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Abstract. In this paper, we study the Diophantine equation x2 + C = 4yn

in nonnegative integers x, y, n ≥ 3 with x and y coprime for various shapes of

the positive integer C.

1. Introduction

The Diophantine equation

(1.1) x2 + C = yn, x ≥ 1, y ≥ 1, n ≥ 3

in integers x, y, n once C is given has a rich history. In 1850, Lebesgue [24] proved
that the above equation has no solutions when C = 1. In 1965, Chao Ko [21] proved
that the only solution of the above equation with C = −1 is x = 3, y = 2. J.H.E.
Cohn [19] solved the above equation for several values of the parameter C in the
range 1 ≤ C ≤ 100. A couple of the remaining values of C in the above range were
covered by Mignotte and De Weger in [29], and the remaining ones in the recent
paper [17]. In [34], all solutions of the similar looking equation x2 +C = 2yn, where
n ≥ 2, x and y are coprime, and C = B2 with B ∈ {3, 4, . . . , 501} were found.

Recently, several authors become interested in the case when only the prime
factors of C are specified. For example, the case when C = pk with a fixed prime
number p was dealt with in [13] and [23] for p = 2, in [11], [12] and [25] for
p = 3, and in [10] for p = 5 and k odd. Partial results for a general prime p
appear in [8] and [22]. All the solutions when C = 2a3b were found in [26], and
when C = paqb where {p, q} ⊂ {2, 5, 13}, were found in the sequence of papers
[3], [27] and [28]. For an analysis of the case C = 2α 3β 5γ 7δ, see [32]. The same
Diophantine equation with C = 2α 5β 13γ was dealt with in [20]. The Diophantine
equation x2 + C = 2yn was studied in the recent paper [2] for the families of
parameters C ∈ {17a, 5a113a2 , 3a111a2}. See also [9], [33], as well as the recent
survey [4] for further results on equations of this type.

In this paper, we consider the Diophantine equation

(1.2) x2 + C = 4yn, x ≥ 1, y ≥ 1, gcd(x, y) = 1, n ≥ 3, C ≥ 1.

We have the following results.

Theorem 1.1. The only integer solutions (C, n, x, y) of the Diophantine equation
(1.3)
x2 + C = 4yn, x, y ≥ 1, gcd(x, y) = 1, n ≥ 3, C ≡ 3 mod 4, 1 ≤ C ≤ 100

are given in the following table:
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(3, n, 1, 1) (3, 3, 37, 7) (7, 3, 5, 2) (7, 5, 11, 2)
(7, 13, 181, 2) (11, 5, 31, 3) (15, 4, 7, 2) (19, 7, 559, 5)
(23, 3, 3, 2) (23, 3, 29, 6) (23, 3, 45, 8) (23, 3, 83, 12)

(23, 3, 7251, 236) (23, 9, 45, 2) (31, 3, 1, 2) (31, 3, 15, 4)
(31, 3, 63, 10) (31, 3, 3313, 140) (31, 6, 15, 2) (35, 4, 17, 3)
(39, 4, 5, 2) (47, 5, 9, 2) (55, 4, 3, 2) (59, 3, 7, 3)
(59, 3, 21, 5) (59, 3, 525, 41) (59, 3, 28735, 591) (63, 4, 1, 2)
(63, 4, 31, 4) (63, 8, 31, 2) (71, 3, 235, 24) (71, 7, 21, 2)

(79, 3, 265, 26) (79, 5, 7, 2) (83, 3, 5, 3) (83, 3, 3785, 153)
(87, 3, 13, 4) (87, 3, 1651, 88) (87, 6, 13, 2) (99, 4, 49, 5)

Table 1. Solutions for 1 ≤ C ≤ 100.

Theorem 1.2. • The only integer solutions of the Diophantine equation

(1.4) x2 + 7a · 11b = 4yn, x, y ≥ 1, gcd(x, y) = 1, n ≥ 3, a, b ≥ 0

are:
52 + 71 · 110 = 4 · 23, 112 + 71 · 110 = 4 · 25, 312 + 70 · 111 = 4 · 35,
572 + 71 · 112 = 4 · 45, 132 + 73 · 110 = 4 · 27, 572 + 71 · 112 = 4 · 210

1812 + 71 · 110 = 4 · 213.

• The only integer solutions of the Diophantine equation

(1.5) x2 + 7a · 13b = 4yn, x, y ≥ 1, gcd(x, y) = 1, n ≥ 3, a, b ≥ 0

are:
52 + 71 · 130 = 4 · 23, 53716552 + 73 · 132 = 4 · 193223, 112 + 71 · 130 = 4 · 25,
132 + 73 · 130 = 4 · 27, 872 + 73 · 132 = 4 · 47, 1812 + 71 · 130 = 4 · 213,
872 + 73 · 132 = 4 · 214.

The plan of the paper is the following. In Section 2, we prove an important
result using the theory of primitive divisors for Lucas sequences that will turn
out to be very useful for the rest of the paper. We then find all the solutions of
equation (1.2) for 1 ≤ C ≤ 100 and C ≡ 3 mod 4 in Section 3. In fact, using
the results from Section 2, for each positive C ≤ 100 with C ≡ 3 mod 4, we
transform equation (1.2) into several elliptic curves that we solve using MAGMA
except for the values C = 47, 71, 79 for which a class number issue appears. For
these remaining cases, we transform equation (1.2) into Thue equations that we
solve with PARI/GP. In the last section, we study equations (1.4) and (1.5). We
note that reducing (1.4) modulo 4 we get that a + b is odd and reducing (1.5)
modulo 4 we have that a is odd. We will use these facts in the computations. For
n = 3, 4, we turn these equations into elliptic curves on which we need to compute
S-integer points for some small finite sets S of places of Q. These computations are
done with MAGMA. For the remaining values of n, we use the theory of Section 2.

2. Auxiliary results

Clearly, if (x, y, C, n) is a solution of the Diophantine equation (1.2) and d ≥ 3
is any divisor of n, then (x, yn/d, C, d) is also a solution of equation (1.2). Since
n ≥ 3, it follows that n either has an odd prime divisor d, or n is a multiple of
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d = 4. We replace n by d and from now on we assume that n is either 4 or an odd
prime.

Let α and β be distinct numbers such that α + β = r and αβ = s are coprime
nonzero integers. We assume that α/β is not a root of 1, which amounts to (r, s) 6=
(1,−1), (−1,−1). We write ∆ = (α− β)2 = r2 − 4s. The Lucas sequence of roots
α, β is the sequence of general term

um =
αm − βm

α− β
for all m ≥ 0.

Given m > 3, a primitive prime factor of um is a prime p such that p | um but
p - ∆

∏
1≤k≤m−1 uk. Whenever it exists, it is odd and it has the property that

p ≡ ±1 (mod m). More precisely, p ≡
(

∆
p

)
(mod m), where, as usual,

(
a

p

)
stands for the Legendre symbol of a with respect to p. The Primitive Divisor
Theorem asserts that if m 6∈ {1, 2, 3, 4, 6}, then um always has a primitive divisor
except for a finite list of triples (α, β,m), all of which are known (see [1] and [15]).
One of our work-horses is the following result whose proof is based on the Primitive
Divisor Theorem.

Lemma 2.1. Let C be a positive integer satisfying C ≡ 3 mod 4, which we write
as C = cd2, where c is square-free. Suppose that (x, y, C, n) is a solution to the
equation (1.2), where n ≥ 5 is prime. Let α = (x+ i

√
cd)/2, β = (x− i

√
cd)/2 and

let K = Q[α]. Then one of the following holds:
(i) n divides the class number of K.
(ii) There exist complex conjugated algebraic integers u and v in K such that

the nth term of the Lucas sequence with roots u and v has no primitive
divisors.

(iii) There exists a prime q | d not dividing c such that q ≡
(
c

q

)
(mod n).

Proof. The proof is immediate. Write (1.2) as(
x+ i

√
cd

2

)(
x− i

√
cd

2

)
= yn.

Note that since C ≡ 3 (mod 4), it follows that the two numbers α and β appearing
in the left hand side of the above inequality are algebraic integers. Their sum is
x and their product implies x2 + C = 4yn, and these two integers are coprime.
Passing to the level of ideals in K, we get that the product of the two coprime
ideals 〈α〉 and 〈β〉 is an nth power of an ideal in OK. Here, for γ ∈ OK we write 〈γ〉
for the principal ideal γOK generated by γ in OK. By unique factorization at the
level of ideals, we get that both 〈α〉 and 〈β〉 are nth powers of some other ideals.
Unless (i) happens, both 〈α〉 and 〈β〉 are powers of some principal ideals. Write

〈α〉 = 〈u〉n = 〈un〉 for some u ∈ OK.

Passing to the levels of elements, we get that α and un are associated. Since K is
a complex quadratic field, the group of units in OK is finite of orders 2, 4 or 6, all
coprime to n. Thus, by replacing u with a suitable associate, we get that α = un.
Conjugating, we get β = vn, where v = u. Thus,

un − vn = α− β = i
√
cd.
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Now clearly, u− v = i
√
cd1 for some integer d1. Thus,

un − vn

u− v
=

d

d1
| d.

The left hand side is the nth term of a Lucas sequence. Unless (ii) happens for this
sequence, the left hand side above has a primitive divisor as a Lucas sequence. This
primitive divisor q does not divide cd1 (since c is a divisor of ∆ = (u−v)2 = cd2

1). It

clearly must divide d and it satisfies q ≡
(
c

q

)
(mod n), which is precisely (iii). �

3. Proof of Theorem 1.1

• First, we suppose that n = 3. Then for each positive integer C ≤ 100 which is
congruent to 3 mod 4, equation (1.2) becomes

(3.1) Y 2 = X3 + C1,

where X = 4y, Y = 4x, C1 = −16C. We use the MAGMA function
IntegralPoints to find all the solutions in Table 1 with n = 3.

• Secondly, we suppose that n = 4. Then for each positive integer C ≤ 100 which
is congruent to 3 mod 4 we solve equation (1.2) using the MAGMA function
IntegralQuarticPoints by transforming it first into

(3.2) Y 2 = X4 + C1,

where X = 2x, Y = 2y, C1 = −4C. In case (C, n, x, y) is a solution such that y is
a power of an integer, i.e. y = yk1 , then (C, nk, x, y1) is also a solution. We can also
deal with this in an elementary way by observing that (Y − X2)(Y + X2) = C1,
therefore both Y −X2 and Y +X2 are divisors of the number C1.

• Thirdly, we consider the case when n ≥ 5 is prime. For each positive integer
C ≤ 100 which is congruent to 3 mod 4, we write C = cd2 and look at K = Q[ic1/2].
The class numbers of the resulting fields are h = 1, 2, 3, 4, 6, 8 except for C = 47, 79
for which h = 5, and C = 71 for which h = 7, respectively. We will study later the
equations

(3.3) x2 + 47 = 4y5, x2 + 79 = 4y5, x2 + 71 = 4y7.

For the time being, we assume that item (i) of Lemma 2.1 is fulfilled. We next
look at items (ii) and (iii) of Lemma 2.1. If (iii) holds, then we get some nth

member of a Lucas sequence whose prime factors are among the primes in d. But
100 > C = cd2 ≥ 3d2, so d ≤ 5. Since also n ≥ 5, it is impossible that this nth

member of the Lucas sequence has primitive divisors. So, item (iii) cannot happen.
For item (ii) of Lemma 2.1, we checked in the tables in Bilu-Hanrot-Voutier [15]
and Abouzaid [1], and we obtain the solutions in Table 1. It remains to study the
three exceptional equations appearing in (3.3).

We will apply the following scheme to each of the equations in (3.3). Note that
in each case we have C = c, so d = 1. Then we rewrite the equation x2 +C = 4yp,
where in each case p = hK is prime and is the order of the class group of K, into
the form αᾱ = yp, where α = (x + i

√
C)/2. We conclude from this that (α) = a

for some ideal a. Suppose that b is a fixed representative of the class of a−1 in the
ideal class group of K. Then (α) = bp(ba)p. The ideals (α) and ba are principal;
hence, so is b−p. Writing ba = (γ) and b−p = (β) for some algebraic integers β
and γ in K, we obtain (replacing, if necessary, β by −β, and using the fact that in
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all cases the only units in OK are ±1) the relation α = βγp. Similarly, ᾱ = β̄γ̄p,
and subtracting the above two relations we obtain the equation βγp − β̄γ̄p = i

√
C.

Substituting γ = (u+ vi
√
C)/2, we get a Thue equation in u and v of degree p. In

this way, each of the three equations (3.3) yields hK Thue equations, one for each
ideal class. In the next subsections, we will use this scheme to write down the hK
Thue equations corresponding to each of the equations (3.3). However, in each of
the three cases we will not consider the trivial ideal class as the corresponding case
is solved by the Primitive Divisors Theorem. Thus, we will only deal with p − 1
ideal classes in each of the three cases. Furthermore, among the remaining p − 1
classes, only half will be considered because in each case the complex conjugation
induces the automorphism a 7→ a−1 of the class group. Hence, it remains to obtain
and solve two Thue equations for each of the first two equations from (3.3), and
three Thue equations for the third one.

3.1. The equation x2+47 = 4yn. Let us start by creating the two Thue equations.

〈2〉 = b1b2,

where θ = 1 + i
√

47)/2, b1 = 〈θ, 2〉 = 〈(1 + i
√

47)/2, 2〉, and b2 = 〈θ − 1, 2〉 =
〈(1− i

√
47)/2, 2〉. A system of representatives for the nonzero elements of the class

group of K is b1, b
2
1, b2 = b−1

1 , b2
2 = b−2

1 . Let α = (x+i
√

47)/2 and β = (9+i
√

47)/2.

With the previous notations, assume that the inverse of a sits in the class of
b2 = b−1

1 . Then
b5

2〈α〉 = (b2a)5 = 〈γ5〉.
Since b5

2 = 〈β〉, we get that 〈αβ〉 = 〈γ5〉. Writing γ = (u + i
√

47v)/2 with some
integers u and v which are congruent modulo 2. Since

αβ =
9x+ 47 + i(9− x)i

√
47

4
,

it follows, by replacing γ with −γ if necessary, identifying the real and imaginary
parts from the equation αβ, and then eliminating x from the two obtained equations
we arrive at the Thue equation

(3.4) 1024 = u5 + 45u4v − 470u3v2 − 4230u2v3 + 11045uv4 + 19881v5.

The case of the conjugate equation (i.e., when the class of a sits in the class of b5
2)

leads to the same Thue equation with v replaced by −v and 1024 replaced by its
negative. We use PARI/GP [30] to solve the above Thue equation (3.4) and the
solutions found are (u, v) = (±4, 0). This gives us the solution (x, y) = (9, 2).

Assume now that the inverse of a sits in the class of b2
1 = 〈β2〉. Then, by a

similar argument, we get that
αβ2 = γ5,

for some γ = (u+ i
√

47v)/2 ∈ OK. Note that

αβ2 =
17x− 423 + i(9x+ 17)

√
47

4
.

Identifying real and imaginary parts, we have
17x− 423

4
=

1
32

(u5 − 470u3v2 + 11045uv4);

9x+ 17
4

=
1
32

(5u4v − 470u2v3 + 2209v5).
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Multiplying the first equation by 9, the second by 17, and subtracting the resulting
equations, we get

−215 = 9u5 − 85u4v − 4230u3v2 + 7990u2v3 + 99405uv4 − 37553v5.

With PARI/GP, we deduce that these Thue equations have no solutions.

3.2. The equation x2 +79 = 4yn. The same argument works for 79. We will only
sketch the proof without too many details. Here, 27 = 72 + 79. We take

α = (x+ i
√

79)/2 and β = (7 + i
√

79)/2.

So, we only need to distinguish two remaining cases:

Case 1. αβ is a fifth power in K.

We then get

αβ =
7x− 79 + i(x+ 7)

√
79

4
=

(
u+ iv

√
79

2

)5

.

Identifying real and imaginary parts, we have
7x− 79

4
=

1
32

(u5 − 790u3v2 + 31205uv4);

x+ 7
4

=
1
32

(5u4v − 790u2v3 + 6241v5).

Multiplying the second equation by 7 and subtracting it from the first one leads to

(3.5) −1024 = u5 − 35u4v − 790u3v2 + 5530u2v3 + 31205uv4 − 43687v5.

When αβ is a fifth power in K, one is lead to a similar equation as above but
with the positive sign in the left hand side. We use PARI/GP to solve these Thue
equations. The resulting solutions are (u, v) = (±4, 0). This gives us the solution
(x, y) = (7, 2).

Case 2. αβ2 is a fifth power in K.

We proceed as in Case 1 and we obtain

(3.6) −32768 = 7u5 + 75u4v − 5530u3v2 − 1180u2v3 + 218435uv4 + 93615v5.

When αβ
2

is a fifth power in K, then the resulting Thue equation has the same
right hand side but the sign on the left hand side is positive. These Thue equations
have no solutions.

3.3. The equation x2 + 71 = 4yn. We use the same method. Here, 212 + 71 = 29,
so we take

α = (x+ i
√

71)/2 and β = (21 + i
√

71)/2.
Assume that

αβ =
21x− 71 + i(x+ 21)

√
71

4
=

(
u+ iv

√
71

2

)7

.

Identifying real and imaginary parts, we have
21x− 71

4
=

1
128

(u7 − 1491u5v2 + 176435u3v4 − 2505377uv6);

x+ 21
4

=
1

128
(7u6v − 2485u4v3 + 105861u2v5 − 357911v7).
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To eliminate x, we multiply the second equation by 21 and subtract the resulting
equation from the first one. We get

(3.7)
±16384 = u7 − 147u6v − 1491u5v2 + 52185u4v3 + 176435u3v4

−2223081u2v5 − 2505377uv6 + 7516131v7.

The sign + appears in the left hand side when αβ = γ7. We use PARI/GP to solve
these Thue equations and obtain the solutions (u, v) = (±4, 0). We get the solution
(x, y) = (21, 2).

Next, we consider αβ2 and we have

(3.8)
±2097152 = 21u7 − 1295u6v − 31311u5v2 + 459725u4v3

+3705135u3v4 − 19584285u2v5 − 52612917uv6 + 66213535v7.

The sign + on the left hand side appears when αβ
2

= γ7. These Thue equations
have no solutions.

Finally, we take αβ3 to obtain

(3.9)
±268435456 = 313u7 − 8379u6v − 466683u5v2 + 2974545u4v3

+55224155u3v4 − 126715617u2v5 − 784183001uv6 + 428419467v7.

Again the sign + in the left hand side appears when αβ
3

= γ7. We checked that
these last Thue equations (3.9) are all impossible modulo 43.

This finishes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

4.1. The equation (1.4). First we deal with the cases n ∈ {3, 4}.

• The case n = 3. We transform equation (1.4) as follows

X2 = Y 3 − 42 · 7a1 · 11b1 ,

where a1, b1 ∈ {0, 1, 2, 3, 4, 5}. Now we need to determine all the {7, 11}-points
on the above 36 elliptic curves. The coefficients are getting too large making the
computations time consuming. Thus, we use a different approach instead. We give
the details in case of equation (1.4). We have

x+ 7α11β
√
−7

2
=
(
u+ v

√
−7

2

)3

, or

x+ 7α11β
√
−11

2
=
(
u+ v

√
−11

2

)3

.

After subtracting the conjugate equation we obtain

4 · 7α11β = 3u2v − 7v3,

4 · 7α11β = 3u2v − 11v3.

In the case of the first equation, one can easily see that 11 | v, and in the latter
case that 7 | v. Therefore, we have v ∈ {±11β ,±4 · 11β ,±7α · 11β ,±4 · 7α · 11β},
and v ∈ {±7α,±4 · 7α,±7α · 11β ,±4 · 7α · 11β}, respectively.
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If v = ±11β , then we get that α ∈ {0, 1}, and it is sufficient to solve the following
equations

3u2 = 7V 4 ± 4,
3u2 = 7V 4 ± 28,
3u2 = 7 · 112V 4 ± 4,
3u2 = 7 · 112V 4 ± 28,

with V = 11k. Here and in what follows, k = bβ/2c. We use the MAGMA [16]
software and its function SIntegralLjunggrenPoints to determine all integral
points on the above curves. We obtain (u, v) = (±1,±1). Thus, (x, y) = (5, 2).

The other cases v ∈ {±4 ·11β ,±7α ·11β ,±4 ·7α ·11β ,±7α,±4 ·7α,±7α ·11β ,±4 ·
7α · 11β} can be handled in a similar way and do not yield any new solutions. The
only solution of equation (1.4) with n = 3 is

52 + 71 · 110 = 4 · 23.

• The case n = 4. We can rewrite equation (1.4) as follows:

x2 = 4y4 − 7α11β , where α, β ∈ {0, 1, 2, 3}, S = {7, 11}.

The problem can now be solved by applying standard algorithms for computing
S-integral points on elliptic curves (see, for example, [31]). We use the MAGMA
[16] function SIntegralLjunggrenPoints to determine all S-integral points on the
above curves. No solution of equation (1.4) was found.

• If n ≥ 5 is a prime, then by Lemma 2.1, it follows easily that n = 5, or

(y, n) ∈ {(2, 7), (2, 13), (3, 7), (4, 7), (5, 7)}.

It is easy to see that the class number of K is 1 when K = Q[i
√
d] with d ∈ {7, 11}.

• The case n = 5. We describe the method in case of equation (1.4). We have

x+ 7α11β
√
−7

2
=
(
u+ v

√
−7

2

)5

, or

x+ 7α11β
√
−11

2
=
(
u+ v

√
−11

2

)5

.

After subtracting the conjugate equation we obtain

16 · 7α11β = v(5u4 − 70u2v2 + 49v4), or

16 · 7α11β = v(5u4 − 110u2v2 + 121v4).

Therefore v is composed by the primes 2, 7 and 11. We rewrite the above equations
as follows

Y 2 = ±2a17a211a3(5X4 − 70X2 + 49), or
Y 2 = ±2a17a211a3(5X4 − 110X2 + 121),

where ai ∈ {0, 1}. Many of these equations do not have solutions in Qp for some
prime p, where here by Qp we mean the p-adic field. We use the MAGMA [16]
function SIntegralLjunggrenPoints to determine all {2, 7, 11}-integral points on
the remaining curves. We obtain the following solutions:
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curve {2, 7, 11}-integral points
Y 2 = −11(5X4 − 70X2 + 49) (±3,±44), (± 3

2 ,±
121
4 )

Y 2 = −(5X4 − 70X2 + 49) (±1,±4)
Y 2 = 5X4 − 70X2 + 49 (0, 7)

Y 2 = 11(5X4 − 70X2 + 49) (±7,±308)
Y 2 = 5X4 − 110X2 + 121 (0,±11), (±1,±4)

We use the above points on the elliptic curves to find the corresponding solutions
of equation (1.4). For example, the solution (X,Y ) = (3, 44) of the first elliptic
curve gives the solution (n, a, b, x, y) = (5, 1, 2, 57, 4). The solution (X,Y ) = (1, 4)
of the second elliptic curve yields the solution (n, a, b, x, y) = (5, 1, 0, 11, 2). The
solution (n, a, b, x, y) = (5, 0, 1, 31, 3) is obtained from the solution (X,Y ) = (1, 4)
of the last elliptic curve, while the solution (n, a, b, x, y) = (10, 1, 2, 57, 2) is obtained
easily from the solution (n, a, b, x, y) = (5, 1, 2, 57, 4).

• The case n > 5. Here, by Lemma 2.1, we have

(y, n) ∈ {(2, 7), (2, 13), (3, 7), (4, 7), (5, 7)}.

We provide the details of the computations in case of equation (1.4). It remains to
find all integral points on the following elliptic curves

Y 2 = X3 + 4 · 72α112βyn,

where 0 ≤ α, β ≤ 2 and (y, n) ∈ {(2, 7), (2, 13), (3, 7), (4, 7), (5, 7)}. Using MAGMA,
we get the following solutions:

(α, β) (2, 7) (2, 13) (3, 7)
(0, 0) X ∈ {±8,−7, 4, 184} X ∈ {±32,−28, 16, 736} X ∈ {−18, 117}
(0, 1) X ∈ {−28} X ∈ {−112} X ∈ {−99,−18, 22, 198}
(0, 2) ∅ ∅ ∅
(1, 0) X ∈ {−28, 8, 56, 497} X ∈ {−112,−7, 32, 224, 1988} X ∈ {198}
(1, 1) X ∈ {−28, 56, 1736, 61037816} X ∈ {−112, 224, 6944, 244151264} X ∈ {198, 333, 15598}
(1, 2) ∅ ∅ ∅
(2, 0) X ∈ {392} X ∈ {1568} X ∈ {−234}
(2, 1) X ∈ {−503,−392, 49, 2744} X ∈ {−2012,−1568, 196, 5537, 10976} X ∈ {198, 37566}
(2, 2) ∅ ∅ ∅

(α, β) (4, 7) (5, 7)
(0, 0) X ∈ {0} ∅
(0, 1) X ∈ {0} X ∈ {−275}
(0, 2) X ∈ {0} ∅
(1, 0) X ∈ {−112, 0, 128, 420, 896} ∅
(1, 1) X ∈ {0} ∅
(1, 2) X ∈ {0, 21669648} ∅
(2, 0) X ∈ {0, 25872} ∅
(2, 1) X ∈ {−1536, 0, 1617} ∅
(2, 2) X ∈ {0} ∅

One can check, for example, that (y, n, α, β,X) = (2, 7, 0, 0,−7) yields the solution
132 + 73 · 110 = 4 · 27, while the solution 1812 + 71 · 110 = 4 · 213 is obtained from
(y, n, α, β,X) = (2, 13, 1, 0,−7).

4.2. The equation (1.5). We use a similar method as for equation (1.4).

• The case n = 3. We transform equation (1.5) as follows

X2 = Y 3 − 42 · 7a1 · 13b1 ,

where a1 ∈ {1, 3, 5}, b1 ∈ {0, 1, 2, 3, 4, 5}. Now we need to determine all the {7, 13}-
points on the above 18 elliptic curves. Among the 18 curves, there are only 6
curves having rank greater than 0. MAGMA determined the appropriate Mordell-
Weil groups except in case (a1, b1) = (5, 4). We deal with this case separately. By
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computations similar to those done for equation (1.4) when n = 5, one can see the
{7, 13}-points on the 5 curves lead to the solutions

(x, y, a, b) = (5, 2, 1, 0), (5371655, 19322, 3, 2).

If (a1, b1) = (5, 4), then we obtain

4 · 73α1+2133β1+2 = v(3u2 − 7v2).

One can easily see that 13 | v and 7 - u. So, we have v ∈ {±73α1+2 · 133β1+2,±4 ·
73α1+2 · 133β1+2}. If v = ±73α1+2 · 133β1+2, then the equations we need to solve are

3u2 = 7V 4 ± 4,
3u2 = 73V 4 ± 4,
3u2 = 7 · 132V 4 ± 4,
3u2 = 73 · 132V 4 ± 4.

We do not get any new solutions. If v = ±4 · 73α1+2 · 133β1+2, then by similar
computations we do not get any new solutions.

• The case n = 4. We can rewrite equation (1.5) as follows:

x2 = 4y4 − 7α13β , where α, β ∈ {0, 1, 2, 3}, S = {7, 13}.
As previously, we use the MAGMA [16] function SIntegralLjunggrenPoints to
determine all the S-integral points on the above curves. We find no solution of
equation (1.5) with n = 4.

• If n ≥ 5 is a prime, then by Lemma 2.1, we have that n = 5 or (y, n) ∈
{(2, 7), (2, 13), (3, 7), (4, 7), (5, 7)}. A short calculation assures that the class number
of K is 1 or 2 when K = Q[i

√
d] with d ∈ {7, 91}.

• The case n = 5. Here, we have

16 · 7α13β = v(5u4 − 70u2v2 + 49v4), or

16 · 7α13β = v(5u4 − 910u2v2 + 8281v4).

Therefore v is composed by the primes 2, 7 and 13. We rewrite the above equations
as follows

Y 2 = ±2a17a213a3(5X4 − 70X2 + 49), or
Y 2 = ±2a17a213a3(5X4 − 910X2 + 8281),

where ai ∈ {0, 1}. Many of these equations do not have solutions in Qp for some
prime p. We use the MAGMA [16] function SIntegralLjunggrenPoints to deter-
mine all {2, 7, 13}-integral points on the remaining curves. We obtain the following
solutions (0,±7), (±1,±4), (0,±91), (±13,±52).

• The case n > 5. By Lemma 2.1, we have

(y, n) ∈ {(2, 7), (2, 13), (3, 7), (4, 7), (5, 7)}.
We find all integral points on the following elliptic curves

Y 2 = X3 + 4 · 72α132βyn,

where 0 ≤ α, β ≤ 2 and (y, n) ∈ {(2, 7), (2, 13), (3, 7), (4, 7), (5, 7)}. Using a similar
method to that of the case n > 5 of equation (1.4), we obtain the desired solutions.
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[3] F. S. Abu Muriefah, F. Luca and A. Togbé, On the equation x2 + 5a · 13b = yn, Glasgow
J. Math. 50 (2008), 175–181.

[4] F. S. Abu Muriefah and Y. Bugeaud, The Diophantine equation x2 + c = yn: a brief

overview, Rev. Colombiana Mat. 40 (2006), 31–37.
[5] F. S. Abu Muriefah, On the diophantine equation x2 + 52k = yn, Demonstratio Mathe-

matica 319 (2006), 285–289.

[6] S. A. Arif and A. Al-Ali, On the Diophantine equation x2 + q2k+1 = 4yn, Internat. J.
Math. Math. Sci. 31 (2002), 695–699.

[7] S. A. Arif and A. Al-Ali, On the Diophantine equation ax2 + qm = 4yn, Acta Arith. 103

(2002), 343–346.
[8] S. A. Arif and F. S. Abu Muriefah, On the Diophantine equation x2 + q2k+1 = yn, J.

Number Theory 95 (2002), 95–100.
[9] S. A. Arif and F. S. Abu Muriefah, The Diophantine equation x2 + q2k = yn, Arab. J. Sci.

Eng. Sect. A Sci. 26 (2001), 53–62.

[10] F. S. Abu Muriefah and S. A. Arif, The Diophantine equation x2 + 52k+1 = yn, Indian J.
Pure Appl. Math. 30 (1999), 229–231.

[11] S. A. Arif and F. S. Abu Muriefah, The Diophantine equation x2 + 3m = yn, Internat. J.

Math. Math. Sci. 21 (1998), 619–620.
[12] S. A. Arief and F. S. Abu Muriefah, On a Diophantine equation, Bull. Austral. Math. Soc.

57 (1998), 189–198.

[13] S. A. Arif and F. S. Abu Muriefah, On the Diophantine equation x2 + 2k = yn, Internat.
J. Math. Math. Sci. 20 (1997), 299–304.

[14] Yu. Bilu, On Le’s and Bugeaud’s papers about the equation ax2 + b2m−1 = 4cp, Monatsh.

Math. 137 (2002), 1–3.
[15] Yu. Bilu, G. Hanrot and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer

numbers. With an appendix by M. Mignotte, J. reine angew. Math. 539 (2001), 75–122.

[16] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language,
J. Symbolic Comput. 24 (1997), 235–265.

[17] Y. Bugeaud, M. Mignotte and S. Siksek, Classical and modular approaches to exponential
Diophantine equations. II. The Lebesgue-Nagell equation, Compos. Math. 142 (2006), 31–

62.

[18] Y. Bugeaud, On some exponential Diophantine equations, Monatsh. Math. 132 (2001),
193–197.

[19] J. H. E. Cohn, The Diophantine equation x2 + c = yn, Acta Arith. 65 (1993), 367–381.
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[27] F. Luca and A. Togbé, On the equation x2 + 2a · 5b = yn, Int. J. Number Theory, 4 (6)
(2008), 973–979.



12 FLORIAN LUCA, SZABOLCS TENGELY, AND ALAIN TOGBÉ
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