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Introduction

We are interested in f ∈ k(x) that are decomposable as rational
functions, i.e. for which

f (x) = g(h(x))

with g , h ∈ k(x), deg g , deg h ≥ 2 holds.
Such a decomposition is only unique up to a linear fractional
transformation

λ =
ax + b

cx + d

with ad − bc = ±1, since we may always replace g(x) by g(λ(x)) and
h(x) by λ−1(h(x)) without affecting the equation f (x) = g(h(x)).
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Related results

1949: Rényi and Erdős conjectured independently: bound for the
number of terms of h(x)2 implies a bound for the terms of h(x).
1987: Schinzel ingenious proof in the case h(x)d .
Schinzel conjectured that if for fixed g the polynomial g(h(x)) has at
most l non-constant terms, then the number of terms of h is bounded
only in terms of l . A more general form of this conjecture was proved
by Zannier in 2008.
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1922: Ritt proved that if f = p1 ◦ p2 ◦ · · · ps = q1 ◦ q2 ◦ · · · qr , then
s = r and the sets of degrees of the polynomials are equal.
Extensions by Beardon, Pakovich, Zieve and many others.

It is not
true that all complete decompositions of a rational function have the
same length. Gutierrez and Sevilla provided an example with
rational coefficients as follows

f =
x3(x + 6)3(x2 − 6x + 36)3

(x − 3)3(x2 + 3x + 9)3
,

f = g1 ◦ g2 ◦ g3 = x3 ◦ x(x − 12)

x − 3
◦ x(x + 6)

x − 3
,

f = h1 ◦ h2 =
x3(x + 24)

x − 3
◦ x(x2 − 6x + 36)

x2 + 3x + 9
.
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Several arithmetical applications, equations of type f (x) = g(y) :

� Davenport, Lewis and Schinzel

� Fried

� Beukers, Shorey and Tijdeman

� Bilu and Tichy

� Győry

� Brindza and Pintér
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In this talk we are interested in rational functions

f =
P

Q

with a bounded number of zeros and poles (i.e. the number of
distinct roots of P,Q in a reduced expression of f is bounded).

We assume that the number of zeros and poles are fixed, whereas the
actual values of the zeros and poles and their multiplicities are
considered as variables.
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Theorem by Fuchs and Pethő

Let n be a positive integer. Then there exists a positive integer
J ≤ 2nn2n and, for every i ∈ {1, . . . , J}, an affine algebraic variety Vi
defined over Q and with Vi ⊂ An+ti for some 2 ≤ ti ≤ n, such that:
(i) If f , g , h ∈ k(x) with f (x) = g(h(x)) and with deg g , deg h ≥ 2, g
not of the shape (λ(x))m,m ∈ N, λ ∈ PGL2(k), and f has at most n
zeros and poles altogether, then there exists for some i ∈ {1, . . . , J} a
point P = (α1, . . . , αn, β1, . . . , βti ) ∈ Vi (k),
a vector (k1, . . . , kti ) ∈ Zti with k1 + k2 + . . .+ kti = 0 or not
depending on Vi , a partition of {1, . . . , n} in ti + 1 disjoint sets
S∞, Sβ1 , . . . ,Sβti with S∞ = ∅ if k1 + k2 + · · ·+ kti = 0,
and a vector (l1, . . . , ln) ∈ {0, 1, . . . , n − 1}n, also both depending
only on Vi , such that
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f (x) =

ti∏
j=1

(wj/w∞)kj , g(x) =

ti∏
j=1

(x − βj)kj ,

and

h(x) =


βj +

wj

w∞
(j = 1, . . . , ti ), if k1 + k2 + · · ·+ kti 6= 0,

βj1wj2
−βj2wj1

wj2
−wj1

(1 ≤ j1 < j2 ≤ ti ), otherwise,

where

wj =
∏

m∈Sβj

(x − αm)lm , j = 1, . . . , ti ,

w∞ =
∏

m∈S∞

(x − αm)lm .

Moreover, we have deg h ≤ (n − 1)/(ti − 1) ≤ n − 1.
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(ii) Conversely for given data P ∈ Vi (k), (k1, . . . , kti ), (l1, . . . , ln),
S∞, Sβ1 . . . ,Sβti , as described in (i) one defines by the same equations
rational functions f , g , h with f having at most n zeros and poles
altogether for which f (x) = g(h(x)) holds.

(iii) The integer J and equations defining the varieties Vi are
effectively computable only in terms of n.
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Tools from the theory of valuation

The Mason-Stothers (1984) theorem says: Let f , g ∈ k(x), not
both constant and let S be any set of valuations of k(x) containing
all the zeros and poles in P1(k) of f and g. Then we have
max{deg f , deg g} ≤ |S | − 2. Best possible.

More generally Zannier (1995) proved: Let S is any set of valuations
of k(x) containing all the zeros and poles in P1(k) of g1, . . . , gm. If
g1, . . . , gm ∈ k(x) span a k-vector space of dimension µ < m and any
µ of the gi are linearly independent over k, then

−
∑
v∈M

min{v(g1), . . . , v(gm)} ≤ 1

m − µ

(
µ

2

)
(|S | − 2).
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Since k is algebraically closed we can write

f (x) =
n∏

i=1

(x − αi )
fi

with pairwise distinct αi ∈ k and fi ∈ Z for i = 1, . . . , n.
Similarly we get

g(x) =
t∏

j=1

(x − βj)kj

with pairwise distinct βj ∈ k and kj ∈ Z for j = 1, . . . , t and t ∈ N.
Thus we have

n∏
i=1

(x − αi )
fi = f (x) = g(h(x)) =

t∏
j=1

(h(x)− βj)kj .

We now distinguish two cases depending on k1 + k2 + · · ·+ kt 6= 0 or
not; observe that this condition is equivalent to v∞(g) 6= 0 or not.
We shall write h(x) = p(x)/q(x) with p, q ∈ k[x ], p, q coprime.
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The case k1 + k2 + · · ·+ kt 6= 0

There is a subset S∞ of the set {1, . . . , n} such that the αm for
m ∈ S∞ are precisely the poles in A1(k) of h, i.e.

q(x) =
∏

m∈S∞

(x − αm)lm , lm ∈ N.

Furthermore h and h(x)− βj have the same number of poles counted
by multiplicity, which means that their degrees are equal.

There is a partition of the set {1, . . . , n}\S∞ in t disjoint subsets
Sβ1 , . . . ,Sβt such that

h(x) = βj +
1

q(x)

∏
m∈Sβj

(x − αm)lm ,

where lm ∈ N satisfies lmkj = fm for m ∈ Sβj , j = 1, . . . , t.
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Since we assume that g is not of the shape (λ(x))m it follows that
t ≥ 2. Let 1 ≤ i < j ≤ t be given. We have at least two different
representations of h and thus we get

βi +
1

q(x)

∏
r∈Sβi

(x − αr )lr = βj +
1

q(x)

∏
s∈Sβj

(x − αs)ls

or equivalently β(ui − uj) = 1, where β = 1/(βj − βi ) and

ui =
1

q(x)

∏
r∈Sβi

(x − αr )lr =
wi

w∞
.
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The case k1 + k2 + · · ·+ kt = 0

Here we have
n∏

i=1

(x − αi )
fi =

t∏
j=1

(
p(x)

q(x)
− βj

)kj

=
t∏

j=1

(p(x)− βjq(x))kj .

There is a partition of the set {1, . . . , n} in t disjoint subsets
Sβ1 , . . . ,Sβt such that

(p(x)− βjq(x))kj =
∏

m∈Sβj

(x − αm)fm .

Thus kj divides fm for all m ∈ Sβj , j = 1, . . . , t. On putting
lm = fm/kj for m ∈ Sβj we obtain

p(x)− βjq(x) =
∏

m∈Sβj

(x − αm)lm , j = 1, . . . , t.
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Let us choose 1 ≤ j1 < j2 < j3 ≤ t. From the corresponding three
equations the so called Siegel identity vj1,j2,j3 + vj3,j1,j2 + vj2,j3,j1 = 0
follows, where

vj1,j2,j3 = (βj1 − βj2)
∏

m∈Sβj3

(x − αm)lm .

The quantities vj1,j2,j3 are non-constant rational functions and they are
S-units. Observe that by taking j1 = 1, j2 = i , j3 = j with
1 ≤ i < j ≤ t the Siegel identity can be rewritten as

βj − β1

βj − βi
wi

w1
+
β1 − βi
βj − βi

wj

w1
= 1.
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An algorithm to compute solutions

Pethő and Tengely provided and algorithm implemented in MAGMA:
1) Let S∞, Sβ1 , . . . ,Sβt be a partition of {1, 2, . . . , n}.
2) For the partition and a vector (l1, . . . , ln) ∈ {0, 1, . . . , n − 1}n
compute the corresponding variety V = {v1, . . . , vr}, where vi is a
polynomial in α1, . . . , αn, β1, . . . , βt . Here we used Groebner basis
technique.
3) To remove contradictory systems we compute
Φ =

∏
i 6=j(αi − αj)

∏
i 6=j(βi − βj).

4) For all vi compute

ui1 =
vi

gcd(vi ,Φ)
,

and
uik =

uik−1

gcd(uik−1
,Φ)

,

until gcd(uik−1
,Φ) = 1.
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We note that Ayad and Fleischmann implemented a MAGMA code to
find decompositions of a given rational function, as an example they
considered the rational function

f =
x4 − 8x

x3 + 1

and they obtained that f (x) = g(h(x)), where

g =
x2 + 4x

x + 1
and h =

x2 − 2x

x + 1
.
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Using our MAGMA procedure
CFunc(3,7,1:PSet:=[[{1},{2,3},{4,5},{6,7}]],exptup:=[[1,1,1,1,1,1,1]]);
we get the system of equations

α1β1 − α1β3 + α
2
3 − α3α6 − α3α7 − α3β1 + α3β3 + α6α7 = 0,

α1β2 − α1β3 + α
2
5 − α5α6 − α5α7 − α5β2 + α5β3 + α6α7 = 0,

α2 + α3 − α6 − α7 − β1 + β3 = 0,

α
2
3β2 − α

2
3β3 − α3α6β2 + α3α6β3 − α3α7β2 + α3α7β3−

α3β1β2 + α3β1β3 + α3β2β3 − α3β
2
3 − α

2
5β1 + α

2
5β3+

α5α6β1 − α5α6β3 + α5α7β1 − α5α7β3 + α5β1β2 − α5β1β3−

α5β2β3 + α5β
2
3 − α6α7β1 + α6α7β2 = 0,

α4 + α5 − α6 − α7 − β2 + β3 = 0.

We note that the above system has a solution
(α1, α2, α3, α4, α5, α6, α7, β1, β2, β3) =

(−1, 0, 2,−1−
√
−3,−1 +

√
−3,

1−
√
−3

2
,

1 +
√
−3

2
, 0,−4,−1).

It corresponds to the example given by Ayad and Fleischmann, that is

f =
x4 − 8x

x3 + 1
, g =

x2 + 4x

x + 1
, h =

x2 − 2x

x + 1
.
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Let k be an algebraically closed field of characteristic zero. Pethő
and Tengely provided two families of decomposable rational functions
having 3 zeros and poles altogether.

(a) (x−α1)k1 (x+1/4−α1)2k2

(x−1/4−α1)2k1+2k2
for some α1 ∈ k and k1, k2 ∈ Z, k1 + k2 6= 0,

(b) (x−α1)2k1 (x+α1−2α2)2k2

(x−α2)2k1+2k2
for some α1, α2 ∈ k and

k1, k2 ∈ Z, k1 + k2 6= 0.

We note that in both cases the zeros and poles form an arithmetic
progression:

α1 −
1

4
, α1, α1 +

1

4
, difference =

1

4
and

α1, α2, 2α2 − α1, difference = α2 − α1.
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Problem: determine decomposable rational functions having zeros and
poles forming an arithmetic progression.
If S∞ 6= ∅, then we take Sβi and Sβj two partitions having minimal
cardinality. The zeros and poles satisfy αi = α0 + kid .
We have that

βi − βj =

∏
s∈Sβj

(αr − αs)ls∏
m∈S∞(αr − αm)lm

βi − βj = −

∏
r∈Sβi

(αs − αr )lr∏
m∈S∞(αs − αm)lm

.

Hence
u1d

v1

u2dv2
= −u3d

v3

u4dv2
⇒ −u1u4

u2u3
= dv3−v1 .
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If S∞ = ∅, then we take Sβj1 , Sβj2 and Sβj3 three partitions having
minimal cardinality. Siegel identity yields

vj1,j2,j3(αj1) + vj3,j1,j2(αj1) = 0

vj1,j2,j3(αj2) + vj2,j3,j1(αj2) = 0

vj3,j1,j2(αj3) + vj2,j3,j1(αj3) = 0.

After eliminating βj1 , βj2 , βj3 one obtains that

γ = dδ.

In both cases we get a finite list of possible values of d and a finite
list of special tuples (k1, . . . , kn, l1, . . . , ln) for which v3 − v1 = 0 and
−u1u4

u2u3
= 1 or δ = 0 and γ = 1.
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Example

Let n = 5 and |S∞| = 1, |Sβ1 | = |Sβ2 | = 2. We have the following
system of equations

x = α1 : β1 − β2 =
(k1 − k3)l3(k1 − k4)l4d l3+l4

(k1 − k5)l5d l5

x = α2 : β1 − β2 =
(k2 − k3)l3(k2 − k4)l4d l3+l4

(k2 − k5)l5d l5

x = α3 : β1 − β2 = −(k3 − k1)l1(k3 − k2)l2d l1+l2

(k3 − k5)l5d l5

x = α4 : β1 − β2 = −(k4 − k1)l1(k4 − k2)l2d l1+l2

(k4 − k5)l5d l5
.

If l1 + l2 − l3 − l4 6= 0, then d is an element of a finite set having 100
elements.
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Example

In case (k1, k2, k3, k4, k5) = (0, 4, 1, 3, 2) and

(l1, l2, l3, l4, l5) = (1, 1, 2, 2, 2) we have that d = 2
√

3
3 and

g(x) = (x − β1)(x − β1 + 3)

h(x) = β1 +
(x − α0)(x − α0 − 4d)

(x − α0 − 2d)2

f (x) =
4(x − α0)(x − α0 − d)(x − α0 − 3d)(x − α0 − 4d)

(x − α0 − 2d)4
.
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Example

In case (k1, k2, k3, k4, k5) = (1, 4, 3, 0, 2) and
(l1, l2, l3, l4, l5) = (1, 1, 1, 1, 1) we have that l1 + l2 − l3 − l4 = 0 and

g(x) = (x − β1)(x − β1 + 2d)

h(x) = β1 +
(x − α0 − d)(x − α0 − 4d)

(x − α0 − 2d)

f (x) =
(x − α0)(x − α0 − d)(x − α0 − 3d)(x − α0 − 4d)

(x − α0 − 2d)
.
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