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Introduction

We are interested in f € k(x) that are decomposable as rational
functions, i.e. for which

f(x) = g(h(x))

with g, h € k(x), deg g,deg h > 2 holds.
Such a decomposition is only unique up to a linear fractional

transformation
ax + b

cx + d

with ad — bc = +1, since we may always replace g(x) by g(A(x)) and
h(x) by A71(h(x)) without affecting the equation f(x) = g(h(x)).

A\ =
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Related results

1949: Rényi and Erdos conjectured independently: bound for the
number of terms of h(x)? implies a bound for the terms of h(x).
1987: Schinzel ingenious proof in the case h(x)?.

Schinzel conjectured that if for fixed g the polynomial g(h(x)) has at
most / non-constant terms, then the number of terms of h is bounded

only in terms of /. A more general form of this conjecture was proved
by Zannier in 2008.
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1922: Ritt proved thatif f = pjoppo---ps=qgioqgro---q,, then
s = r and the sets of degrees of the polynomials are equal.
Extensions by Beardon, Pakovich, Zieve and many others.
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1922: Ritt proved thatif f = pjoppo---ps=qgioqgro---q,, then
s = r and the sets of degrees of the polynomials are equal.
Extensions by Beardon, Pakovich, Zieve and many others. It is not
true that all complete decompositions of a rational function have the
same length. Gutierrez and Sevilla provided an example with
rational coefficients as follows

f_ x3(x 4+ 6)3(x* — 6x + 36)3
(x —3)3(x* +3x+9)3
f=g10g20g3=X30X(X_12) OX(X+6),
x —3 x—3
x3(x + 24) . x(x? — 6x + 36)
x—3 x2+3x+9

f:hlohgz
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Several arithmetical applications, equations of type f(x) = g(y) :
= Davenport, Lewis and Schinzel

® Fried

® Beukers, Shorey and Tijdeman

® Bilu and Tichy

= Gyory

® Brindza and Pintér
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In this talk we are interested in rational functions

o
@

with a bounded number of zeros and poles (i.e. the number of
distinct roots of P, @ in a reduced expression of f is bounded).

We assume that the number of zeros and poles are fixed, whereas the
actual values of the zeros and poles and their multiplicities are
considered as variables.
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Theorem by Fuchs and Petho

Let n be a positive integer. Then there exists a positive integer

J < 2nn®" and, for every i € {1,...,J}, an affine algebraic variety V;
defined over Q and with V; C A"t for some 2 < t; < n, such that:
(i) If f, g, h e k(x) with f(x) = g(h(x)) and with degg,degh > 2, g
not of the shape (A\(x))™, m € N, A € PGLy(k), and f has at most n
zeros and poles altogether, then there exists for some i € {1,...,J} a
point P = (aq,...,an, B1,...,0t) € Vi(k),

a vector (ky,..., k) € Z% with ky + ko + ...+ k;; = 0 or not
depending on V;, a partition of {1,...,n} in t; + 1 disjoint sets
Sooy Spyy -5 Sp,, With Sooc =0 if ki + ka + -+ k, =0,

and a vector (f,...,1,) €{0,1,...,n—1}", also both depending
only on V;, such that
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“TTw/ws)s. () =[x 5",
j=1 J=1

and

(Bl (=1..t), ifk+k+-+k; #0,

511 Wi, — 512

\ Wi, —Wj;

"1 (1< ji < j» < tj), otherwise,

where

Wi = H(X_am)lma .j:]-)"'atia

mESBj

Woo = H (X — am)'™.

MESaso

Moreover, we have degh < (n—1)/(t;i—1) < n—1.
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(ii) Conversely for given data P € V;(k), (k1,..., k&), (h,.-,1In),
500,58, - - -, 5p, , as described in (i) one defines by the same equations
rational functions f,g,h with f having at most n zeros and poles
altogether for which f(x) = g(h(x)) holds.

(iii) The integer J and equations defining the varieties V; are
effectively computable only in terms of n.
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Tools from the theory of valuation

The Mason-Stothers (1984) theorem says: Let f, g € k(x), not
both constant and let S be any set of valuations of k(x) containing
all the zeros and poles in P(k) of f and g. Then we have
max{deg f,deg g} < |S| — 2. Best possible.

More generally Zannier (1995) proved: Let S is any set of valuations
of k(x) containing all the zeros and poles in P(k) of g1,...,gm. If
g1,---,8m € k(x) span a k-vector space of dimension . < m and any
1 of the g; are linearly independent over k, then

=3 min{u(en)... vlem) < ——(4) (51 -2)

m —_
veM H
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Since k is algebraically closed we can write
n
F(x) =]](x—ai)
i=1
with pairwise distinct o; € k and f; € Z fori=1,...,n.
Similarly we get

g(x) = [(x—5)"
j=1

with pairwise distinct 5; € k and ki € Z for j=1,...,tand t € N.
Thus we have
n t

[T0x— ) = £(x) = g(h(x)) = [J(hx) — )",

i—1 j=1

We now distinguish two cases depending on k1 + ko + - -+ + ks £ 0 or
not; observe that this condition is equivalent to v(g) # 0 or not.
We shall write h(x) = p(x)/q(x) with p,q € k[x], p, g coprime.
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Thecase ki + ko +---+ ki #0

There is a subset S, of the set {1,...,n} such that the «, for
m € S, are precisely the poles in Al(k) of h, i.e.

q(x) = H (x — am)™, I, € N,

meESs

Furthermore h and h(x) — B; have the same number of poles counted
by multiplicity, which means that their degrees are equal.

There is a partition of the set {1,...,n}\S5 in t disjoint subsets
55, ...,58, such that

1

h(x) =08; + — X—am/m,
9=+ g TT (e=

m Bj
where I, € N satisfies I k; = f, for me Sg.,j=1,...,t.
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Since we assume that g is not of the shape (A(x))™ it follows that

t>2. Let1 </ <j<tbegiven. We have at least two different
representations of h and thus we get

— X —Q b — — X —Q s
61‘|‘ H( r BJ"‘q()H( 5)

I’ES SGSBJ'

or equivalently B(u; — u;) = 1, where 3 =1/(8; — 3i) and

v q(X) [[ b=t~

w,
rESB o©
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Thecase ki + ko +---+ ks =0

Here we have
[T6— o =] (2 - J) = [1et) — BraG)*
i=1 j=1 \9 J=1

There is a partition of the set {1,...,n} in t disjoint subsets
55, ...,S5s, such that

(p() = Ba(x))5 = T (x — am)™

m€53j

Thus k; divides fp, for all m € 5.,/ =1,...,t. On putting
Im = fm/kj for m € SBJ we obtain

p(X) o qu(X) — H (X o am)/maj — 17 ..., L
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Let us choose 1 < j; < j» < j3 < t. From the corresponding three
equations the so called Siegel identity v, ;, i, + Vj, i, + Vjr 5.y = 0
follows, where

Vitdous = (ﬁjl — 5j2) H (X — Oém)l’".

m€55j3

The quantities v, j, i, are non-constant rational functions and they are
S-units. Observe that by taking j1 = 1, jo = i, j3 = j with
1 </ < j <t the Siegel identity can be rewritten as

Bi—Prwi  B1—Biw _1q
B —Biwm B —Bwi
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An algorithm to compute solutions

Petho and Tengely provided and algorithm implemented in MAGMA:
1) Let S5+, S3,,-- ., Ss, be a partition of {1,2,...,n}.
2) For the partition and a vector (h,...,/,) €{0,1,...,n—1}"

compute the corresponding variety V' = {v1,...,Vv,}, where v; is a
polynomial in a1, ..., ap, B1,...,B+. Here we used Groebner basis
technique.

3) To remove contradictory systems we compute

OJE H,';,gj(ai - O‘j) Hi#j(ﬁi o BJ)
4) For all v; compute
Vi

- ng(Vi7 (b)’

u it

and
Uj, 4

u, =

o ng(U,'k_l,q))7
until ged(u;,_,,P) =1.
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We note that Ayad and Fleischmann implemented a MAGMA code to
find decompositions of a given rational function, as an example they
considered the rational function

x4 — 8x

f—
x3 41

and they obtained that f(x) = g(h(x)), where

x2 1+ 4x 4 h x2 — 2x
— an — :
& x+1 x+1
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Using our MAGMA procedure

CFunc(3,7,1:PSet:=[[{1},{2,3},{4,5},{6,7}1],exptup:=[[1,1,1,1,1,1,111);
we get the system of equations

2

o181 — o183 + a3 — azag — azayr — a3B; + azfz +agay = 0,
2

a1Br — a1B83 + ag — asag — asay — agfr + a5fB3 + agar = 0,

a +az3 —ag —ay —pP1+B3 = 0,

043,52 — a§53 — azaefBy + azaef3 — azarBy + azarB3—

a3B1By + 313 + asBaBs — a3 — azB1 + g Bt

asagBl — asaef3 + asarfl — asarBz + asB182 — asB1B3—
asB283 + 045/3§ —agayfB1 + agarBr = 0,

ag+as —apg —oay — B2+ B3 =
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Using our MAGMA procedure

CFunc(3,7,1:PSet:=[[{1},{2,3},{4,5},{6,7}1],exptup:=[[1,1,1,1,1,1,111);
we get the system of equations

2
a1B1 —a1B83 + a3 — azag — azay — azf + o3B3 +agar = 0,
2
a1Br — a1B83 + ag — asag — asay — agfr + a5fB3 + agar = 0,
a +az —ag —ay —pB1+B3 = 0,

043,32 — a§53 — azaefBy + azaef3 — azarBy + azarB3—
a3B1B2 + 313 + 3B — a3B; — agf1 + agBi+
asopf1 — asaef3 + asarf1 — asayf3 + asB182 — asB183—
asB283 + 045/3§ —agayfB1 + agarBr = 0,
ag +as —ag —ayr — B+ B3 =
We note that the above system has a solution

(ala o, 3, 4, &5, g, &7, /817/82a53) —

l1—+v/—-3 1+4++/-3
(_170a27 -1 - \% _37 _1+ \% _3a 9 9 5 9

0, —4, —1).
It corresponds to the example given by Ayad and Fleischmann, that is

x4 — 8x x2 + 4x x2 — 2x

f: p— h:
x34+1" & x+1" x+1
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Let k be an algebraically closed field of characteristic zero. Petho
and Tengely provided two families of decomposable rational functions
having 3 zeros and poles altogether.

(a) (x=0n) (x+1/4—0n)™2 for some a1 € k and ki, ko € Z, ki + ko # 0,

(X—1/4—041 )2k1 +2kp

— 2k]_ _ 2/(2
p) ()1 0dar—202)72 0 ohme a1 an € k and
(X_a2)2k1+2k2 )

ki, ko € Z,ki + ko # 0.
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Let k be an algebraically closed field of characteristic zero. Petho
and Tengely provided two families of decomposable rational functions
having 3 zeros and poles altogether.

(a) (x=0n) (x+1/4—0n)™2 for some a1 € k and ki, ko € Z, ki + ko # 0,

(X—1/4—Oz1 )2k1 +2kp

_ 2kq ) 2ko
(b) (x al()x C(YX)—';I?{11+2k2a2) for some a1, ap € k and
— &2

ki, ko € Z,ki + ko # 0.

We note that in both cases the zeros and poles form an arithmetic
progression:

1 1 1
] — Z,oq,al + 2’ difference = 2

and

a1, 0n, 200 — v, difference = ap — ag.
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Problem: determine decomposable rational functions having zeros and
poles forming an arithmetic progression.

If S # 0, then we take Sg, and Sg two partitions having minimal
cardinality. The zeros and poles satisfy a; = ag + k;d.

We have that

HSGSBJ (Ck,— — as)ls

Bi— B =
I J Hmesoo (ar _ am)lm
6 B Hresﬁi(@s o al’)lr
I J HmESOo (045 _ Ozm)l’" .
Hence y y
Uy d _ _U3d 3  U1pug _ Jvv
urdV2 UsdV2 Up U3
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If Soo = 0, then we take Sp; + Sp;, and Sg, three partitions having
minimal cardinality. Siegel identity yields

Vit o J3 (O‘jl ) T Vi3 1.0 (O‘jl ) —
Vit 2.3 (ajz ) T Vs jz .t (O‘jz ) —

Viz.j1 o (O‘Jé) T Vs js.ia (O‘Jé) —

After eliminating B, 5;,, Bj; one obtains that

v =d°.
In both cases we get a finite list of possible values of d and a finite
list of special tuples (ki,...,kn, h,...,1,) for which v3 — v; =0 and
—Z;—Zgzlor(S:Oandv:l.
21 of 25



Example

Let n =5 and |S| = 1,|5,| = |95,| = 2. We have the following
system of equations

(ki — k3)B(ki — ka)ad’s Tl

x=o1: fr1—P2 = e
_ . B (k2 — k3)/3(k2 — k4)/4d/3+/4
X = Q9 . 51 62 — (kg _ k5)l5dl5
_ : B (k3 — kl)/l(k3 _ /(2)12(1/14_/2
x=oa3: P1—F = (ks — kg )b d"
x—ou: PPy = Az ki)f (kg — ko)l dth

(k4 — k5)l5 d’s

If L +h — 1k — Iy #0, then d is an element of a finite set having 100
elements.
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Example
In case (kl, k2, k3, k4, k5) = (0,4, ]., 3, 2) and
(h, b, ks, I, ) = (1,1,2,2,2) we have that d = 2¥3 and

3
g(x) = (x—p1)(x—p1+3)
(x — ag)(x — ag — 4d)

h(x) = p1+ (x — ap — 2d)?
fx) — 4(x — ag)(x — ag — d)(x — ag — 3d)(x — ag — 4d)
x N (X — g — 2d)4 .
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Example
In case (ki, ko, k3, ka, ks) = (1,4,3,0,2) and
(/1, b, I3, 1y, /5) = (1, 1,1,1, ].) we have that 1 +h — K — [, =0 and

g(x) = (x—pB1)(x—p1+2d)
h(x) — 6l+(x—ao—d)(x—ozo—4d)

(x — ap — 2d)
f(x) — (x —ag)(x — g —(j)_();o—i)zozg)?;d)(x — ap — 4d).
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