
ON THE LUCAS SEQUENCE EQUATION 1
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Abstract. In 1953 Stancliff noted an interesting property of the
Fibonacci number F11 = 89. One has that
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1
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5

106
+ . . . ,

where in the numerators the elements of the Fibonacci sequence
appear. We provide methods to determine similar identities in case
of Lucas sequences. As an example we prove that

1

U10
=

1

416020
=

∞∑
k=0

Uk
647k+1

,

where U0 = 0, U1 = 1 and Un = 4Un−1 + Un−2, n ≥ 2.

1. introduction

Stancliff [16] noted without proof an interesting property of the Fi-
bonacci sequence Fn. One has that

1

F11

=
1

89
= 0.0112358 . . . =

∞∑
k=0

Fk
10k+1

.

In 1980 Winans [23] investigated the related sums

∞∑
k=0

Fαk
10k+1

for certain values of α. In 1981 Hudson and Winans [8] provided a com-
plete characterization of all decimal fractions that can be approximated
by sums of the type

1

Fα

n∑
k=1

Fαk
10l(k+1)

, α, l ≥ 1.
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Long [12] proved a general identity for binary recurrence sequences
from which one obtains e.g.

1

9899
=
∞∑
k=0

Fk
102(k+1)

,
1

109
=
∞∑
k=0

Fk
(−10)k+1

.

In the previous examples decimal fractions were studied, in case of
different bases characterizations were obtained by Jia Sheng Lee [10]
and by Köhler [9] and by Jin Zai Lee and Jia Sheng Lee [11]. Here we
state a result by Köhler that we will use later in this article.

Theorem A. Let A,B, a0, a1 be arbitrary complex numbers. Define the
sequence {an} by the recursion an+1 = Aan +Ban−1. Then the formula

∞∑
k=0

ak
xk+1

=
a0x− Aa0 + a1
x2 − Ax−B

holds for all complex x such that |x| is larger than the absolute values
of the zeros of x2 − Ax−B.

Let P and Q be non-zero relatively prime integers. The Lucas se-
quence {Un(P,Q)} is defined by

U0 = 0, U1 = 1 and Un = PUn−1 −QUn−2, if n ≥ 2.

In this paper we deal with the determination of all integers x ≥ 2 for
which there exists an n ≥ 0 such that

(1)
1

Un
=
∞∑
k=1

Uk−1
xk

,

where Un is a Lucas sequence with some given P and Q. In case of P =
1, Q = −1 one gets the Fibonacci sequence. De Weger [5] computed all
x ≥ 2 in case of the Fibonacci sequence, the solutions are as follows

1

F1

=
1

F2

=
1

1
=
∞∑
k=1

Fk−1
2k

,
1

F5

=
1

5
=
∞∑
k=1

Fk−1
3k

,

1

F10

=
1

55
=
∞∑
k=1

Fk−1
8k

,
1

F11

=
1

89
=
∞∑
k=1

Fk−1
10k

.

De Weger applied arguments of algebraic number theory and obtained
two Thue equations, which were solved using Baker’s method (see e.g.
[2, 7, 15]). In the current work, we show how to reduce a search for

integral x ≥ 2 related to the equation 1
Un

=
∑∞

k=1
Uk−1

xk
to elliptic

Diophantine equations or to Thue equations following an elementary
argument by Alekseyev and Tengely [1]. There exists a number of
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software implementations for determining integral points on elliptic
curves, these procedures are based on a method developed by Stroeker
and Tzanakis [18] and independently by Gebel, Pethő and Zimmer [6].
The elliptic logarithm method for determining all integer points on an
elliptic curve has been applied to a variety of elliptic equations (see e.g.
[19, 20, 21, 22]).

2. main results

Theorem 1. Let {Un(P,Q)} be a Lucas sequence with Q ∈ {±1}
and (P,Q) /∈ {(−2, 1), (2, 1)}. Then equation (1) possesses only finitely
many solutions in n, x which can be effectively determined.

The proof of Theorem 1 provides an algorithm to determine all so-
lutions of equation (1). Following this algorithm we obtain numerical
results.

Theorem 2. Let {Un(P,Q)} be a Lucas sequence with −10 ≤ P ≤
10, Q ∈ {±1} and (P,Q) 6= (−2, 1), (2, 1). Then equation (1) has the
following solutions

(P,Q, n, x) ∈ {(−3, 1, 5, 6), (−1,−1, 5, 2), (−1,−1, 11, 9), (1,−1, 1, 2),

(1,−1, 2, 2), (1,−1, 5, 3), (1,−1, 10, 8), (1,−1, 11, 10), (2,−1, 2, 3),

(3,−1, 2, 4), (3, 1, 1, 3), (3, 1, 5, 9), (4,−1, 2, 5), (4,−1, 10, 647),

(4, 1, 1, 4), (5,−1, 2, 6), (5, 1, 1, 5), (6,−1, 2, 7), (6, 1, 1, 6),

(7,−1, 2, 8), (7, 1, 1, 7), (8,−1, 2, 9), (8, 1, 1, 8), (9,−1, 2, 10),

(9, 1, 1, 9), (10,−1, 2, 11), (10, 1, 1, 10)}.

Remark. We note that the sequences with (P,Q) ∈ {(−2, 1), (2, 1)}
are degenerate sequences, that is the discriminant D = P 2−4Q is zero.
One has that Un(−2, 1) = (−1)n+1n and Un(2, 1) = n. In these cases
there are infinitely many solutions of equation (1):

1

(x+ 1)2
=

1

U(x+1)2(−2, 1)
=

∞∑
k=1

Uk−1(−2, 1)

xk
, if x is even,

1

(x− 1)2
=

1

U(x−1)2(2, 1)
=

∞∑
k=1

Uk−1(2, 1)

xk
.

3. auxiliary results

The Lucas sequences {Un(P,Q)} and associated Lucas sequences
{Vn(P,Q)} are defined by the same linear recurrent relation with P,Q ∈
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Z \ {0} but different initial terms:

U0 = 0, U1 = 1 and Un = PUn−1 −QUn−2, if n ≥ 2,

V0 = 2, V1 = P and Vn = PVn−1 −QVn−2, if n ≥ 2.

Terms of Lucas sequences and associated Lucas sequences satisfy the
following identity

(2) V 2
n −DU2

n = 4Qn,

where D = P 2− 4Q. To determine the appropriate Thue equations we
use parametric solutions of ternary quadratic equations. Such parametriza-
tion are given in [1, Theorem 1].

Lemma 1. Let A,B,C be non-zero integers and let (x0, y0, z0) with
z0 6= 0 be a particular non-trivial integer solution to the Diophantine
equation Ax2 + By2 + Cz2 = 0. Then its general integer solution is
given by

(x, y, z) =
p

q
(Px(m,n), Py(m,n), Pz(m,n))

where m,n as well as p, q are coprime integers with q > 0 dividing
2 lcm(A,B)Cz20 , and

Px(m,n) = x0Am
2 + 2y0Bmn− x0Bn2,

Py(m,n) = −y0Am2 + 2x0Amn+ y0Bn
2,

Pz(m,n) = z0Am
2 + z0Bn

2.

4. proofs

Proof of Theorem 1. Let {Un(P,Q)} be a Lucas sequence with Q ∈
{±1}. Theorem A implies that

(3)
∞∑
k=1

Uk−1
xk

=
1

x2 − Px± 1
.

Hence from equations (1) and (3) it follows that Un = x2 − Px ± 1.
Finiteness follows from results by Nemes and Pethő [13] and by Pethő
[14]. We provide two approaches to determine a finite set of possible
values of x for which Un = x2−Px±1. The first one is based on elliptic
curves. It only works if one can determine the ranks of the appropriate
Mordell-Weil groups. The second method is based on an elementary
reduction algorithm which yield finitely many quartic Thue equations
to solve. After computing the finite set of possible values of x we use
eigenvalues and eigenvectors to compute the sum

∑∞
k=1

Uk−1

xk
.



ON THE LUCAS SEQUENCE EQUATION 5

Substituting Un = x2 − Px± 1 into the identity (2) yields a genus 1
curve

C(P,Q,n) : y2 = (P 2 − 4Q)(x2 − Px+Q)2 + 4Qn.

Bruin and Stoll [4] described and algorithmized the so-called two-cover
descent, which can be used to prove that a given hyperelliptic curve
has no rational points. This algorithm is implemented in Magma [3],
the procedure is called TwoCoverDescent. If it turns out that there
are no rational points on the curves y2 = (P 2 − 4)(x2 − Px + 1)2 +
4 and y2 = (P 2 + 4)(x2 − Px − 1)2 ± 4, then equation (1) has no
solution. If TwoCoverDescent yields that rational points may exist,
but the procedure Points fails to find one, then we follow the second
approach, solution via Thue equations that we consider later in the
proof. Now we assume that we could determine points on curves for
which TwoCoverDescent predicts existence of rational points. That
means we are given elliptic curves in quartic model. Tzanakis [21]
provided a method to determine all integral points on quartic models,
the algorithm is implemented in Magma as IntegralQuarticPoints.

The second approach is based on Lemma 1. There are three ternary
quadratic equations to parametrize

Q1 : X2 − (P 2 − 4)Y 2 − 4Z2 = 0,

Q2 : X2 − (P 2 + 4)Y 2 − 4Z2 = 0,

Q3 : X2 − (P 2 + 4)Y 2 + 4Z2 = 0.

There are points on these curves:

Q1 : (X, Y, Z) = (2, 0, 1),

Q2 : (X, Y, Z) = (2, 0, 1),

Q3 : (X, Y, Z) = (P, 1, 1).

It follows from Lemma 1 that ±1 = Pz(m,n) = p
q
(m2 − (P 2 ± 4)n2).

Therefore p = ±1. We deal with the curve y2 = (P 2 − 4)(x2 − Px +
1)2 + 4, the other two cases are similar. We obtain that

x2 − Px+ 1 =
±4mn

q
.

Hence we have that

q(2x− P )2 ± (4− P 2)(m2 − (P 2 − 4)n2)∓ 16mn = 0,

where q > 0 divides 8(P 2 − 4). Applying Lemma 1 again we obtain
that m = fm(u, v) and n = fn(u, v), where fm, fn are homogeneous
quadratic polynomials. It remains to compute integral solutions of
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finitely many quartic Thue equations (it may happen that the defin-
ing quartic polynomials are reducible, in those cases the resolution is
simpler)

±q = fm(u, v)2 − (P 2 − 4)fn(u, v)2.

If we have a possible solution x ∈ N of equation (1), then we have

to compute the value of the sum
∑∞

k=1
Uk−1

xk
. We define

T =

(
P/x −Q/x
1/x 0

)
.

Following standard arguments one has that

1

x

(
T 0 + T 1 + T 2 + . . .+ TN−1

)(1
0

)
=

(
∗∑N

k=1
Uk−1

xk

)
.

Using eigenvectors and eigenvalues one can determine a formula for
the powers of T, hence one obtains a formula depending only on N for
the sum

∑N
k=1

Uk−1

xk
. To find solutions of the equation (1) it remains to

compute

lim
N→∞

N∑
k=1

Uk−1
xk

.

�

Proof of Theorem 2. We will illustrate how one can use the approaches
provided in the proof of Theorem 1 to determine all solutions of equa-
tion (1) for given P and Q. First we deal with the case P = 4, Q = −1.
We have that

y2 = 20(x2 − 4x− 1)2 ± 4.

To determine all integral solutions we use the Magma commands

IntegralQuarticPoints([20, -160, 280, 160, 16]) and
IntegralQuarticPoints([20, -160, 280, 160, 24],[-1,-18]).

One obtains that x ∈ {−643,−1, 0, 1, 3, 4, 5, 647}. Since x ≥ 2 only 4
values remain. In case of x = 647 the matrix T is as follows(

4/647 1/647
1/647 0

)
and we obtain that

N∑
k=1

Uk−1
647k

=

(
2−
√
5

647

)N
(129
√

5− 1)−
(

2+
√
5

647

)N
(129
√

5 + 1)

832040
+

1

416020
.
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Thus

lim
N→∞

N∑
k=1

Uk−1
647k

=
1

416020
=

1

U10

.

In a similar way we get that

lim
N→∞

N∑
k=1

Uk−1
3k

= +∞,

lim
N→∞

N∑
k=1

Uk−1
4k

= +∞,

lim
N→∞

N∑
k=1

Uk−1
5k

=
1

4
=

1

U2

.

We apply the second method to completely solve equation (1) with
P = 3, Q = 1. The curve CP,Q,n has the form y2 = 5(x2 − 3x+ 1)2 + 4.
It can be written as v2 = 5u4−50u2 + 189 with v = 4y and u = 2x−3.
The second approach has been implemented in Sage [17] by Alekseyev
and Tengely [1]. Using their procedure QuarticEq([5,-50,189]) we
obtain that u ∈ {±1,±3,±15}, therefore x ∈ {−6, 0, 1, 2, 3, 9}. We
have that

lim
N→∞

N∑
k=1

Uk−1
2k

= +∞,

lim
N→∞

N∑
k=1

Uk−1
3k

= 1 =
1

U1

,

lim
N→∞

N∑
k=1

Uk−1
9k

=
1

55
=

1

U5

.

�
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