11-1-2012-0001 'National Excellence Program

5 of 19




Product of two blocks

The equation

x(x +1)(x +2)(x +3)(x + k) (x + k +1)(x + k +2)(x + k +3) = y?
can be rewritten as
X(X + k +2)(X + 2k +2)(X + 3k) = y?,

where X = x? + (k + 3)x. Runge's method can be applied.

6 of 10 A\




Application of Runge's method

Polynomial part of the Puiseux expansion:

X2 4+ (3k 4+ 2)X + k? + 3k.

Define
FIX) = XX+ k+2)(X + 2k +2)(X + 3k),
Po(X) = X*+(3k+2)X + k> +3k+1.
7 of 19




Application of Runge's method

We have that

F(X)— Pi(X)? = 2X?—2(2k* =3k —2)X — k* —6k> — 7k* + 6k — 1,
F(X)— Pay(X)? = —2X?—2(2k* +3k +2)X — k* — 6k> — 11k* — 6k — 1.
That is

F(X)— Pi(X)* >0 if X > Cy(k),
F(X)—Py(X)> <0 if X > G(k).
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F(X)— Pay(X)? = —2X?—2(2k* +3k +2)X — k* — 6k> — 11k* — 6k — 1.

That is

F(X)— Pi(X)* >0 if X > Cy(k),
F(X)—Py(X)> <0 if X > G(k).

We obtain that
P1(X)? < F(X) < Py(X)?

if X is large enough.
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Bound for the solutions

We got that
P1(X)? < F(X) < Py(X)2.

We also know that F(X) = y?. Hence if X is large, then
y = X?+ (3k +2)X + k* + 3k.
Therefore
0= F(X)—y*=—4k’X — k* — 6k> — 9k°.

Thatis X = — (%)2
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Large solutions

It is easy to see that k has to be odd, so Kk =2t + 1 and
X = —(t+2)%
We also have that

x? 4+ (2t + 4)x = —(t 4+ 2)°.

Hence we obtain that
X=—t—2

and
(—t=2)(—t—=1)(—t)(—t+1)(t—=1)(t)(t+1)(t+2) = ((t — 1)t(t + 1)(t -I— 2))

Remark: it is a negative solution of the equation and we assumed
that x is positive.
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Small solutions

Fujiwara's result:

Lemma

Given p(z) = Y% yaiz',an #0. Then

a1 | lay_o|Y? N
max{](j\:p(():O}§2max{ L I e .

Application of Fujiwara’s lemma:

[ kI 7K Gk 1 1/2
F(X)—Pi(X)? = |X| < 2max < |2k? — 3k — 2|, k 3 ,},,g:m& S

( e 6k3 E PIPIRE
F(X)=Pa(X)? = |X| < 2max{ [2k? + 3k + 2|, s k\, —
11 of 19 \ \\ | | A




Small solutions

We have
k2 +3k—1
F(X) — P1(X)? = |X| < 2max {|2/<2 — 3k — 2|, 3 }
V2
k? +3k+1
F(X) = Py(X)? = |X| §2max{|2k2+3k—|—2|, +\3@+ }

Upper bound for X is 4k?> + 6k + 4. That is
x? + (k4 3)x < 4k* + 6k + 4.

An upper bound for x is 2k — 2.
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Elliptic curves
Certain estimates are valid if kK > 10 = genus 1 model:
X(X + k +2)(X + 2k +2)(X + 3k) = y°.
Using the MAGMA procedure IntegralQuarticPoints([1,6k +

4,11k? + 18k + 4,6k> + 18k? + 12k, 0], [0,0]); it is possible to
determine all integral points on these curves.
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k x>+ (k+3)x=Xe¢€
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determine all integral points on these curves.

k x>+ (k+3)x=Xe¢€

5 | {-21,-16,-15-12-9,-7,3,0]
6 | [-28-18-14-12-82,0

7 | {-36.-25-21,-16-12,-9.0)
8 | {-45-24-18-15-10,0}

9 | {-55-36,-27,-20,-15.-11,1,0}
10 {-66,-30,-22,-18,-12,0}

We only obtain solutions such that x < 0.
13 of 19



Algorithm

mIf kis"small’, then x < 2k — 2 is small = brute force.
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Algorithm

mIf kis"small’, then x < 2k — 2 is small = brute force.

m |f kis "large”, then v/2k — 2 < p; and py is the next prime
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Algorithm

mIf kis"small’, then x < 2k — 2 is small = brute force.

m |f kis "large”, then v/2k — 2 < p; and py is the next prime
following p;.

® Thatis p1po > 2k — 2.

B S ={s:s(s+1)(s+2)(s+3)(s+k)(s+k+1)(s+k+2)(s+
k + 3) is a square in F,, },

B S ={s:s(s+1)(s+2)(s+3)(s+k)(s+k+1)(s+k+2)(s+
k + 3) is a square in Fp, }.

" SOL = {CRT([a, b],[p1,po]) : a € S1,b € Sy}
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Examples

Let kK = 2013. We have p; = 67 and p, = 71.
51 has 41 elements and S> has 39 elements.
SOL has 1360 elements less than or equal 2 - 2013 — 2. We obtain no

solution for the original equation.
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Examples

Let kK = 2013. We have p; = 67 and p, = 71.
51 has 41 elements and S> has 39 elements.
SOL has 1360 elements less than or equal 2 - 2013 — 2. We obtain no

solution for the original equation.
Let k = 2013 -9 -4 = 72468. Here we use the primes p; = 383 and

P2 — 389.

S1| =191 |S,| =217 |SOL| = 41447.

Improvement: /2 72468 —2 ~ 41.7 = p1 =41, pp = 47 . p3 = 53,

then we have
|ISOL| = 12075.
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Product of two blocks of length five

Consider the equation
F(x)=y?,

where F(x) = x(x+1)(x+2)(x+3)(x+4)(x+ k)(x+ k+1)(x+ k+
2)(x 4+ k + 3)(x 4+ k + 4). Polynomial part of the Puiseux expansion

5 1
P(x) = x5+<2k+10)x4+(85k2+20k+35> x> +

5 45 105

K Sk Tk 2

(16 + 7 + ; +5o>x +
145

5 5

—— kS k2 k + 24

( g~ Tl T g o 0kt )Xf
3 5 5 |

~ k5 e k4 ~ k3 =

256 64 T16° T2

,
> 12 4 12k,
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Application of Runge's method
We have
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Large solutions

We get that

(p(X) — 2;6)2 < F(x) < (P(x) + 2;6)2’

that is
(256P(x) — 1)% < (256y)% < (256P(x) + 1)*.
It follows that y = P(x) if x > CT. If there is an integral solution x,

then o
x|k?(k +4)%(3k> — 32k* 4 208k + 768).
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Other approach

Genus 2 model:
X(X + k +3)(X + 2k +4)(X + 3k +3)(X + 4k) = y?,

where X = x? + (k + 4)x. Computing integral points on genus 2
curves: Bugeaud, Mignotte, Siksek, Stoll and Tengely. One needs
basis of Mordell-Weil group of the Jacobian.
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