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Runge-type Diophantine Equations

Runge’s Condition

P (X,Y ) =
m∑

i=0

n∑

j=0

ai,jX
iY j

Let λ > 0.

λ−leading part of P, Pλ(X,Y ), is the sum of all terms
ai,jX

iY j of P for which i + λj is maximal

the leading part of P, denoted by P̃ (X,Y ), is the sum of
all monomials of P which appear in any Pλ as λ varies

P satisfies Runge’s condition unless there exists a λ so that
P̃ = Pλ is a constant multiple of a power of an irreducible
polynomial in Q[X,Y ]
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Example

P (X,Y ) = X2 − Y 8 − Y 7 − Y 2 − 3Y + 5,

Pλ(X,Y ) = X2, λ < 1
4

Pλ(X,Y ) = X2 − Y 8, λ = 1
4

Pλ(X,Y ) = Y 8, λ > 1
4

thus P̃ (X,Y ) = X2 − Y 8 = (X − Y 4)(X + Y 4)

25/01/2005 – p.3/32



Example

P (X,Y ) = X2 − Y 8 − Y 7 − Y 2 − 3Y + 5,

Pλ(X,Y ) = X2, λ < 1
4

Pλ(X,Y ) = X2 − Y 8, λ = 1
4

Pλ(X,Y ) = Y 8, λ > 1
4

thus P̃ (X,Y ) = X2 − Y 8 = (X − Y 4)(X + Y 4)

25/01/2005 – p.3/32



Example

P (X,Y ) = X2 − Y 8 − Y 7 − Y 2 − 3Y + 5,

Pλ(X,Y ) = X2, λ < 1
4

Pλ(X,Y ) = X2 − Y 8, λ = 1
4

Pλ(X,Y ) = Y 8, λ > 1
4

thus P̃ (X,Y ) = X2 − Y 8 = (X − Y 4)(X + Y 4)

25/01/2005 – p.3/32



Example

P (X,Y ) = X2 − Y 8 − Y 7 − Y 2 − 3Y + 5,

Pλ(X,Y ) = X2, λ < 1
4

Pλ(X,Y ) = X2 − Y 8, λ = 1
4

Pλ(X,Y ) = Y 8, λ > 1
4

thus P̃ (X,Y ) = X2 − Y 8 = (X − Y 4)(X + Y 4)

25/01/2005 – p.3/32



Example

P (X,Y ) = X2 − Y 8 − Y 7 − Y 2 − 3Y + 5,

Pλ(X,Y ) = X2, λ < 1
4

Pλ(X,Y ) = X2 − Y 8, λ = 1
4

Pλ(X,Y ) = Y 8, λ > 1
4

thus P̃ (X,Y ) = X2 − Y 8 = (X − Y 4)(X + Y 4)

25/01/2005 – p.3/32



Runge’s theorem

Theorem (Runge,1887). If P satisfies Runge’s condition, then the
Diophantine equation P (x, y) = 0 has only a finite number of integer
solutions.
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The case F (x) = G(y)

F,G ∈ Z[X] are monic polynomials with
deg F = n, deg G = m, such that F (X) − G(Y ) is irreducible
in Q[X,Y ] and gcd(n,m) > 1. Let d > 1 be a divisor of
gcd(n,m).

Runge’s condition is satisfied.
Theorem (Sz.T.). If (x, y) ∈ Z2 is a solution of F (x) = G(y) where F
and G satisfy the above mentioned conditions then

max{|x|, |y|} ≤ d
2m2

d
−m(m + 1)

3m

2d (
m

d
+ 1)

3m

2 (h + 1)
m2

+mn+m

d
+2m,

where h = max{H(F ), H(G)} and H(·) denotes the classical height,
that is the maximal absolute value of the coefficients.
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About the proof

Lemma (Walsh,1992). There exist Puiseux expansions (in this case
even Laurent expansions)

u(X) =
∞∑

i=−n

d

fiX
−i and v(X) =

∞∑

i=−m

d

giX
−i

of the algebraic functions U, V defined by Ud = F (X), V d = G(X),
such that
d2(n/d+i)−1fi ∈ Z for all i > −n

d , similarly d2(m/d+i)−1gi ∈ Z for all

i > −m
d , and f−n

d
= g−m

d
= 1. Furthermore

|fi| ≤ (H(F ) + 1)
n

d
+i+1 for i ≥ −n

d and |gi| ≤ (H(G) + 1)
m

d
+i+1

for i ≥ −m
d .
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F (X) =




∞∑

i=−n

d

fiX
−i




d

, G(Y ) =




∞∑

i=−m

d

giY
−i




d

,

if |t| is large enough then

|
∞∑

i=1

d
2m

d
−1fit

−i| <
1

2

and

|
∞∑

i=1

d
2m

d
−1git

−i| <
1

2
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F (x) = G(y) therefore u(x)d − v(y)d = 0

(u(x) − v(y))
(
u(x)d−1 + u(x)d−2v(y) + . . . + v(y)d−1

)
= 0,

if d is odd,
(
u(x)2 − v(y)2

) (
u(x)d−2 + u(x)d−4v(y)2 + . . . + v(y)d−2

)
= 0,

if d is even.

u(x) = v(y) if d is odd, and
u(x) = ±v(y) if d is even.
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We conclude that

0 = |u(x) ± v(y)| =

∣∣∣∣∣∣

∞∑

i=−n

d

fix
−i ±

∞∑

i=−m

d

giy
−i

∣∣∣∣∣∣
.

If |x| and |y| are large enough, then
∣∣∣∣∣∣

0∑

i=−n

d

d
2m

d
−1fix

−i ±
0∑

i=−m

d

d
2m

d
−1giy

−i

∣∣∣∣∣∣
< 1.
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Hence x satisfies

ResY (F (X) − G(Y ), Q(X,Y )) = 0

and y satisfies

ResX(F (X) − G(Y ), Q(X,Y )) = 0,

where

Q(x, y) :=

n

d∑

i=0

d
2m

d
−1f−ix

i ±
m

d∑

i=0

d
2m

d
−1g−iy

i = 0.
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Algorithm

Let u(X) =
∑0

i=−n

p
fiX

−i and v(X) =
∑0

i=−m

p
giX

−i. Let t be

a positive real number. Suppose that p is odd. Then we
have

(u(x) − t)p < F (x) < (u(x) + t)p for x /∈ [x−
t , x+

t ],

(v(y) − t)p < G(y) < (v(y) + t)p for y /∈ [y−t , y+
t ],

where

x−
t = min{{0} ∪

{x ∈ R : F (x) − (u(x) − t)p = 0 or F (x) − (u(x) + t)p = 0}},
x+

t = max{{0} ∪
{x ∈ R : F (x) − (u(x) − t)p = 0 or F (x) − (u(x) + t)p = 0}}.
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We have

u(x) − t < F (x)1/p < u(x) + t for x /∈ [x−
t , x+

t ],

v(y) − t < G(y)1/p < v(y) + t for y /∈ [y−t , y+
t ],

hence
|u(x) − v(y)| < 2t.

Hence x is a solution of ResY (F (X)−G(Y ), u(X)−v(Y )−T )

for some rational number −2t < T < 2t with denominator

dividing p
2m

p
−1.
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F (x) = G(k) for some k ∈ [y−t , y+
t ],

G(y) = F (k) for some k ∈ [x−
t , x+

t ],

ResY (F (X) − G(Y ), u(X) − v(Y ) − T ) = 0 for some

T ∈ Q, |T | < 2t with denominator dividing D.
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The number of equations to be solved depends on t, a good
choice can reduce the time of the computation. We let
t = 1

2D . In this way if x /∈ [x−
t , x+

t ], y /∈ [y−t , y+
t ], we have that

−1 < D(u(x) ± v(y)) < 1.

Since D(u(x)±v(y)) is an integer the only possibility is u(x)±
v(y) = 0. In this case there is only one resultant equation to

be solved if p is odd and two if p = 2.
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Example

We apply the method to the Diophantine equation
F (x) = G(y), where

F (x) = x3 − 5x2 + 45x − 713,

G(y) = y9−3y8+9y7−17y6+38y5−199y4−261y3+789y2+234y.

We obtain that

u(X) = X − 5

3
,

v(Y ) = Y 3 − Y 2 + 2Y − 4

3
.
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t #equations [x−
t , x+

t , y−t , y+
t ]

1/6 177 [ -86, 45, -32, 11 ]
1/3 95 [ -48, 15, -18, 9 ]
2/3 67 [ -27, 13, -10, 8 ]
4/3 52 [ -16, 11, -2, 6 ]

ResY (F (X) − G(Y ), u(X) − v(Y ) − k) = 0,

for k ∈ {−7, . . . , 7},
G(y) = F (x), for x ∈ {−16, . . . , 11},
F (x) = G(y), for y ∈ {−2, . . . , 6},

The only integral solution of these equations is (x, y) =

(−11,−2).
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The Diophantine equation x2 + q2m = 2yp

Consider the Diophantine equation

x2 + q2m = 2yp,

where x, y ∈ N with gcd(x, y) = 1,m ∈ N and p, q are odd
primes and N denotes the set of positive integers. The case
m = 0 was solved by Cohn in 1996.
Theorem (Sz.T.). There are only finitely many solutions (x, y,m, q, p)

of x2 + q2m = 2yp with gcd(x, y) = 1, x, y ∈ N, such that y is not of

the form 2v2 ± 2v + 1,m ∈ N and p > 3, q odd primes.
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Be careful examples

y p q

5 13 42641

5 29 1811852719

5 97 2299357537036323025594528471766399

13 7 11003

13 13 13394159

25 11 69049993

25 47 378293055860522027254001604922967

41 31 4010333845016060415260441
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Solutions with small qm

Lemma (Sz.T.). Let q be an odd prime and m ∈ N such that

3 ≤ qm ≤ 501. If there exist (x, y) ∈ N2 with gcd(x, y) = 1 and an

odd prime p such that x2 + q2m = 2yp holds, then

(x, y, q,m, p) ∈
{
(3, 5, 79, 1, 5), (9, 5, 13, 1, 3), (55, 13, 37, 1, 3),

(79, 5, 3, 1, 5), (99, 17, 5, 1, 3), (161, 25, 73, 1, 3),

(249, 5, 307, 1, 7), (351, 41, 11, 2, 3), (545, 53, 3, 3, 3),

(649, 61, 181, 1, 3), (1665, 113, 337, 1, 3), (2431, 145, 433, 1, 3),

(5291, 241, 19, 1, 3), (275561, 3361, 71, 1, 3)
}
.
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Z[i] is a unique factorization domain.

x = <((1 + i)(u + iv)p) =: Fp(u, v),

qm = =((1 + i)(u + iv)p) =: Gp(u, v).

Lemma (Sz.T.). We have

(u − δ4v) | Fp(u, v),

(u + δ4v) | Gp(u, v),

where

δ4 =

{
1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4).
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Either

u + δ4v = qk,

Hp(u, v) = qm−k,

or

u + δ4v = −qk,

Hp(u, v) = −qm−k,

where Hp(u, v) = Gp(u,v)
u+δ4v

and 0 ≤ k ≤ m.
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Lemma (Mignotte,2001). Let α be a complex algebraic number with |α| = 1, but not a root of unity, and

log α the principal value of the logarithm. Put D = [Q(α) : Q]/2. Consider the linear form

Λ = b1iπ − b2 log α,

where b1, b2 are positive integers. Let λ be a real number satisfying 1.8 ≤ λ < 4, and put

ρ = eλ, K = 0.5ρπ + Dh(α), B = max(13, b1, b2),

t =
1

6πρ
− 1

48πρ(1 + 2πρ/3λ)
, T =

 

1/3 +
p

1/9 + 2λt

λ

!2

,

H = max
n

3λ, D

„

log B + log

„

1

πρ
+

1

2K

«

− log
√

T + 0.886

«

+

+
3λ

2
+

1

T

„

1

6ρπ
+

1

3K

«

+ 0.023
o

.

Then

log |Λ| > −(8πTρλ−1H2 + 0.23)K − 2H − 2 log H + 0.5λ + 2 log λ − (D + 2) log 2.
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Bound for p

Theorem (Sz.T.). If the equation x2 + q2m = 2yp admits a relatively

prime solution (x, y) ∈ N2 then we have

p ≤ 3803 if u + δ4v = ±qm, qm ≥ 503,

p ≤ 3089 if p = q,

p ≤ 1309 if u + δ4v = ±qm,m ≥ 40,

p ≤ 1093 if u + δ4v = ±qm,m ≥ 100,

p ≤ 1009 if u + δ4v = ±qm,m ≥ 250.
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Without loss of generality we assume that p > 1000 and
qm ≥ 503. Proof in the case u + δ4v = ±qm, qm ≥ 503. From
u + δ4v = ±qm we get

503

2
≤ qm

2
≤ |u| + |v|

2
≤

√
u2 + v2

2
=

√
y

2
,

which yields that y ≥ q2m

2 > 126504.
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W

e have
∣∣∣∣
x + qmi

x − qmi
− 1

∣∣∣∣ =
2 · qm

√
x2 + q2m

≤ 2
√

y

yp/2
=

2

y
p−1

2

.

and
x + qmi

x − qmi
=

(1 + i)(u + iv)p

(1 − i)(u − iv)p
= i

(
u + iv

u − iv

)p

.
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Lemma (Sz.T.). The polynomial Hp(±qk − δ4v, v) has degree p − 1
and

Hp(±qk − δ4v, v) = ±δ82
p−1

2 pvp−1 + qkpĤp(v) + qk(p−1),

where Ĥp ∈ Z[X] has degree < p − 1. The polynomial

Hp(X, 1) ∈ Z[X] is irreducible and

Hp(X, 1) =

p−1∏

k=0
k 6=k0

(
X − tan

(4k + 3)π

4p

)
,

where k0 =
[p

4

]
(p mod 4).
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Lemma (Sz.T.). If there exists a k ∈ {0, 1, . . . ,m} such that

u + δ4v = qk,

Hp(u, v) = qm−k,

or

u + δ4v = −qk,

Hp(u, v) = −qm−k,

has a solution (u, v) ∈ Z2 with gcd(u, v) = 1, then either k = 0 or
k = m, p 6= q or (k = m − 1, p = q).
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Proof of the finiteness result

We have that k = 0,m − 1 or k = m.

If k = 0, then u + δ4v = ±1 and y = 2v2 ± 2v + 1.

If k = m − 1, then p = q and we have p < 3089. We recall
that Hp(u, v) is an irreducible polynomial of degree p− 1.

Thus we have only finitely many Thue equations

Hp(u, v) = ±p.

Let k = m. Here we have u + δ4v = ±qm and
Hp(±qm − δ4v, v) = ±1. If qm ≤ 501 then there are only
finitely many solutions. We have computed an upper
bound for p when qm ≥ 503. This leads to finitely many
Thue equations

Hp(u, v) = ±1.
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Fixed y

Theorem (Sz.T.). The only solution (m, p, q, x) in positive integers

m, p, q, x with p and q odd primes of the equation x2 + q2m = 2 · 17p

is (1, 3, 5, 99).

Proof. Note that 17 is not of the form 2v2 ± 2v + 1. From y = u2 + v2

we obtain that q is 3 or 5 and m = 1. This implies that 17 does not
divide x. We are left with the equations

x2 + 32 = 2 · 17p,

x2 + 52 = 2 · 17p.

We saw that there is no solution with q = 3,m = 1, y = 17 and the
only solution in case of the second equation is
(x, y, q,m, p) = (99, 17, 5, 1, 3).
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Fixed q

Theorem (Sz.T.). If the Diophantine equation x2 + 3m = 2yp with
m > 0 and p prime admits a coprime integer solution (x, y), then either

p ∈ {3, 59, 83, 107, 179, 227, 347, 419,

443, 467, 563, 587, 659, 683, 827, 947}

or (x, y,m, p) = (79, 5, 2, 5).
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Mixed powers in arithmetic progressions

Let x3
0, x

2
1, x

3
2, x

2
3 be consecutive terms of an arithmetic

progression. We have

x2
1 =

x3
0 + x3

2

2
,

x2
3 =

−x3
0 + 3x3

2

2
.

We note that x2 = 0 implies x0 = x1 = x2 = x3 = 0. Assume
x2 6= 0. Then we obtain that

(
2x1x3

x3
2

)2

= −
(

x0

x2

)6

+ 2

(
x0

x2

)3

+ 3.
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Theorem. Let C be the curve given by

Y 2 = −X6 + 2X3 + 3.

Then C(Q) = {(−1, 0), (1,±2)}.
Corollary. If x3

0
, x2

1
, x3

2
, x2

3
are consecutive terms of an arithmetic progression, then

(x0, x1, x2, x3) ∈ {(−2t2, 0, 2t2,±4t3), (t2,±t3, t2,±t3)} for some t ∈ Z.

Proof. The point (−1, 0) is on the curve Y 2 = −X6 + 2X3 + 3,
hence x0

x2
= −1 and 2x1x3 = 0. It easily follows that

x0 = −2t2, x1 = 0, x2 = 2t2, x3 = ±4t3 is the only possible solution
of the problem. In case of the other two points (1,±2) we have

x0 = x2, which implies x3
0 = x2

1 = x3
2 = x2

3. Thus x0 = x2 = t2 and

x1 = x3 = ±t3 for some t ∈ Z.
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