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Runge-type Diophantine Equations
- -

Runge’s Condition
m n . .
P(X,Y)=> " a;; XY
=0 j=0

]

Let A > 0.

# )\—leading part of P, P,(X,Y), Is the sum of all terms
a; ; X'Y7 of P for which i + \j is maximal

» the leading part of P, denoted by P(X,Y), is the sum of
all monomials of P which appear in any P, as )\ varies

P satisfies Runge’s condition unless there exists a A\ so that
P = P, is a constant multiple of a power of an irreducible

Lpolynomial in Q[X,Y] J
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Example

o N
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Example

o N

P(X,)Y)=X?—-Y®—Y"—Y?_-3Y +5,
® P(X,)Y)=X% A<1
® P(X,)Y)=X*-Y® A=
® P(X,)Y)=Y8 A>1

N



© o o o

Example

thus P(X,Y)=X2 Y8 = (X —YH(X +YV*%

-

|
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Runge’s theorem

o N

Theorem (Runge,1887). If P satisfies Runge’s condition, then the
Diophantine equation P(x,y) = 0 has only a finite number of integer
solutions.

o |
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The case F(x) = G(y)

o N

F,G € Z[X| are monic polynomials with

deg I' = n,deg G = m, such that F(X) — G(Y) Is irreducible
In Q[.X, Y] and ged(n,m) > 1. Let d > 1 be a divisor of
ged(n, m).

o |
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The case F(x) = G(y)

o N

F,G € Z[X| are monic polynomials with

deg I' = n,deg G = m, such that F(X) — G(Y) Is irreducible
In Q[.X, Y] and ged(n,m) > 1. Let d > 1 be a divisor of
ged(n, m). Runge’s condition is satisfied.

o |
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-

The case F(x) = G(y)
-

F,G € Z|X| are monic polynomials with

deg I' = n,deg G = m, such that F(X) — G(Y) Is irreducible

In Q[.X, Y] and ged(n,m) > 1. Let d > 1 be a divisor of

ged(n, m). Runge’s condition is satisfied.

Theorem (Sz.T.). If (z,y) € Z? is a solution of F'(z) = G(y) where F

and (G satisfy the above mentioned conditions then
m2 3m m 3m

max{|z, [yl} < d & "(m+1)% (= +1)

m2—|—mn—|—m _|_2m

(1)

where h = max{H (F), H(G)} and H (-) denotes the classical height,
that is the maximal absolute value of the coefficients.

|
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About the proof

o N

Lemma (Walsh,1992). There exist Puiseux expansions (in this case
even Laurent expansions)

of the algebraic functions U, V defined by U¢ = F(X), V¢ = G(X),

such thaﬁ |

2/d+)=1r e 7 foralli > —2 similarly d2(m/dt1) =1y c 7 for all
d g

1> —"7,and f_» = g_m = 1. Furthermore

fil < (H(F)+1)a"* fori > — and |g;| < (H(G) +1)a+H

fors > —*7.

o |
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d
F(X) = ('Z fixi) G(Y)

if |¢| IS large enough then

2m . 1
dd 1 —’L < =
yz <1
and

2m ‘ 1
dd 1 40 < =
) <)

22222222222222222



-

(u(x) —v(y)) (U(ﬂf)d_1 +u(x)Po(y) + ...+ v(y)d_l) =0,
If d Is odd,
(u(2)? = v(y)?) (U(:L“)d_2 +u(z)o(y) + ..+ v(y)d_z) =0,

If d IS even.

F(z) = G(y) therefore u(z)? — v(y)? = 0

u(x) = v(y) If d 1s odd, and
u(x) = tv(y) If d is even.



-

We conclude that

0= [u(x) £o(y)| = | D fir T E Y g,

Z da g+ Z da gy < 1.

o |
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Hence x satisfies
Resy (F(X) - G(Y),Q(X,Y)) =0

and y satisfies

Resx (F(X) - G(Y),Q(X,Y)) =0,
where
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Algorithm

Letu(X) =3 . fiX"andv(X) =3 . gX " Lettbe

p

a positive real number. Suppose that p is odd. Then we
have

— )P < F(x) < (u(z) +t)P for x ¢ [ZC;,Q?;_],
(v(y) — )P < G(y) < (v(y) + )P fory ¢ [y, ],
where

z; = min{{0} U
{reR: F(x)— (u(x) —t)P =00r F(x) — (u(x) +t)P =0}},
z; = max{{0} U
{reR: F(x)— (u(x) —t)P =00r F(x) — (u(x) +t) =0}}.
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o N

We have
w(z) —t < F(2)Y?P < u(x)+tforz ¢ [z],x/f],
v(y) —t <GP <v(y) +tfory ¢ [y, v,

hence
lu(x) —v(y)| < 2t.

Hence z is a solution of Resy (F(X) —G(Y),u(X)—v(Y)-T)
for some rational number -2t < T < 2t with denominator

dividing p 7+ !

o |
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F(x) = G(k) forsome k € [y, ,y; ],

G(y) = F (k) for some k € [z}, z/],

Resy (F(X)—-GY),u(X)—v(Y)—T) =0 for some
T € Q,|T| < 2t with denominator dividing D.

|
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o .

The number of equations to be solved depends on ¢, a goo
choice can reduce the time of the computation. We let

t = 55. Inthisway if » ¢ [z, , 2],y € [y; , y,'], we have that
—1 < D(u(x) £v(y)) < 1.
Since D(u(x)+v(y)) Is an integer the only possibility Is u(x)+

v(y) = 0. In this case there is only one resultant equation to

be solved if p iIs odd and two if p = 2.

o |
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Example

o N

We apply the method to the Diophantine equation
F(x) = G(y), where

F(x) = 23 — ba? + 452 — 713,

G(y) = y?—3y%+9y" —17y0+38y°> —199y* — 261y +789y% +234y.
We obtain that
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#equations | [z}, 27,y .y

1/6 177 [-86, 45, -32, 11 ]
1/3 95 [-48, 15, -18, 9]
2/3 67 [-27, 13, -10, 8]
4/3 52 [-16, 11, -2, 6]
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The Diophantine equation 22 + ¢*" = 2y”
o N

Consider the Diophantine eguation

where z,y € N with ged(z,y) = 1,m € N and p, ¢ are odd
primes and N denotes the set of positive integers. The case
m = 0 was solved by Cohn in 1996.

Theorem (Sz.T.). There are only finitely many solutions (x,y, m, q, p)
of 22 + ¢*™ = 2yP with ged(x,y) = 1,2,y € N, such that ¥ is not of
the form 202 £ 2v + 1, m € Nand p > 3, g odd primes.

o |
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Be careful examples

y | p q

5 | 13 42641

5 | 29 1811852719

5 | 97 | 2299357537036323025594528471766399
13| 7 11003

13 | 13 13394159

25| 11 69049993

25 | 47 | 378293055860522027254001604922967
41 | 31 4010333845016060415260441

|
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Solutions with small ¢

o N

Lemma (Sz.T.). Let g be an odd prime and m € N such that
3 < ¢™ < 501. If there exist (z, y) € N? with gcd(x,y) = 1 and an
odd prime p such that 2 + ¢** = 2y” holds, then

(z,y,¢,m,p) € {(3,5,79,1,5),(9,5,13,1,3), (55,13,37,1,3),
(79,5,3,1,5),(99,17,5,1,3), (161, 25,73, 1, 3),

(249, 5,307,1,7), (351,41,11, 2, 3), (545, 53, 3, 3, 3),
(649,61,181,1,3), (1665, 113,337,1, 3), (2431, 145, 433, 1, 3),
(5291,241, 19,1, 3), (275561, 3361, 71,1, 3) }.

o |
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Z|i] Is a unique factorization domain.

r=R((1+7)(u+w)’) = Fy
q" =S((1+9)(u+iw)P) = Gy

Lemma (Sz.T.). We have

(u—b0) | Fplu,v)
(ut610) | Gplu.v)

where

5 lifp=1 (mod 4),
e —1lifp=3 (mod 4).

U, U
U, U

)
)

)

|
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fEither T

U+ 54?} — qka
Hp(uv U) — qm—k7

or
u—+ 040 = —q",
Hyp(u,v) = —¢™ ",
where Hy,(u,v) = % and 0 < k£ <m.

o |
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Lemma (Mignotte,2001). Let ox be a complex algebraic number with |a| = 1, but not a root of unity, and

log « the principal value of the logarithm. Put D = [Q(«) : Q] /2. Consider the linear form
A = brim — ba log «,
where b1, b2 are positive integers. Let A be a real number satisfying 1.8 < A < 4, and put

p = €>\, K = O5P7T + Dh(O{), B = maX(137b17b2)7
2
1 1 - (1/3+\/1/9+2>\t>

t=_—— — ,
6mp  48mp(l + 2mp/3N) A

11
H= max{?))\,D log B+1log [ — + — ) — log VT + 0.886 | +
mp 2K

+3/\+1<1 + 1)+0023}
2 T \6pr 3K ' '

Then
log |A| > —(87TpA~ H? +0.23)K — 2H — 2log H + 0.5\ + 2log A — (D + 2) log 2.
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Bound for p

Theorem (Sz.T.). If the equation 2> + ¢°™ = 2yP admits a relatively
prime solution (z, ) € N? then we have

p < 3803 ifu + dqv = £¢™, ¢™ > 503,
p < 3089ifp = g,

p <1309 if u + dqv = £¢™, m > 40,
p <1093 ifu + dgv = +¢™, m > 100,
p < 1009 if u + dqv = £¢", m > 250.

|
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o N

Without loss of generality we assume that p > 1000 and
q¢"™ > 503. Proof In the case u + d4v = £4¢™, ¢ > 503. From
u+ 04v = ¢ we get

m 2 2
503 P u| 4 |v| - \/u +o® y)
-2 T 2 - 2 2

which yields that y > £~ > 126504.

o |
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and
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Lemma (Sz.T.). The polynomial Hp(:lzqk — 040, v) has degree p — 1
and

p—1 ~
Hy(£q" — 64v,v) = £652°7 po?~ ! + ¢FpH,(v) + "1,

where ﬁ]p € 7Z|X] has degree < p — 1. The polynomial
H,(X,1) € Z|X] is irreducible and

Hy(X,1) = pﬁ (X "~ tam (4k+3>w> |

k=0 ip
kko

where ko = |2] (p mod 4).

o |
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Lemma (Sz.T.). If there exists a k € {0, 1,...,m} such that
u~+ 040 = q",
—k
Hp(ua U) — qm )
or

u+ 040 = —q",
Hp(uvv) — _qm—k7

has a solution (v, v) € Z? with gcd(u, v) = 1, then either & = 0 or
k=m,p#qor(k=m—1,p=q).

o |
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Proof of the finiteness result

o N

We have that ks =0,m —1or k =m.



Proof of the finiteness result

o N

We have that ks =0,m —1or k =m.
® If k=0, thenu+dv ==+1and y =20° + 20 + 1.



Proof of the finiteness result

fWehzalvethat/~c:(),m—1or/~c:m. T

® If k=0, thenu+dv ==+1and y =20° + 20 + 1.

® Ifk=m—1, then p = ¢ and we have p < 3089. We recall
that H,(u,v) Is an irreducible polynomial of degree p — 1.
Thus we have only finitely many Thue equations

Hpy(u,v) = £p.

o |
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Proof of the finiteness result
L -

We have that ks =0,m —1or k =m.
® If k=0, thenu+dv ==+1and y =20° + 20 + 1.

® Ifk=m—1, then p = ¢ and we have p < 3089. We recall
that H,(u,v) Is an irreducible polynomial of degree p — 1.
Thus we have only finitely many Thue equations

Hy(u,v) = £p.

® Let £ =m. Here we have u + d4v = ¢ and
H,y(£q™ — dqv,v) = £1. If ¢™ < 501 then there are only

finitely many solutions. We have computed an upper
bound for p when ¢ > 503. This leads to finitely many
Thue equations

\— Hy(u,v) = £1. J
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Fixed y
-

Theorem (Sz.T.). The only solution (m, p, g, x) in positive integers

m, p, q, x with p and ¢ odd primes of the equation 2> + ¢°™ = 2 - 177
is (1,3,5,99).

Proof. Note that 17 is not of the form 2v? £ 2v + 1. From y = u? + v
we obtain that ¢ is 3 or 5 and m = 1. This implies that 17 does not
divide x. We are left with the equations

2432 =217
72 +52=2.17P.

We saw that there is no solution with ¢ = 3, m = 1,y = 17 and the
only solution in case of the second equation is

(x,y,q,m,p) = (99,17,5,1,3). ]

o |
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Fixed q

Theorem (Sz.T.). If the Diophantine equation x> + 3™ = 2yP with T
m > 0 and p prime admits a coprime integer solution (z, ), then either

p € {3,59,83,107, 179, 227, 347, 419,
143, 467, 563, 587, 659, 683, 827, 947}

or (z,y,m,p) = (79,5,2,5).

|
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Mixed powers In arithmetic progressions

o N

Let 23, 2%, x5, ¥5 be consecutive terms of an arithmetic
progression. We have

2_$%+£
371— ,

2
0 —x%—l—Sx%
373— 2 .

We note that 2o = 0 iImplies zg = x1 = 9 = x3 = 0. Assume
ro # 0. Then we obtain that

2017 2 2o\ ° 20\ >
() () ()
Ty T2 L2

o |
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Theorem. Let C be the curve given by

Y2 =_X6192x3 13,

Then C(Q) = {(—1,0), (1,42)}.

Corollary. If xy, x7, x5, T3 are consecutive terms of an arithmetic progression, then

(xo,x1,T2,23) € {(—2t2,0,2t2, £4¢t3), (¢t2, £t3,t2, £t3)} for some t € Z.

Proof. The point (—1,0) is on the curve Y2 =—-X4+2X3+3,

hence 22 = —1 and 2z123 = 0. It easily follows that

o = —2t%, 11 = 0, 19 = 2t%, x3 = +4¢3 is the only possible solution
of the problem. In case of the other two points (1, +-2) we have

xo = X2, which implies :1:8 = :13% = :z:% = :z:% Thus 29 = 29 = t* and
r1 = w3 = +t3 for some t € Z. ]

o |
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