Beamer Presentation

Author's Name

Institute

12/10/2017

Sums and products

$$\frac{\frac{1}{x} + \frac{1}{y}}{x - y}$$

Sums and products

$$\frac{\frac{1}{x} + \frac{1}{y}}{x - y}$$

$$\pi = \sqrt{6\left(1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots\right)}$$

Sums and products

$$\frac{\frac{1}{x} + \frac{1}{y}}{x - y}$$

$$\pi = \sqrt{6\left(1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots\right)}$$

$$\sin(x) = x \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2 \pi^2}\right)$$

First.

• First.

- First.
- Second.

- First.
- Second.

- First.
- Second.
- Third.
 - First.
 - Second.
 - Third.

$$\frac{1}{1+\frac{1}{2+\frac{1}{3+x}}}$$

$$\frac{1}{1 + \frac{1}{2 + \frac{1}{3 + x}}}$$

$$\left(x + \frac{1}{x}\right)^3 = x^3 + 3x + 3\frac{1}{x} + \frac{1}{x^3}$$

$$\frac{1}{1+\frac{1}{2+\frac{1}{3+x}}}$$

$$\left(x + \frac{1}{x}\right)^3 = x^3 + 3x + 3\frac{1}{x} + \frac{1}{x^3}$$

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Magic square			
	Γ	1	
	L		

Magic square [8 1 6]

Magic square

Magic square

$$\begin{bmatrix} 8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \end{bmatrix}$$

Magic square

$$\begin{bmatrix} 8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \end{bmatrix}$$

Redheffer matrix

n	matrix		
1	(1)		
2	$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$		
3	$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$		

Confucius

"Choose a job you love, and you will never have to work a day in your life."

Ralph Waldo Emerson

"Without ambition one starts nothing. Without work one finishes nothing. The prize will not be sent to you. You have to win it."

Jerome K. Jerome

"I like work: it fascinates me. I can sit and look at it for hours."