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Integer sequences

Problem: find intersection of integer sequences
Some well-known sequences:

� perfect powers

� binomial coefficients

� Fibonacci sequence, recurrence sequences

We will consider the equation

Ln =

(
x

5

)
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Related results

� Cohn and independently Wyler: the only squares in the Fibonacci
sequence are F0 = 0,F1 = F2 = 1,F12 = 144.

� Alfred and independently Cohn: perfect squares in the Lucas
sequence.

� Cohn and independently Pethő: perfect squares in the Pell
sequence.

� London and Finkelstein and independently Pethő: the only cubes
in the Fibonacci sequence are F0 = 0,F1 = F2 = 1 and F6 = 8.

� Bugeaud, Mignotte and Siksek: combination of Baker’s method,
modular approach and some classical techniques to show that the
perfect powers in the Fibonacci sequence are 0,1,8 and 144, and
the perfect powers in the Lucas sequence are 1 and 4.

� Szalay: solved the equations Fn, Ln,Pn =
(x
3

)
and Fn, Ln =

(x
4

)
.

� Kovács: solved the equations Pn =
(x
4

)
and Fn = Π4(x).
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Similar combinatorial Diophantine problems

Many results, we mention only a few mathematicians working on this
subject: Bennett, Bilu, Bremner, Bugeaud, Győry, Hajdu, Hanrot,
Kovács, Luca, Mignotte, Olajos, Pethő, Pintér, Rakaczki, Saradha,
Shorey, Siksek, Stewart, Stoll, Stroeker, Szalay, Tijdeman, Tzanakis,
De Weger.
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Main result

We consider the Diophantine equation

Ln =

(
x

5

)
. (1)

Theorem
The only positive solution of equation (1) is (n, x) = (1, 5).
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We will use the following well known property of the sequences Fn

and Ln :
L2

n − 5F 2
n = 4(−1)n.

We have that (
x

5

)2

± 4 = 5F 2
n .

The above equation can be reduced to two genus two curves as
follows

C+ : Y 2 = X 2(X + 15)2(X + 20) + 180000000 (2)

and
C− : Y 2 = X 2(X + 15)2(X + 20)− 180000000, (3)

where Y = 535!Fn and X = 5x2 − 20x .
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Theorem
(a) The integral solutions of equation (2) are

(X ,Y ) ∈ {(25,−15000), (25, 15000)}.

(b) There are no integral solution of equation (3).

To prove the above results we will follow the paper by Bugeaud,
Mignotte, Siksek, Stoll and Tengely. They combined Baker’s method
and the so-called Mordell-Weil sieve to solve(

x

2

)
=

(
y

5

)
and

x2 − x = y5 − y .
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Proof of part (a)

Using MAGMA (procedures based on Stoll’s papers) we obtain that
J(Q)+ is free of rank 1 with Mordell-Weil basis given by

D = (25, 15000)−∞.

Classical Chabauty’s method can be applied.

C+(Q) = {∞, (25,±15000)}.
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Proof of part (b)

Using MAGMA we determine a Mordell-Weil basis which is given by

D1 = (ω1,−200ω1) + (ω1,−200ω1)− 2∞,
D2 = (ω2, 120000) + (ω2, 120000)− 2∞,

where ω1 is a root of the polynomial x2 − 5x + 1500 and ω2 is a root
of x2 + 195x + 13500.
Let f = x2(x + 15)2(x + 20)− 180000000 and α be a root of f .
We have

x − α = κξ2,

such that κ ∈ {1, α2 − 5α + 1500, α2 + 195α + 13500, α4 + 190α3 +
14025α2 + 225000α + 20250000}.
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By local arguments it is possible to restrict the set. In our case one
can eliminate

α2 − 5α + 1500, α2 + 195α + 13500

by local computations in Q2 and

α4 + 190α3 + 14025α2 + 225000α + 20250000

by local computations in Q3. It remains to deal with the case κ = 1.
By Baker’s method we get a large upper bound for log |x | :

1.58037× 10285.
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The set of known rational points on the curve (3) is {∞}. Let W be
the image of this set in J(Q)−. Applying the Mordell-Weil sieve
implemented by Bruin and Stoll we obtain that

(C (Q)) ⊆W + BJ(Q)−,

where

B = 26·32·52·72·112·132·19·23·31·41··43·47·61·67·79·83·109·113·127,

that is
B = 678957252681082328769065398948800.

Now we use an extension of the Mordell-Weil sieve due to Samir
Siksek to obtain a very long decreasing sequence of lattices in Z2 to
obtain a lower bound for possible unknown rational points.
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If (x , y) is an unknown integral point, then

log |x | ≥ 7.38833× 101076.

This contradicts the bound for log |x | we obtained by Baker’s method.

Proof of the main theorem
We have that X = 25 and we also have that X = 5x2 − 20x . We
obtain that x ∈ {−1, 5}.

1 = L1 =

(
5

5

)
.
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Research problem

Lucas sequence: {Un(P,Q)}, where P,Q are non-zero integers,
U0 = 0,U1 = 1 and

Un = PUn−1 − QUn−2, n ≥ 2.

Determine all (P,Q, n) such that Un(P,Q) = ±3�.
Joint work with László Szalay.
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Some related results

Ljunggren (1942): if (P,Q) = (−2, 1), then Un = � implies that
n = 7, and Un = 2� implies that n = 2.
Cohn (1964): if (P,Q) = (1,−1), (the Fibonacci sequence), then the
only square in the sequence Un > 1 is U12.
Mignotte and Pethő (1993): Un(P, 1) = �, k�,P ≥ 3.
Nakamula and Pethő (1998): Un(P,−1) = �, k�,P ≥ 1.
Bremner, Tzanakis (2004): U9 = �,U12 = �, assuming that
gcd(P,Q) = 1.
General finiteness results, results related to perfect powers:
Pethő (1982), Shorey and Stewart (1983), Shorey and Tijdeman
(1986), Bugeaud, Mignotte and Siksek (2006).

14 of 23



Notation

U0(P,Q) = 0,U1(P,Q) = 1 and Un = PUn−1 − QUn−2, n ≥ 2,
associated sequence
V0(P,Q) = 2,V1(P,Q) = P and Vn = PVn−1 − QVn−2, n ≥ 2,
discriminant: D = P2 − 4Q.
We assume that PQ 6= 0, gcd(P,Q) = 1 and D 6= 0.
We have that

Vn(P,Q)2 − DUn(P,Q)2 = 4Qn
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Problem by Bremner and Tzanakis

Let k 6= 0 and n0 > 1 be fixed integers and S is a fixed set of primes.
Find all (m,P,Q) for which

Un0m(P,Q) = k�,

and all prime divisors of m are from S.
Bremner and Tzanakis proved the following theorem.
Theorem. Let k , n0 ≥ 8 be fixed non-zero integers. Then

Un0 = k�

can hold only for finitely many coprime integers P,Q.
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The case n0 = 8, k = ±3,S = {2}
If n0 = 8, k = ±3,S = {2}, then the equation is in the form

U2t (P,Q) = k�.

In case of n0 = 8 and k = ±3 we get

P = ax2,

P2 − 2Q = by2,

P4 − 4P2Q + 2Q2 = cz2,

where a, b, c ∈ {±1,±2,±3,±6}.
The last equation can be written as (P2 − 2Q)2 − 2Q2 = cz2, which
has no solution if 3|c. Therefore c ∈ {±1,±2}. We also have that
gcd(a, b) ∈ {1, 2} and gcd(b, c) ∈ {1, 2}. It remains to deal with 64
triples.
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Eliminating triples

The previous system of equations leads to the hyperelliptic curve

−2cX 4 + 4bcX 2 + 2b2c = Y 2.

Elim:=function(D)
P<x>:=PolynomialRing(Rationals());
C:=HyperellipticCurve(-2*D[3]*x^4+4*D[2]*D[3]*x^2+

2*D[2]^2*D[3]);
BP:=BadPrimes(C);
return &and [IsLocallySolvable(C,p): p in BP];
end function;

After testing local solvability of these curves there remains only 40
triples to deal with.
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Rank 0 elliptic curves

The hyperelliptic curve

−2cX 4 + 4bcX 2 + 2b2c = Y 2

is a curve of genus 1, that is an elliptic curve. There are only finitely
many rational points on elliptic curves of rank 0. The Birch and
Swinnerton-Dyer conjecture is known for elliptic curves of rank 0, so
we reduce the number of triples by using the Magma procedure
AnalyticRank.

Elim2:=function(D)
E:=EllipticCurve([0,4*D[2]*D[3],0,-4*D[2]^2*D[3]^2,0]);
return AnalyticRank(E);

end function;

The number of remaining triples is 16.
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Triples to deal with

The remaining triples are as follows

< −3,−2,−2 >,< −1, 6,−2 >,< 1, 6,−2 >,< 3,−2,−2 >,

< −3,−1,−1 >,< −1, 3,−1 >,< 1, 3,−1 >,< 3,−1,−1 >,

< −3, 1, 1 >,< −1,−3, 1 >,< 1,−3, 1 >,< 3, 1, 1 >,

< −3, 2, 2 >,< −1,−6, 2 >,< 1,−6, 2 >,< 3, 2, 2 > .

Important remark: < −3,−2,−2 >∼< 3,−2,−2 > etc.
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Eliminating triples by elliptic Chabauty

We may also try to eliminate triples by the so-called elliptic Chabauty
method, which is now implemented in Magma (work by Nils Bruin).
A few of them can be eliminated in this way.
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Other direction

We have a conic:

−(a2x4)2 + 2(a2x4)(by2) + (by2)2 = 2cz2

c point a2x4 by2

-2 (2, 0, 1) 2u2 + 2v2 4uv − 4v2

-1 (1,−1, 1) 3u2 + 2uv + v2 u2 + 2uv − v2

1 (1, 1, 1) −u2 − 2uv + v2 −u2 + 2uv − 3v2

2 (0, 2, 1) −4u2 − 4uv −2u2 − 2v2

Parametrizations yields curves of genus 3 and genus 4 over the
rational number field.
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We have that (P,Q) ∈ {(±3, 5), (±1, 2)}. For given (P,Q) Bremner
and Tzanakis reduced the problem to certain Thue-Mahler equation
of degree 4. We do it in a different way.
(P,Q) = (±3, 5), we obtain that D = −11, therefore

V 2
n + 11U2

n = 4 · 5n,

and we also have that Un = ±3�.

V 2
n = −99x4 + 4 · 5n.

That is we have to determine S-integral points on elliptic curves. That
can be done by the Magma procedure SIntegralLjunggrenPoints.
if (P,Q) = (±1, 2), then the curve is given by V 2

n = −63x4 + 2n+2.
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