On a Problem of Erdős and Graham

Szabolcs Tengely

Nemzeti
Kiválóság
Program
21th Czech and Slovak
International Conference on
Number Theory
Ostravice
September 2-6, 2013

Background

Let us define

$$
f(x, k, d)=x(x+d) \cdots(x+(k-1) d) .
$$

- Erdős and independently Rigge proved that $f(x, k, 1)$ is never a perfect square.

Background

Let us define

$$
f(x, k, d)=x(x+d) \cdots(x+(k-1) d)
$$

- Erdős and independently Rigge proved that $f(x, k, 1)$ is never a perfect square.
- A celebrated result of Erdős and Selfridge states that $f(x, k, 1)$ is never a perfect power of an integer, provided $x \geq 1$ and $k \geq 2$.

Background

Let us define

$$
f(x, k, d)=x(x+d) \cdots(x+(k-1) d)
$$

- Erdős and independently Rigge proved that $f(x, k, 1)$ is never a perfect square.
- A celebrated result of Erdős and Selfridge states that $f(x, k, 1)$ is never a perfect power of an integer, provided $x \geq 1$ and $k \geq 2$.
- Many generalizations in the literature.

Background

Let us define

$$
f(x, k, d)=x(x+d) \cdots(x+(k-1) d)
$$

- Erdős and independently Rigge proved that $f(x, k, 1)$ is never a perfect square.
- A celebrated result of Erdős and Selfridge states that $f(x, k, 1)$ is never a perfect power of an integer, provided $x \geq 1$ and $k \geq 2$.
- Many generalizations in the literature.
- Euler proved that a product of four terms in arithmetic progression is never a square.

Background

Let us define

$$
f(x, k, d)=x(x+d) \cdots(x+(k-1) d)
$$

- Erdős and independently Rigge proved that $f(x, k, 1)$ is never a perfect square.
- A celebrated result of Erdős and Selfridge states that $f(x, k, 1)$ is never a perfect power of an integer, provided $x \geq 1$ and $k \geq 2$.
- Many generalizations in the literature.
- Euler proved that a product of four terms in arithmetic progression is never a square.
- Obláth obtained a similar statement for $k=5$.

Background

- Many nice results by Bruin, Bennett, Győry, Hajdu, Laishram, Pintér, Saradha, Shorey and others related to the Diophantine equation
- $f(x, k, d)=b y^{\prime}$
- Techniques: Baker's method, modular approach, theory of elliptic curves, Chabauty's method, high degree Thue equations.

Background

- Many nice results by Bruin, Bennett, Győry, Hajdu, Laishram, Pintér, Saradha, Shorey and others related to the Diophantine equation
- $f(x, k, d)=$ by $^{\prime}$
- Techniques: Baker's method, modular approach, theory of elliptic curves, Chabauty's method, high degree Thue equations.

Erdős and Graham asked if the Diophantine equation

$$
\prod_{i=1}^{r} f\left(x_{i}, k_{i}, 1\right)=y^{2}
$$

has, for fixed $r \geq 1$ and $\left\{k_{1}, k_{2}, \ldots, k_{r}\right\}$ with $k_{i} \geq 4$ for $i=1,2, \ldots, r$, at most finitely many solutions in positive integers $\left(x_{1}, x_{2}, \ldots, x_{r}, y\right)$ with $x_{i}+k_{i} \leq x_{i+1}$ for $1 \leq i \leq r-1$.

Erdős-Graham problem

- Skatba (2003) provided a bound for the smallest solution and estimated the number of solutions below a given bound.

Erdős-Graham problem

- Skatba (2003) provided a bound for the smallest solution and estimated the number of solutions below a given bound.
- Ulas (2005) answered the above question of Erdős and Graham in the negative when either $r=k_{i}=4$, or $r \geq 6$ and $k_{i}=4$.

Erdős-Graham problem

- Skałba (2003) provided a bound for the smallest solution and estimated the number of solutions below a given bound.
- Ulas (2005) answered the above question of Erdős and Graham in the negative when either $r=k_{i}=4$, or $r \geq 6$ and $k_{i}=4$.
- Bauer and Bennett (2007) extended this result to the cases $r=3$ and $r=5$.

Erdős-Graham problem

- Skałba (2003) provided a bound for the smallest solution and estimated the number of solutions below a given bound.
- Ulas (2005) answered the above question of Erdős and Graham in the negative when either $r=k_{i}=4$, or $r \geq 6$ and $k_{i}=4$.
- Bauer and Bennett (2007) extended this result to the cases $r=3$ and $r=5$.
- Luca and Walsh (2007) studied the case $\left(r, k_{i}\right)=(2,4)$.

Erdős-Graham problem

- Skatba (2003) provided a bound for the smallest solution and estimated the number of solutions below a given bound.
- Ulas (2005) answered the above question of Erdős and Graham in the negative when either $r=k_{i}=4$, or $r \geq 6$ and $k_{i}=4$.
- Bauer and Bennett (2007) extended this result to the cases $r=3$ and $r=5$.
- Luca and Walsh (2007) studied the case $\left(r, k_{i}\right)=(2,4)$.
- Bennett and Van Luijk (2012) constructed an infinite family of $r \geq 5$ non-overlapping blocks of five consecutive integers such that their product is always a perfect square.

Product of two blocks

We deal with the Diophantine equation

$$
x(x+1)(x+2)(x+3)(x+k)(x+k+1)(x+k+2)(x+k+3)=y^{2} .
$$

Theorem

If the above equation has a positive integer solution x, then

$$
x<2 k-2 .
$$

The only solution of the above Diophantine equation with $1 \leq x \leq 10^{6}$ is $(x, k, y)=(33,1647,3361826160)$.

This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 'National Excellence Program'.

Product of two blocks

The equation

$$
x(x+1)(x+2)(x+3)(x+k)(x+k+1)(x+k+2)(x+k+3)=y^{2}
$$

can be rewritten as

$$
X(X+k+2)(X+2 k+2)(X+3 k)=y^{2},
$$

where $X=x^{2}+(k+3) x$. Runge's method can be applied.

Application of Runge's method

Polynomial part of the Puiseux expansion:

$$
X^{2}+(3 k+2) X+k^{2}+3 k
$$

Define

$$
\begin{aligned}
F(X) & =X(X+k+2)(X+2 k+2)(X+3 k), \\
P_{1}(X) & =X^{2}+(3 k+2) X+k^{2}+3 k-1, \\
P_{2}(X) & =X^{2}+(3 k+2) X+k^{2}+3 k+1 .
\end{aligned}
$$

Application of Runge's method

We have that

$$
\begin{aligned}
& F(X)-P_{1}(X)^{2}=2 X^{2}-2\left(2 k^{2}-3 k-2\right) X-k^{4}-6 k^{3}-7 k^{2}+6 k-1, \\
& F(X)-P_{2}(X)^{2}=-2 X^{2}-2\left(2 k^{2}+3 k+2\right) X-k^{4}-6 k^{3}-11 k^{2}-6 k-1 .
\end{aligned}
$$

That is

$$
\begin{array}{ll}
F(X)-P_{1}(X)^{2}>0 & \text { if } X>C_{1}(k), \\
F(X)-P_{2}(X)^{2}<0 & \text { if } X>C_{2}(k) .
\end{array}
$$

Application of Runge's method

We have that

$$
\begin{aligned}
& F(X)-P_{1}(X)^{2}=2 X^{2}-2\left(2 k^{2}-3 k-2\right) X-k^{4}-6 k^{3}-7 k^{2}+6 k-1, \\
& F(X)-P_{2}(X)^{2}=-2 X^{2}-2\left(2 k^{2}+3 k+2\right) X-k^{4}-6 k^{3}-11 k^{2}-6 k-1 .
\end{aligned}
$$

That is

$$
\begin{array}{ll}
F(X)-P_{1}(X)^{2}>0 & \text { if } X>C_{1}(k), \\
F(X)-P_{2}(X)^{2}<0 & \text { if } X>C_{2}(k) .
\end{array}
$$

We obtain that

$$
P_{1}(X)^{2}<F(X)<P_{2}(X)^{2}
$$

if X is large enough.

Bound for the solutions

We got that

$$
P_{1}(X)^{2}<F(X)<P_{2}(X)^{2} .
$$

We also know that $F(X)=y^{2}$. Hence if X is large, then

$$
y=X^{2}+(3 k+2) X+k^{2}+3 k
$$

Therefore

$$
0=F(X)-y^{2}=-4 k^{2} X-k^{4}-6 k^{3}-9 k^{2} .
$$

That is $X=-\left(\frac{k+3}{2}\right)^{2}$

Large solutions

It is easy to see that k has to be odd, so $k=2 t+1$ and $X=-(t+2)^{2}$.
We also have that

$$
x^{2}+(2 t+4) x=-(t+2)^{2}
$$

Hence we obtain that

$$
x=-t-2
$$

and

$$
(-t-2)(-t-1)(-t)(-t+1)(t-1)(t)(t+1)(t+2)=((t-1) t(t+1)(t+2))^{2}
$$

Remark: it is a negative solution of the equation and we assumed that x is positive.

Small solutions

Fujiwara's result:

Lemma

Given $p(z)=\sum_{i=0}^{n} a_{i} z^{i}, a_{n} \neq 0$. Then

$$
\max \{|\zeta|: p(\zeta)=0\} \leq 2 \max \left\{\left|\frac{a_{n-1}}{a_{n}}\right|,\left|\frac{a_{n-2}}{a_{n}}\right|^{1 / 2}, \ldots,\left|\frac{a_{0}}{a_{n}}\right|^{1 / n}\right\}
$$

Application of Fujiwara's lemma:
$F(X)-P_{1}(X)^{2} \Rightarrow|X| \leq 2 \max \left\{\left|2 k^{2}-3 k-2\right|,\left|\frac{-k^{4}-6 k^{3}-7 k^{2}+6 k-1}{2}\right|^{1 / 2}\right\}$
$F(X)-P_{2}(X)^{2} \Rightarrow|X| \leq 2 \max \left\{\left|2 k^{2}+3 k+2\right|,\left|\frac{-k^{4}-6 k^{3}-11 k^{2}-6 k-1}{2}\right|_{11 \text { of } 19}^{1 / 2}\right.$

Small solutions

We have

$$
\begin{aligned}
& F(X)-P_{1}(X)^{2} \Rightarrow|X| \leq 2 \max \left\{\left|2 k^{2}-3 k-2\right|,\left|\frac{k^{2}+3 k-1}{\sqrt{2}}\right|\right\} \\
& F(X)-P_{2}(X)^{2} \Rightarrow|X| \leq 2 \max \left\{\left|2 k^{2}+3 k+2\right|,\left|\frac{k^{2}+3 k+1}{\sqrt{2}}\right|\right\}
\end{aligned}
$$

Upper bound for X is $4 k^{2}+6 k+4$. That is

$$
x^{2}+(k+3) x<4 k^{2}+6 k+4 .
$$

An upper bound for x is $2 k-2$.

Elliptic curves

Certain estimates are valid if $k>10 \Rightarrow$ genus 1 model:

$$
X(X+k+2)(X+2 k+2)(X+3 k)=y^{2} .
$$

Using the MAGMA procedure IntegralQuarticPoints([1, $6 k+$ $\left.\left.4,11 k^{2}+18 k+4,6 k^{3}+18 k^{2}+12 k, 0\right],[0,0]\right)$; it is possible to determine all integral points on these curves.

Elliptic curves

Certain estimates are valid if $k>10 \Rightarrow$ genus 1 model:

$$
X(X+k+2)(X+2 k+2)(X+3 k)=y^{2} .
$$

Using the MAGMA procedure IntegralQuarticPoints([1, $6 k+$ $\left.\left.4,11 k^{2}+18 k+4,6 k^{3}+18 k^{2}+12 k, 0\right],[0,0]\right)$; it is possible to determine all integral points on these curves.

k	$x^{2}+(k+3) x=X \in$
5	$\{-21,-16,-15,-12,-9,-7,3,0\}$
6	$\{-28,-18,-14,-12,-8,2,0\}$
7	$\{-36,-25,-21,-16,-12,-9,0\}$
8	$\{-45,-24,-18,-15,-10,0\}$
9	$\{-55,-36,-27,-20,-15,-11,1,0\}$
10	$\{-66,-30,-22,-18,-12,0\}$

Elliptic curves

Certain estimates are valid if $k>10 \Rightarrow$ genus 1 model:

$$
X(X+k+2)(X+2 k+2)(X+3 k)=y^{2} .
$$

Using the MAGMA procedure IntegralQuarticPoints([1, $6 k+$ $\left.\left.4,11 k^{2}+18 k+4,6 k^{3}+18 k^{2}+12 k, 0\right],[0,0]\right)$; it is possible to determine all integral points on these curves.

k	$x^{2}+(k+3) x=X \in$
5	$\{-21,-16,-15,-12,-9,-7,3,0\}$
6	$\{-28,-18,-14,-12,-8,2,0\}$
7	$\{-36,-25,-21,-16,-12,-9,0\}$
8	$\{-45,-24,-18,-15,-10,0\}$
9	$\{-55,-36,-27,-20,-15,-11,1,0\}$
10	$\{-66,-30,-22,-18,-12,0\}$

We only obtain solutions such that $x \leq 0$.

Algorithm

- If k is "small", then $x<2 k-2$ is small \Rightarrow brute force.

Algorithm

- If k is "small", then $x<2 k-2$ is small \Rightarrow brute force.
- If k is "large", then $\sqrt{2 k-2} \leq p_{1}$ and p_{2} is the next prime following p_{1}.

Algorithm

- If k is "small", then $x<2 k-2$ is small \Rightarrow brute force.
- If k is "large", then $\sqrt{2 k-2} \leq p_{1}$ and p_{2} is the next prime following p_{1}.
- That is $p_{1} p_{2}>2 k-2$.

Algorithm

- If k is "small", then $x<2 k-2$ is small \Rightarrow brute force.
- If k is "large", then $\sqrt{2 k-2} \leq p_{1}$ and p_{2} is the next prime following p_{1}.
- That is $p_{1} p_{2}>2 k-2$.
- $S_{1}=\{s: s(s+1)(s+2)(s+3)(s+k)(s+k+1)(s+k+2)(s+$ $k+3)$ is a square in $\left.\mathbb{F}_{p_{1}}\right\}$,
- $S_{2}=\{s: s(s+1)(s+2)(s+3)(s+k)(s+k+1)(s+k+2)(s+$ $k+3)$ is a square in $\left.\mathbb{F}_{p_{2}}\right\}$.

Algorithm

- If k is "small", then $x<2 k-2$ is small \Rightarrow brute force.
- If k is "large", then $\sqrt{2 k-2} \leq p_{1}$ and p_{2} is the next prime following p_{1}.
- That is $p_{1} p_{2}>2 k-2$.
- $S_{1}=\{s: s(s+1)(s+2)(s+3)(s+k)(s+k+1)(s+k+2)(s+$ $k+3)$ is a square in $\left.\mathbb{F}_{p_{1}}\right\}$,
- $S_{2}=\{s: s(s+1)(s+2)(s+3)(s+k)(s+k+1)(s+k+2)(s+$ $k+3)$ is a square in $\left.\mathbb{F}_{p_{2}}\right\}$.
- $S O L=\left\{C R T\left([a, b],\left[p_{1}, p_{2}\right]\right): a \in S_{1}, b \in S_{2}\right\}$.

Examples

Let $k=$ 2013. We have $p_{1}=67$ and $p_{2}=71$.
S_{1} has 41 elements and S_{2} has 39 elements.
SOL has 1360 elements less than or equal $2 \cdot 2013-2$. We obtain no solution for the original equation.

Examples

Let $k=2013$. We have $p_{1}=67$ and $p_{2}=71$.
S_{1} has 41 elements and S_{2} has 39 elements.
SOL has 1360 elements less than or equal $2 \cdot 2013-2$. We obtain no solution for the original equation.
Let $k=2013 \cdot 9 \cdot 4=72468$. Here we use the primes $p_{1}=383$ and $p_{2}=389$.

$$
\left|S_{1}\right|=191 \quad\left|S_{2}\right|=217 \quad|S O L|=41447 .
$$

Improvement: $\sqrt[3]{2 \cdot 72468-2} \approx 41.7 \Rightarrow p_{1}=41, p_{2}=47, p_{3}=53$, then we have

$$
|S O L|=12075 .
$$

Product of two blocks of length five

Consider the equation

$$
F(x)=y^{2}
$$

where $F(x)=x(x+1)(x+2)(x+3)(x+4)(x+k)(x+k+1)(x+k+$ $2)(x+k+3)(x+k+4)$. Polynomial part of the Puiseux expansion

$$
\begin{align*}
P(x)= & x^{5}+\left(\frac{5}{2} k+10\right) x^{4}+\left(\frac{15}{8} k^{2}+20 k+35\right) x^{3}+ \\
& \left(\frac{5}{16} k^{3}+\frac{45}{4} k^{2}+\frac{105}{2} k+50\right) x^{2}+ \\
& \left(-\frac{5}{128} k^{4}+\frac{5}{4} k^{3}+\frac{145}{8} k^{2}+50 k+24\right) x+ \\
& \frac{3}{256} k^{5}-\frac{5}{64} k^{4}+\frac{5}{16} k^{3}+\frac{25}{4} k^{2}+12 k . \tag{1912}
\end{align*}
$$

Application of Runge's method

We have

$$
\begin{aligned}
& F(x)-\left(P(x)-\frac{1}{256}\right)^{2}>0 \\
& F(x)-\left(P(x)+\frac{1}{256}\right)^{2}<0
\end{aligned}
$$

if $x>C^{+}$. We have also

$$
\begin{aligned}
& F(x)-\left(P(x)-\frac{1}{256}\right)^{2}<0 \\
& F(x)-\left(P(x)+\frac{1}{256}\right)^{2}>0
\end{aligned}
$$

if $x>C^{-}$.

Large solutions

We get that

$$
\left(P(x)-\frac{1}{256}\right)^{2}<F(x)<\left(P(x)+\frac{1}{256}\right)^{2}
$$

that is

$$
(256 P(x)-1)^{2}<(256 y)^{2}<(256 P(x)+1)^{2} .
$$

It follows that $y=P(x)$ if $x>C^{+}$. If there is an integral solution x, then

$$
x \mid k^{2}(k+4)^{2}\left(3 k^{3}-32 k^{2}+208 k+768\right) .
$$

Other approach

Genus 2 model:

$$
X(X+k+3)(X+2 k+4)(X+3 k+3)(X+4 k)=y^{2},
$$

where $X=x^{2}+(k+4) x$. Computing integral points on genus 2 curves: Bugeaud, Mignotte, Siksek, Stoll and Tengely. One needs basis of Mordell-Weil group of the Jacobian.

