Rational Functions and Arithmetic Progressions

Szabolcs Tengely

29th Journées Arithmétiques

9th July 2015

Research supported in part by the OTKA grants K100339 and NK104208

Introduction

We are interested in $f \in k(x)$ that are decomposable as rational functions, i.e. for which

$$f(x) = g(h(x))$$

with $g, h \in k(x)$, deg g, deg $h \ge 2$ holds.

Such a decomposition is only unique up to a linear fractional transformation

$$\lambda = \frac{ax + b}{cx + d}$$

with $ad - bc = \pm 1$, since we may always replace g(x) by $g(\lambda(x))$ and h(x) by $\lambda^{-1}(h(x))$ without affecting the equation f(x) = g(h(x)).

Related results

1949: **Rényi** and **Erdős** conjectured independently: bound for the number of terms of $h(x)^2$ implies a bound for the terms of h(x).

1987: **Schinzel** ingenious proof in the case $h(x)^d$.

Schinzel conjectured that if for fixed g the polynomial g(h(x)) has at most I non-constant terms, then the number of terms of h is bounded only in terms of I. A more general form of this conjecture was proved by **Zannier** in 2008.

1922: **Ritt** proved that if $f = p_1 \circ p_2 \circ \cdots \circ p_s = q_1 \circ q_2 \circ \cdots \circ q_r$, then s = r and the sets of degrees of the polynomials are equal. Extensions by **Beardon**, **Pakovich**, **Zieve** and many others.

1922: **Ritt** proved that if $f = p_1 \circ p_2 \circ \cdots \circ p_s = q_1 \circ q_2 \circ \cdots \circ q_r$, then s = r and the sets of degrees of the polynomials are equal. Extensions by **Beardon**, **Pakovich**, **Zieve** and many others. It is not true that all complete decompositions of a rational function have the same length. **Gutierrez** and **Sevilla** provided an example with rational coefficients as follows

$$f = \frac{x^3(x+6)^3(x^2-6x+36)^3}{(x-3)^3(x^2+3x+9)^3},$$

$$f = g_1 \circ g_2 \circ g_3 = x^3 \circ \frac{x(x-12)}{x-3} \circ \frac{x(x+6)}{x-3},$$

$$f = h_1 \circ h_2 = \frac{x^3(x+24)}{x-3} \circ \frac{x(x^2-6x+36)}{x^2+3x+9}.$$

Several arithmetical applications, equations of type f(x) = g(y):

- Davenport, Lewis and Schinzel
- Fried
- Beukers, Shorey and Tijdeman
- Bilu and Tichy
- Győry
- Brindza and Pintér

In this talk we are interested in rational functions

$$f = \frac{P}{Q}$$

with a **bounded number of zeros and poles** (i.e. the number of distinct roots of P, Q in a reduced expression of f is bounded).

We assume that the number of zeros and poles are fixed, whereas the actual values of the zeros and poles and their multiplicities are considered as variables.

Theorem by Fuchs and Pethö

Let n be a positive integer. Then there exists a positive integer $J \leq 2nn^{2n}$ and, for every $i \in \{1, \ldots, J\}$, an affine algebraic variety V_i defined over \mathbb{Q} and with $\mathcal{V}_i \subset \mathbb{A}^{n+t_i}$ for some $2 < t_i < n$, such that: (i) If $f, g, h \in k(x)$ with f(x) = g(h(x)) and with deg g, deg $h \ge 2$, g not of the shape $(\lambda(x))^m$, $m \in \mathbb{N}$, $\lambda \in \mathsf{PGL}_2(k)$, and f has at most n zeros and poles altogether, then there exists for some $i \in \{1, \ldots, J\}$ a point $P = (\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_{t_i}) \in \mathcal{V}_i(k)$, a vector $(k_1,\ldots,k_{t_i})\in\mathbb{Z}^{t_i}$ with $k_1+k_2+\ldots+k_{t_i}=0$ or not depending on V_i , a partition of $\{1,\ldots,n\}$ in t_i+1 disjoint sets $S_{\infty}, S_{eta_1}, \ldots, S_{eta_{t_i}}$ with $S_{\infty} = \emptyset$ if $k_1 + k_2 + \cdots + k_{t_i} = 0$, and a vector $(I_1, \ldots, I_n) \in \{0, 1, \ldots, n-1\}^n$, also both depending only on \mathcal{V}_i , such that

$$f(x) = \prod_{j=1}^{t_i} (w_j/w_\infty)^{k_j}, \qquad g(x) = \prod_{j=1}^{t_i} (x-\beta_j)^{k_j},$$

and

$$h(x) = \begin{cases} \beta_j + \frac{w_j}{w_{\infty}} \ (j = 1, \dots, t_i), & \text{if } k_1 + k_2 + \dots + k_{t_i} \neq 0, \\ \frac{\beta_{j_1} w_{j_2} - \beta_{j_2} w_{j_1}}{w_{j_2} - w_{j_1}} \ (1 \leq j_1 < j_2 \leq t_i), & \text{otherwise,} \end{cases}$$

where

$$w_j = \prod_{m \in S_{\beta_j}} (x - \alpha_m)^{l_m}, \quad j = 1, \dots, t_i,$$

$$w_{\infty} = \prod_{m \in S_{\infty}} (x - \alpha_m)^{l_m}.$$

Moreover, we have deg $h \leq (n-1)/(t_i-1) \leq n-1$.

- (ii) Conversely for given data $P \in \mathcal{V}_i(k), (k_1, \ldots, k_{t_i}), (l_1, \ldots, l_n),$ $S_{\infty}, S_{\beta_1}, \ldots, S_{\beta_{t_i}}$, as described in (i) one defines by the same equations rational functions f, g, h with f having at most n zeros and poles altogether for which f(x) = g(h(x)) holds.
- (iii) The integer J and equations defining the varieties V_i are effectively computable only in terms of n.

Tools from the theory of valuation

The Mason-Stothers (1984) theorem says: Let $f,g \in k(x)$, not both constant and let S be any set of valuations of k(x) containing all the zeros and poles in $\mathbb{P}^1(k)$ of f and g. Then we have $\max\{\deg f,\deg g\} \leq |S|-2$. Best possible.

More generally **Zannier** (1995) proved: Let S is any set of valuations of k(x) containing all the zeros and poles in $\mathbb{P}^1(k)$ of g_1, \ldots, g_m . If $g_1, \ldots, g_m \in k(x)$ span a k-vector space of dimension $\mu < m$ and any μ of the g_i are linearly independent over k, then

$$-\sum_{v\in\mathcal{M}}\min\{v(g_1),\ldots,v(g_m)\}\leq \frac{1}{m-\mu}\binom{\mu}{2}(|S|-2).$$

Since k is algebraically closed we can write

$$f(x) = \prod_{i=1}^{n} (x - \alpha_i)^{f_i}$$

with pairwise distinct $\alpha_i \in k$ and $f_i \in \mathbb{Z}$ for i = 1, ..., n. Similarly we get

$$g(x) = \prod_{j=1}^{t} (x - \beta_j)^{k_j}$$

with pairwise distinct $\beta_j \in k$ and $k_j \in \mathbb{Z}$ for j = 1, ..., t and $t \in \mathbb{N}$. Thus we have

$$\prod_{i=1}^{n} (x - \alpha_i)^{f_i} = f(x) = g(h(x)) = \prod_{j=1}^{t} (h(x) - \beta_j)^{k_j}.$$

We now distinguish two cases depending on $k_1 + k_2 + \cdots + k_t \neq 0$ or not; observe that this condition is equivalent to $v_{\infty}(g) \neq 0$ or not. We shall write h(x) = p(x)/q(x) with $p, q \in k[x], p, q$ coprime.

The case
$$k_1 + k_2 + \cdots + k_t \neq 0$$

There is a subset S_{∞} of the set $\{1, \ldots, n\}$ such that the α_m for $m \in S_{\infty}$ are precisely the poles in $\mathbb{A}^1(k)$ of h, i.e.

$$q(x) = \prod_{m \in S_{\infty}} (x - \alpha_m)^{I_m}, I_m \in \mathbb{N}.$$

Furthermore h and $h(x) - \beta_j$ have the same number of poles counted by multiplicity, which means that their degrees are equal.

There is a partition of the set $\{1,\ldots,n\}\setminus S_{\infty}$ in t disjoint subsets $S_{\beta_1},\ldots,S_{\beta_t}$ such that

$$h(x) = \beta_j + \frac{1}{q(x)} \prod_{m \in S_{\beta_j}} (x - \alpha_m)^{l_m},$$

where $I_m \in \mathbb{N}$ satisfies $I_m k_j = f_m$ for $m \in S_{\beta_j}, j = 1, \ldots, t$.

Since we assume that g is not of the shape $(\lambda(x))^m$ it follows that $t \geq 2$. Let $1 \leq i < j \leq t$ be given. We have at least two different representations of h and thus we get

$$\beta_i + \frac{1}{q(x)} \prod_{r \in S_{\beta_i}} (x - \alpha_r)^{l_r} = \beta_j + \frac{1}{q(x)} \prod_{s \in S_{\beta_j}} (x - \alpha_s)^{l_s}$$

or equivalently $\beta(u_i - u_j) = 1$, where $\beta = 1/(\beta_j - \beta_i)$ and

$$u_i = \frac{1}{q(x)} \prod_{r \in S_{\beta_i}} (x - \alpha_r)^{l_r} = \frac{w_i}{w_{\infty}}.$$

The case
$$k_1 + k_2 + \cdots + k_t = 0$$

Here we have

$$\prod_{i=1}^{n} (x - \alpha_i)^{f_i} = \prod_{j=1}^{t} \left(\frac{p(x)}{q(x)} - \beta_j \right)^{k_j} = \prod_{j=1}^{t} (p(x) - \beta_j q(x))^{k_j}.$$

There is a partition of the set $\{1, \ldots, n\}$ in t disjoint subsets $S_{\beta_1}, \ldots, S_{\beta_t}$ such that

$$(p(x) - \beta_j q(x))^{k_j} = \prod_{m \in S_{\beta_j}} (x - \alpha_m)^{f_m}.$$

Thus k_j divides f_m for all $m \in S_{\beta_j}, j = 1, ..., t$. On putting $I_m = f_m/k_j$ for $m \in S_{\beta_i}$ we obtain

$$p(x) - \beta_j q(x) = \prod_{m \in S_{\beta_i}} (x - \alpha_m)^{l_m}, j = 1, \dots, t.$$

Let us choose $1 \le j_1 < j_2 < j_3 \le t$. From the corresponding three equations the so called **Siegel identity** $v_{j_1,j_2,j_3} + v_{j_3,j_1,j_2} + v_{j_2,j_3,j_1} = 0$ follows, where

$$v_{j_1,j_2,j_3} = (\beta_{j_1} - \beta_{j_2}) \prod_{m \in S_{\beta_{j_3}}} (x - \alpha_m)^{l_m}.$$

The quantities v_{j_1,j_2,j_3} are non-constant rational functions and they are S-units. Observe that by taking $j_1=1, j_2=i, j_3=j$ with $1 \le i < j \le t$ the Siegel identity can be rewritten as

$$\frac{\beta_j - \beta_1}{\beta_j - \beta_i} \frac{w_i}{w_1} + \frac{\beta_1 - \beta_i}{\beta_j - \beta_i} \frac{w_j}{w_1} = 1.$$

An algorithm to compute solutions

Pethő and **Tengely** provided and algorithm implemented in MAGMA:

- 1) Let $S_{\infty}, S_{\beta_1}, \dots, S_{\beta_t}$ be a partition of $\{1, 2, \dots, n\}$.
- **2**) For the partition and a vector $(I_1, \ldots, I_n) \in \{0, 1, \ldots, n-1\}^n$ compute the corresponding variety $V = \{v_1, \ldots, v_r\}$, where v_i is a polynomial in $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_t$. Here we used Groebner basis technique.
- 3) To remove contradictory systems we compute

$$\Phi = \prod_{i \neq j} (\alpha_i - \alpha_j) \prod_{i \neq j} (\beta_i - \beta_j).$$

4) For all v_i compute

$$u_{i_1} = \frac{v_i}{\gcd(v_i, \Phi)},$$

and

$$u_{i_k} = \frac{u_{i_{k-1}}}{\gcd(u_{i_{k-1}}, \Phi)},$$

 $\underset{\scriptscriptstyle{16} \text{ of } 25}{\mathsf{until}} \gcd(u_{i_{k-1}}, \Phi) = 1.$

We note that Ayad and Fleischmann implemented a MAGMA code to find decompositions of a given rational function, as an example they considered the rational function

$$f = \frac{x^4 - 8x}{x^3 + 1}$$

and they obtained that f(x) = g(h(x)), where

$$g = \frac{x^2 + 4x}{x + 1}$$
 and $h = \frac{x^2 - 2x}{x + 1}$.

Using our MAGMA procedure

CFunc(3,7,1:PSet:=[[{1},{2,3},{4,5},{6,7}]],exptup:=[[1,1,1,1,1,1,1]]); we get the system of equations

$$\begin{array}{rclcrcl} \alpha_{1}\beta_{1}-\alpha_{1}\beta_{3}+\alpha_{3}^{2}-\alpha_{3}\alpha_{6}-\alpha_{3}\alpha_{7}-\alpha_{3}\beta_{1}+\alpha_{3}\beta_{3}+\alpha_{6}\alpha_{7} &=& 0, \\ \alpha_{1}\beta_{2}-\alpha_{1}\beta_{3}+\alpha_{5}^{2}-\alpha_{5}\alpha_{6}-\alpha_{5}\alpha_{7}-\alpha_{5}\beta_{2}+\alpha_{5}\beta_{3}+\alpha_{6}\alpha_{7} &=& 0, \\ \alpha_{2}+\alpha_{3}-\alpha_{6}-\alpha_{7}-\beta_{1}+\beta_{3} &=& 0, \\ \alpha_{3}^{2}\beta_{2}-\alpha_{3}^{2}\beta_{3}-\alpha_{3}\alpha_{6}\beta_{2}+\alpha_{3}\alpha_{6}\beta_{3}-\alpha_{3}\alpha_{7}\beta_{2}+\alpha_{3}\alpha_{7}\beta_{3}-\\ \alpha_{3}\beta_{1}\beta_{2}+\alpha_{3}\beta_{1}\beta_{3}+\alpha_{3}\beta_{2}\beta_{3}-\alpha_{3}\beta_{3}^{2}-\alpha_{5}^{2}\beta_{1}+\alpha_{5}^{2}\beta_{3}+\\ \alpha_{5}\alpha_{6}\beta_{1}-\alpha_{5}\alpha_{6}\beta_{3}+\alpha_{5}\alpha_{7}\beta_{1}-\alpha_{5}\alpha_{7}\beta_{3}+\alpha_{5}\beta_{1}\beta_{2}-\alpha_{5}\beta_{1}\beta_{3}-\\ \alpha_{5}\beta_{2}\beta_{3}+\alpha_{5}\beta_{3}^{2}-\alpha_{6}\alpha_{7}\beta_{1}+\alpha_{6}\alpha_{7}\beta_{2} &=& 0, \\ \alpha_{4}+\alpha_{5}-\alpha_{6}-\alpha_{7}-\beta_{2}+\beta_{3} &=& 0. \end{array}$$

Using our MAGMA procedure

CFunc(3,7,1:PSet:=[[{1},{2,3},{4,5},{6,7}]],exptup:=[[1,1,1,1,1,1,1]]); we get the system of equations

$$\begin{array}{rclcrcl} \alpha_{1}\beta_{1}-\alpha_{1}\beta_{3}+\alpha_{3}^{2}-\alpha_{3}\alpha_{6}-\alpha_{3}\alpha_{7}-\alpha_{3}\beta_{1}+\alpha_{3}\beta_{3}+\alpha_{6}\alpha_{7} &=& 0, \\ \alpha_{1}\beta_{2}-\alpha_{1}\beta_{3}+\alpha_{5}^{2}-\alpha_{5}\alpha_{6}-\alpha_{5}\alpha_{7}-\alpha_{5}\beta_{2}+\alpha_{5}\beta_{3}+\alpha_{6}\alpha_{7} &=& 0, \\ \alpha_{2}+\alpha_{3}-\alpha_{6}-\alpha_{7}-\beta_{1}+\beta_{3} &=& 0, \\ \alpha_{3}^{2}\beta_{2}-\alpha_{3}^{2}\beta_{3}-\alpha_{3}\alpha_{6}\beta_{2}+\alpha_{3}\alpha_{6}\beta_{3}-\alpha_{3}\alpha_{7}\beta_{2}+\alpha_{3}\alpha_{7}\beta_{3}-\\ \alpha_{3}\beta_{1}\beta_{2}+\alpha_{3}\beta_{1}\beta_{3}+\alpha_{3}\beta_{2}\beta_{3}-\alpha_{3}\beta_{3}^{2}-\alpha_{5}^{2}\beta_{1}+\alpha_{5}^{2}\beta_{3}+\\ \alpha_{5}\alpha_{6}\beta_{1}-\alpha_{5}\alpha_{6}\beta_{3}+\alpha_{5}\alpha_{7}\beta_{1}-\alpha_{5}\alpha_{7}\beta_{3}+\alpha_{5}\beta_{1}\beta_{2}-\alpha_{5}\beta_{1}\beta_{3}-\\ \alpha_{5}\beta_{2}\beta_{3}+\alpha_{5}\beta_{3}^{2}-\alpha_{6}\alpha_{7}\beta_{1}+\alpha_{6}\alpha_{7}\beta_{2} &=& 0, \\ \alpha_{4}+\alpha_{5}-\alpha_{6}-\alpha_{7}-\beta_{2}+\beta_{3} &=& 0. \end{array}$$

We note that the above system has a solution

$$(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6, \alpha_7, \beta_1, \beta_2, \beta_3) = (-1, 0, 2, -1 - \sqrt{-3}, -1 + \sqrt{-3}, \frac{1 - \sqrt{-3}}{2}, \frac{1 + \sqrt{-3}}{2}, 0, -4, -1).$$

It corresponds to the example given by Ayad and Fleischmann, that is

$$f = \frac{x^4 - 8x}{x^3 + 1}$$
, $g = \frac{x^2 + 4x}{x + 1}$, $h = \frac{x^2 - 2x}{x + 1}$.

Let *k* be an algebraically closed field of characteristic zero. **Pethő** and **Tengely** provided two families of decomposable rational functions having 3 zeros and poles altogether.

- (a) $\frac{(x-\alpha_1)^{k_1}(x+1/4-\alpha_1)^{2k_2}}{(x-1/4-\alpha_1)^{2k_1+2k_2}}$ for some $\alpha_1 \in k$ and $k_1, k_2 \in \mathbb{Z}, k_1 + k_2 \neq 0$,
- (b) $\frac{(x-\alpha_1)^{2k_1}(x+\alpha_1-2\alpha_2)^{2k_2}}{(x-\alpha_2)^{2k_1+2k_2}}$ for some $\alpha_1, \alpha_2 \in k$ and $k_1, k_2 \in \mathbb{Z}, k_1 + k_2 \neq 0$.

Let *k* be an algebraically closed field of characteristic zero. **Pethő** and **Tengely** provided two families of decomposable rational functions having 3 zeros and poles altogether.

- (a) $\frac{(x-\alpha_1)^{k_1}(x+1/4-\alpha_1)^{2k_2}}{(x-1/4-\alpha_1)^{2k_1+2k_2}}$ for some $\alpha_1 \in k$ and $k_1, k_2 \in \mathbb{Z}, k_1 + k_2 \neq 0$,
- (b) $\frac{(x-\alpha_1)^{2k_1}(x+\alpha_1-2\alpha_2)^{2k_2}}{(x-\alpha_2)^{2k_1+2k_2}}$ for some $\alpha_1, \alpha_2 \in k$ and $k_1, k_2 \in \mathbb{Z}, k_1 + k_2 \neq 0$.

We note that in both cases the zeros and poles form an arithmetic progression:

$$lpha_1-rac{1}{4},lpha_1,lpha_1+rac{1}{4}, \quad ext{difference}=rac{1}{4}$$
 and $lpha_1,lpha_2,2lpha_2-lpha_1, \quad ext{difference}=lpha_2-lpha_1.$

Problem: determine decomposable rational functions having zeros and poles forming an arithmetic progression.

If $S_{\infty} \neq \emptyset$, then we take S_{β_i} and S_{β_j} two partitions having minimal cardinality. The zeros and poles satisfy $\alpha_i = \alpha_0 + k_i d$. We have that

$$\beta_{i} - \beta_{j} = \frac{\prod_{s \in S_{\beta_{j}}} (\alpha_{r} - \alpha_{s})^{l_{s}}}{\prod_{m \in S_{\infty}} (\alpha_{r} - \alpha_{m})^{l_{m}}}$$
$$\beta_{i} - \beta_{j} = -\frac{\prod_{r \in S_{\beta_{i}}} (\alpha_{s} - \alpha_{r})^{l_{r}}}{\prod_{m \in S_{\infty}} (\alpha_{s} - \alpha_{m})^{l_{m}}}.$$

Hence

$$\frac{u_1d^{v_1}}{u_2d^{v_2}} = -\frac{u_3d^{v_3}}{u_4d^{v_2}} \Rightarrow -\frac{u_1u_4}{u_2u_3} = d^{v_3-v_1}.$$

If $S_{\infty} = \emptyset$, then we take $S_{\beta_{j_1}}, S_{\beta_{j_2}}$ and $S_{\beta_{j_3}}$ three partitions having minimal cardinality. **Siegel identity** yields

$$v_{j_1,j_2,j_3}(\alpha_{j_1}) + v_{j_3,j_1,j_2}(\alpha_{j_1}) = 0$$

$$v_{j_1,j_2,j_3}(\alpha_{j_2}) + v_{j_2,j_3,j_1}(\alpha_{j_2}) = 0$$

$$v_{j_3,j_1,j_2}(\alpha_{j_3}) + v_{j_2,j_3,j_1}(\alpha_{j_3}) = 0.$$

After eliminating $\beta_{i_1}, \beta_{i_2}, \beta_{i_3}$ one obtains that

$$\gamma = d^{\delta}$$
.

In both cases we get a finite list of possible values of d and a finite list of special tuples $(k_1, \ldots, k_n, l_1, \ldots, l_n)$ for which $v_3 - v_1 = 0$ and $-\frac{u_1 u_4}{u_2 u_3} = 1$ or $\delta = 0$ and $\gamma = 1$.

Example

Let n=5 and $|S_{\infty}|=1, |S_{\beta_1}|=|S_{\beta_2}|=2$. We have the following system of equations

$$x = \alpha_{1} : \quad \beta_{1} - \beta_{2} = \frac{(k_{1} - k_{3})^{l_{3}}(k_{1} - k_{4})^{l_{4}}d^{l_{3} + l_{4}}}{(k_{1} - k_{5})^{l_{5}}d^{l_{5}}}$$

$$x = \alpha_{2} : \quad \beta_{1} - \beta_{2} = \frac{(k_{2} - k_{3})^{l_{3}}(k_{2} - k_{4})^{l_{4}}d^{l_{3} + l_{4}}}{(k_{2} - k_{5})^{l_{5}}d^{l_{5}}}$$

$$x = \alpha_{3} : \quad \beta_{1} - \beta_{2} = -\frac{(k_{3} - k_{1})^{l_{1}}(k_{3} - k_{2})^{l_{2}}d^{l_{1} + l_{2}}}{(k_{3} - k_{5})^{l_{5}}d^{l_{5}}}$$

$$x = \alpha_{4} : \quad \beta_{1} - \beta_{2} = -\frac{(k_{4} - k_{1})^{l_{1}}(k_{4} - k_{2})^{l_{2}}d^{l_{1} + l_{2}}}{(k_{4} - k_{5})^{l_{5}}d^{l_{5}}}.$$

If $l_1 + l_2 - l_3 - l_4 \neq 0$, then d is an element of a finite set having 100 elements.

Example

In case $(k_1, k_2, k_3, k_4, k_5) = (0, 4, 1, 3, 2)$ and $(l_1, l_2, l_3, l_4, l_5) = (1, 1, 2, 2, 2)$ we have that $d = \frac{2\sqrt{3}}{3}$ and $g(x) = (x - \beta_1)(x - \beta_1 + 3)$ $h(x) = \beta_1 + \frac{(x - \alpha_0)(x - \alpha_0 - 4d)}{(x - \alpha_0 - 2d)^2}$ $f(x) = \frac{4(x - \alpha_0)(x - \alpha_0 - d)(x - \alpha_0 - 3d)(x - \alpha_0 - 4d)}{(x - \alpha_0 - 2d)^4}$

Example

In case $(k_1, k_2, k_3, k_4, k_5) = (1, 4, 3, 0, 2)$ and $(l_1, l_2, l_3, l_4, l_5) = (1, 1, 1, 1, 1)$ we have that $l_1 + l_2 - l_3 - l_4 = 0$ and

$$g(x) = (x - \beta_1)(x - \beta_1 + 2d)$$

$$h(x) = \beta_1 + \frac{(x - \alpha_0 - d)(x - \alpha_0 - 4d)}{(x - \alpha_0 - 2d)}$$

$$f(x) = \frac{(x - \alpha_0)(x - \alpha_0 - d)(x - \alpha_0 - 3d)(x - \alpha_0 - 4d)}{(x - \alpha_0 - 2d)}$$

My favorite sequence

Number Theory and Its
Applications
October 4-8, 2010.
Debrecen

29th Journées Arithmétiques July 6-10, 2015. Debrecen

My favorite sequence

Number Theory and Its
Applications
October 4-8, 2010.
Debrecen

Hanna Tengely: October 2, 2010.

29th Journées Arithmétiques July 6-10, 2015. Debrecen

Sára Tengely: July 4, 2015.