Effective Methods for Diophantine Equations

Szabolcs Tengely

tengely@math.leidenuniv.nl

Leiden University

Runge-type Diophantine Equations

Runge's Condition

$$P(X,Y) = \sum_{i=0}^{m} \sum_{j=0}^{n} a_{i,j} X^{i} Y^{j}$$

Let $\lambda > 0$.

- ▶ λ -leading part of P, $P_{\lambda}(X,Y)$, is the sum of all terms $a_{i,j}X^{i}Y^{j}$ of P for which $i + \lambda j$ is maximal
- the leading part of P, denoted by $\tilde{P}(X,Y)$, is the sum of all monomials of P which appear in any P_{λ} as λ varies

P satisfies Runge's condition unless there exists a λ so that $\tilde{P}=P_{\lambda}$ is a constant multiple of a power of an irreducible polynomial in $\mathbb{Q}[X,Y]$

$$P(X,Y) = X^2 - Y^8 - Y^7 - Y^2 - 3Y + 5,$$

$$P(X,Y) = X^2 - Y^8 - Y^7 - Y^2 - 3Y + 5,$$

$$P_{\lambda}(X,Y) = X^2, \quad \lambda < \frac{1}{4}$$

$$P(X,Y) = X^2 - Y^8 - Y^7 - Y^2 - 3Y + 5,$$

- $P_{\lambda}(X,Y) = X^2, \quad \lambda < \frac{1}{4}$
- $P_{\lambda}(X,Y) = X^2 Y^8, \quad \lambda = \frac{1}{4}$

$$P(X,Y) = X^2 - Y^8 - Y^7 - Y^2 - 3Y + 5,$$

- $P_{\lambda}(X,Y) = X^2, \quad \lambda < \frac{1}{4}$
- $P_{\lambda}(X,Y) = X^2 Y^8, \quad \lambda = \frac{1}{4}$
- $P_{\lambda}(X,Y) = Y^8, \quad \lambda > \frac{1}{4}$

$$P(X,Y) = X^2 - Y^8 - Y^7 - Y^2 - 3Y + 5,$$

- $P_{\lambda}(X,Y) = X^2, \quad \lambda < \frac{1}{4}$
- $P_{\lambda}(X,Y) = X^2 Y^8, \quad \lambda = \frac{1}{4}$
- $P_{\lambda}(X,Y) = Y^8, \quad \lambda > \frac{1}{4}$
- thus $\tilde{P}(X,Y) = X^2 Y^8 = (X Y^4)(X + Y^4)$

Runge's theorem

Theorem (Runge,1887). If P satisfies Runge's condition, then the Diophantine equation P(x,y)=0 has only a finite number of integer solutions.

The case F(x) = G(y)

 $F,G\in\mathbb{Z}[X]$ are monic polynomials with $\deg F=n,\deg G=m,$ such that F(X)-G(Y) is irreducible in $\mathbb{Q}[X,Y]$ and $\gcd(n,m)>1.$ Let d>1 be a divisor of $\gcd(n,m).$

The case F(x) = G(y)

 $F,G\in\mathbb{Z}[X]$ are monic polynomials with $\deg F=n,\deg G=m,$ such that F(X)-G(Y) is irreducible in $\mathbb{Q}[X,Y]$ and $\gcd(n,m)>1.$ Let d>1 be a divisor of $\gcd(n,m).$ Runge's condition is satisfied.

The case F(x) = G(y)

 $F,G\in\mathbb{Z}[X]$ are monic polynomials with $\deg F=n,\deg G=m,$ such that F(X)-G(Y) is irreducible in $\mathbb{Q}[X,Y]$ and $\gcd(n,m)>1.$ Let d>1 be a divisor of $\gcd(n,m).$ Runge's condition is satisfied.

Theorem (Sz.T.). If $(x,y) \in \mathbb{Z}^2$ is a solution of F(x) = G(y) where F and G satisfy the above mentioned conditions then

$$\max\{|x|,|y|\} \le d^{\frac{2m^2}{d}-m}(m+1)^{\frac{3m}{2d}}(\frac{m}{d}+1)^{\frac{3m}{2}}(h+1)^{\frac{m^2+mn+m}{d}+2m},$$

where $h = \max\{H(F), H(G)\}$ and $H(\cdot)$ denotes the classical height, that is the maximal absolute value of the coefficients.

About the proof

Lemma (Walsh,1992). There exist Puiseux expansions (in this case even Laurent expansions)

$$u(X) = \sum_{i=-\frac{n}{d}}^{\infty} f_i X^{-i} \text{ and } v(X) = \sum_{i=-\frac{m}{d}}^{\infty} g_i X^{-i}$$

of the algebraic functions U,V defined by $U^d=F(X),V^d=G(X),$ such that

$$d^{2(n/d+i)-1}f_i \in \mathbb{Z} \text{ for all } i > -\frac{n}{d}, \text{ similarly } d^{2(m/d+i)-1}g_i \in \mathbb{Z} \text{ for all } i > -\frac{m}{d}, \text{ and } f_{-\frac{n}{d}} = g_{-\frac{m}{d}} = 1. \text{ Furthermore } |f_i| \leq (H(F)+1)^{\frac{n}{d}+i+1} \text{ for } i \geq -\frac{n}{d} \text{ and } |g_i| \leq (H(G)+1)^{\frac{m}{d}+i+1}$$

$$|f_i| \leq (H(F)+1)^{d+\ell+1}$$
 for $i \geq -rac{n}{d}$ and $|g_i| \leq (H(G)+1)^{d+\ell+1}$ for $i \geq -rac{m}{d}$.

$$F(X) = \left(\sum_{i=-\frac{n}{d}}^{\infty} f_i X^{-i}\right)^d, \quad G(Y) = \left(\sum_{i=-\frac{m}{d}}^{\infty} g_i Y^{-i}\right)^d,$$

if |t| is large enough then

$$\left|\sum_{i=1}^{\infty} d^{\frac{2m}{d}-1} f_i t^{-i}\right| < \frac{1}{2}$$

and

$$|\sum_{i=1}^{\infty} d^{\frac{2m}{d}-1} g_i t^{-i}| < \frac{1}{2}$$

$$F(x) = G(y) \text{ therefore } u(x)^d - v(y)^d = 0$$

$$(u(x) - v(y)) \left(u(x)^{d-1} + u(x)^{d-2} v(y) + \ldots + v(y)^{d-1} \right) = 0,$$
 if d is odd,
$$\left(u(x)^2 - v(y)^2 \right) \left(u(x)^{d-2} + u(x)^{d-4} v(y)^2 + \ldots + v(y)^{d-2} \right) = 0,$$

if d is even.

$$u(x) = v(y)$$
 if d is odd, and $u(x) = \pm v(y)$ if d is even.

We conclude that

$$0 = |u(x) \pm v(y)| = \left| \sum_{i=-\frac{n}{d}}^{\infty} f_i x^{-i} \pm \sum_{i=-\frac{m}{d}}^{\infty} g_i y^{-i} \right|.$$

If |x| and |y| are large enough, then

$$\left| \sum_{i=-\frac{n}{d}}^{0} d^{\frac{2m}{d}-1} f_i x^{-i} \pm \sum_{i=-\frac{m}{d}}^{0} d^{\frac{2m}{d}-1} g_i y^{-i} \right| < 1.$$

Hence *x* satisfies

$$Res_Y(F(X) - G(Y), Q(X, Y)) = 0$$

and y satisfies

$$Res_X(F(X) - G(Y), Q(X, Y)) = 0,$$

where

$$Q(x,y) := \sum_{i=0}^{\frac{n}{d}} d^{\frac{2m}{d}-1} f_{-i} x^i \pm \sum_{i=0}^{\frac{m}{d}} d^{\frac{2m}{d}-1} g_{-i} y^i = 0.$$

Algorithm

Let $u(X) = \sum_{i=-\frac{n}{p}}^{0} f_i X^{-i}$ and $v(X) = \sum_{i=-\frac{m}{p}}^{0} g_i X^{-i}$. Let t be a positive real number. Suppose that p is odd. Then we have

$$(u(x) - t)^p < F(x) < (u(x) + t)^p \text{ for } x \notin [x_t^-, x_t^+],$$

 $(v(y) - t)^p < G(y) < (v(y) + t)^p \text{ for } y \notin [y_t^-, y_t^+],$

where

$$\begin{split} x_t^- &= \min\{\{0\} \cup \\ \{x \in \mathbb{R} : F(x) - (u(x) - t)^p = 0 \text{ or } F(x) - (u(x) + t)^p = 0\}\}, \\ x_t^+ &= \max\{\{0\} \cup \\ \{x \in \mathbb{R} : F(x) - (u(x) - t)^p = 0 \text{ or } F(x) - (u(x) + t)^p = 0\}\}. \end{split}$$

We have

$$u(x) - t < F(x)^{1/p} < u(x) + t \text{ for } x \notin [x_t^-, x_t^+],$$

 $v(y) - t < G(y)^{1/p} < v(y) + t \text{ for } y \notin [y_t^-, y_t^+],$

hence

$$|u(x) - v(y)| < 2t.$$

Hence x is a solution of $\mathrm{Res}_Y(F(X)-G(Y),u(X)-v(Y)-T)$ for some rational number -2t < T < 2t with denominator dividing $p^{\frac{2m}{p}-1}$.

 $F(x) = G(k) \text{ for some } k \in [y_t^-, y_t^+],$ $G(y) = F(k) \text{ for some } k \in [x_t^-, x_t^+],$ $\operatorname{Res}_Y(F(X) - G(Y), u(X) - v(Y) - T) = 0 \text{ for some } T \in \mathbb{Q}, |T| < 2t \text{ with denominator dividing } D.$

The number of equations to be solved depends on t, a good choice can reduce the time of the computation. We let $t = \frac{1}{2D}$. In this way if $x \notin [x_t^-, x_t^+], y \notin [y_t^-, y_t^+]$, we have that

$$-1 < D(u(x) \pm v(y)) < 1.$$

Since $D(u(x)\pm v(y))$ is an integer the only possibility is $u(x)\pm v(y)=0$. In this case there is only one resultant equation to be solved if p is odd and two if p=2.

We apply the method to the Diophantine equation F(x) = G(y), where

$$F(x) = x^3 - 5x^2 + 45x - 713,$$

$$G(y) = y^9 - 3y^8 + 9y^7 - 17y^6 + 38y^5 - 199y^4 - 261y^3 + 789y^2 + 234y.$$

We obtain that

$$u(X) = X - \frac{5}{3},$$

 $v(Y) = Y^3 - Y^2 + 2Y - \frac{4}{3}.$

t	#equations	$[x_t^-, x_t^+, y_t^-, y_t^+]$
1/6	177	[-86, 45, -32, 11]
1/3	95	[-48, 15, -18, 9]
2/3	67	[-27, 13, -10, 8]
4/3	52	[-16, 11, -2, 6]

Res_Y
$$(F(X) - G(Y), u(X) - v(Y) - k) = 0,$$

for $k \in \{-7, ..., 7\},$
 $G(y) = F(x),$ for $x \in \{-16, ..., 11\},$
 $F(x) = G(y),$ for $y \in \{-2, ..., 6\},$

The Diophantine equation $x^2 + q^{2m} = 2y^p$

Consider the Diophantine equation

$$x^2 + q^{2m} = 2y^p,$$

where $x,y\in\mathbb{N}$ with $\gcd(x,y)=1,m\in\mathbb{N}$ and p,q are odd primes and \mathbb{N} denotes the set of positive integers. The case m=0 was solved by Cohn in 1996.

Theorem (Sz.T.). There are only finitely many solutions (x,y,m,q,p) of $x^2+q^{2m}=2y^p$ with $\gcd(x,y)=1, x,y\in\mathbb{N}$, such that y is not of the form $2v^2\pm 2v+1, m\in\mathbb{N}$ and p>3,q odd primes.

Be careful examples

y	p	q
5	13	42641
5	29	1811852719
5	97	2299357537036323025594528471766399
13	7	11003
13	13	13394159
25	11	69049993
25	47	378293055860522027254001604922967
41	31	4010333845016060415260441

Solutions with small q^m

Lemma (Sz.T.). Let q be an odd prime and $m \in \mathbb{N}$ such that $3 \le q^m \le 501$. If there exist $(x,y) \in \mathbb{N}^2$ with $\gcd(x,y) = 1$ and an odd prime p such that $x^2 + q^{2m} = 2y^p$ holds, then

```
(x, y, q, m, p) \in \{(3, 5, 79, 1, 5), (9, 5, 13, 1, 3), (55, 13, 37, 1, 3), (79, 5, 3, 1, 5), (99, 17, 5, 1, 3), (161, 25, 73, 1, 3), (249, 5, 307, 1, 7), (351, 41, 11, 2, 3), (545, 53, 3, 3, 3), (649, 61, 181, 1, 3), (1665, 113, 337, 1, 3), (2431, 145, 433, 1, 3), (5291, 241, 19, 1, 3), (275561, 3361, 71, 1, 3)\}.
```

$\mathbb{Z}[i]$ is a unique factorization domain.

$$x = \Re((1+i)(u+iv)^p) =: F_p(u,v),$$
$$q^m = \Im((1+i)(u+iv)^p) =: G_p(u,v).$$

Lemma (Sz.T.). We have

$$(u - \delta_4 v) \mid F_p(u, v),$$

$$(u + \delta_4 v) \mid G_p(u, v),$$

where

$$\delta_4 = \begin{cases} 1 \text{ if } p \equiv 1 \pmod{4}, \\ -1 \text{ if } p \equiv 3 \pmod{4}. \end{cases}$$

Either

$$u + \delta_4 v = q^k,$$
$$H_p(u, v) = q^{m-k},$$

or

$$u + \delta_4 v = -q^k,$$

$$H_p(u, v) = -q^{m-k},$$

where $H_p(u,v) = \frac{G_p(u,v)}{u+\delta_4 v}$ and $0 \le k \le m$.

Lemma (Mignotte,2001). Let α be a complex algebraic number with $|\alpha|=1$, but not a root of unity, and $\log \alpha$ the principal value of the logarithm. Put $D=[\mathbb{Q}(\alpha):\mathbb{Q}]/2$. Consider the linear form

$$\Lambda = b_1 i\pi - b_2 \log \alpha,$$

where b_1, b_2 are positive integers. Let λ be a real number satisfying $1.8 \le \lambda < 4$, and put

$$\rho = e^{\lambda}, \quad K = 0.5\rho\pi + Dh(\alpha), \quad B = \max(13, b_1, b_2),$$

$$t = \frac{1}{6\pi\rho} - \frac{1}{48\pi\rho(1 + 2\pi\rho/3\lambda)}, \quad T = \left(\frac{1/3 + \sqrt{1/9 + 2\lambda t}}{\lambda}\right)^2,$$

$$H = \max\left\{3\lambda, D\left(\log B + \log\left(\frac{1}{\pi\rho} + \frac{1}{2K}\right) - \log\sqrt{T} + 0.886\right) + \frac{3\lambda}{2} + \frac{1}{T}\left(\frac{1}{6\rho\pi} + \frac{1}{3K}\right) + 0.023\right\}.$$

Then

$$\log |\Lambda| > -(8\pi T\rho\lambda^{-1}H^2 + 0.23)K - 2H - 2\log H + 0.5\lambda + 2\log \lambda - (D+2)\log 2.$$

Bound for p

Theorem (Sz.T.). If the equation $x^2 + q^{2m} = 2y^p$ admits a relatively prime solution $(x,y) \in \mathbb{N}^2$ then we have

$$p \le 3803$$
 if $u + \delta_4 v = \pm q^m, q^m \ge 503,$
 $p \le 3089$ if $p = q,$
 $p \le 1309$ if $u + \delta_4 v = \pm q^m, m \ge 40,$
 $p \le 1093$ if $u + \delta_4 v = \pm q^m, m \ge 100,$
 $p \le 1009$ if $u + \delta_4 v = \pm q^m, m \ge 250.$

Without loss of generality we assume that p > 1000 and $q^m \ge 503$. Proof in the case $u + \delta_4 v = \pm q^m, q^m \ge 503$. From $u + \delta_4 v = \pm q^m$ we get

$$\frac{503}{2} \le \frac{q^m}{2} \le \frac{|u| + |v|}{2} \le \sqrt{\frac{u^2 + v^2}{2}} = \sqrt{\frac{y}{2}},$$

which yields that $y \ge \frac{q^{2m}}{2} > 126504$.

e have

$$\left| \frac{x + q^m i}{x - q^m i} - 1 \right| = \frac{2 \cdot q^m}{\sqrt{x^2 + q^{2m}}} \le \frac{2\sqrt{y}}{y^{p/2}} = \frac{2}{y^{\frac{p-1}{2}}}.$$

and

$$\frac{x + q^m i}{x - q^m i} = \frac{(1+i)(u+iv)^p}{(1-i)(u-iv)^p} = i\left(\frac{u+iv}{u-iv}\right)^p.$$

Lemma (Sz.T.). The polynomial $H_p(\pm q^k - \delta_4 v, v)$ has degree p-1 and

$$H_p(\pm q^k - \delta_4 v, v) = \pm \delta_8 2^{\frac{p-1}{2}} p v^{p-1} + q^k p \widehat{H}_p(v) + q^{k(p-1)},$$

where $\widehat{H}_p \in \mathbb{Z}[X]$ has degree < p-1. The polynomial $H_p(X,1) \in \mathbb{Z}[X]$ is irreducible and

$$H_p(X,1) = \prod_{\substack{k=0\\k\neq k_0}}^{p-1} \left(X - \tan\frac{(4k+3)\pi}{4p} \right),$$

where $k_0 = \left\lceil \frac{p}{4} \right\rceil (p \mod 4)$.

Lemma (Sz.T.). If there exists a $k \in \{0, 1, \dots, m\}$ such that

$$u + \delta_4 v = q^k,$$
$$H_p(u, v) = q^{m-k},$$

or

$$u + \delta_4 v = -q^k,$$
$$H_p(u, v) = -q^{m-k},$$

has a solution $(u,v) \in \mathbb{Z}^2$ with $\gcd(u,v)=1$, then either k=0 or $k=m, p \neq q$ or (k=m-1, p=q).

We have that k = 0, m - 1 or k = m.

We have that k = 0, m - 1 or k = m.

• If k = 0, then $u + \delta_4 v = \pm 1$ and $y = 2v^2 \pm 2v + 1$.

We have that k = 0, m - 1 or k = m.

- If k = 0, then $u + \delta_4 v = \pm 1$ and $y = 2v^2 \pm 2v + 1$.
- If k = m 1, then p = q and we have p < 3089. We recall that $H_p(u, v)$ is an irreducible polynomial of degree p 1. Thus we have only finitely many Thue equations

$$H_p(u,v) = \pm p.$$

We have that k = 0, m - 1 or k = m.

- If k = 0, then $u + \delta_4 v = \pm 1$ and $y = 2v^2 \pm 2v + 1$.
- If k = m 1, then p = q and we have p < 3089. We recall that $H_p(u, v)$ is an irreducible polynomial of degree p 1. Thus we have only finitely many Thue equations

$$H_p(u,v) = \pm p.$$

Let k=m. Here we have $u+\delta_4v=\pm q^m$ and $H_p(\pm q^m-\delta_4v,v)=\pm 1$. If $q^m\leq 501$ then there are only finitely many solutions. We have computed an upper bound for p when $q^m\geq 503$. This leads to finitely many Thue equations

$$H_p(u,v) = \pm 1.$$

Fixed y

Theorem (Sz.T.). The only solution (m,p,q,x) in positive integers m,p,q,x with p and q odd primes of the equation $x^2+q^{2m}=2\cdot 17^p$ is (1,3,5,99).

Proof. Note that 17 is not of the form $2v^2 \pm 2v + 1$. From $y = u^2 + v^2$ we obtain that q is 3 or 5 and m = 1. This implies that 17 does not divide x. We are left with the equations

$$x^{2} + 3^{2} = 2 \cdot 17^{p},$$
$$x^{2} + 5^{2} = 2 \cdot 17^{p}.$$

We saw that there is no solution with q=3, m=1, y=17 and the only solution in case of the second equation is (x,y,q,m,p)=(99,17,5,1,3).

Fixed q

Theorem (Sz.T.). If the Diophantine equation $x^2 + 3^m = 2y^p$ with m > 0 and p prime admits a coprime integer solution (x, y), then either

$$p \in \{3, 59, 83, 107, 179, 227, 347, 419, 443, 467, 563, 587, 659, 683, 827, 947\}$$

or
$$(x, y, m, p) = (79, 5, 2, 5)$$
.

Mixed powers in arithmetic progressions

Let $x_0^3, x_1^2, x_2^3, x_3^2$ be consecutive terms of an arithmetic progression. We have

$$x_1^2 = \frac{x_0^3 + x_2^3}{2},$$

$$x_3^2 = \frac{-x_0^3 + 3x_2^3}{2}.$$

We note that $x_2 = 0$ implies $x_0 = x_1 = x_2 = x_3 = 0$. Assume $x_2 \neq 0$. Then we obtain that

$$\left(\frac{2x_1x_3}{x_2^3}\right)^2 = -\left(\frac{x_0}{x_2}\right)^6 + 2\left(\frac{x_0}{x_2}\right)^3 + 3.$$

Theorem. Let C be the curve given by

$$Y^2 = -X^6 + 2X^3 + 3.$$

Then $C(\mathbb{Q}) = \{(-1,0), (1,\pm 2)\}.$

Corollary. If $x_0^3, x_1^2, x_2^3, x_3^2$ are consecutive terms of an arithmetic progression, then $(x_0, x_1, x_2, x_3) \in \{(-2t^2, 0, 2t^2, \pm 4t^3), (t^2, \pm t^3, t^2, \pm t^3)\}$ for some $t \in \mathbb{Z}$.

Proof. The point (-1,0) is on the curve $Y^2=-X^6+2X^3+3$, hence $\frac{x_0}{x_2}=-1$ and $2x_1x_3=0$. It easily follows that $x_0=-2t^2, x_1=0, x_2=2t^2, x_3=\pm 4t^3$ is the only possible solution of the problem. In case of the other two points $(1,\pm 2)$ we have $x_0=x_2$, which implies $x_0^3=x_1^2=x_2^3=x_3^2$. Thus $x_0=x_2=t^2$ and $x_1=x_3=\pm t^3$ for some $t\in\mathbb{Z}$.