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CHAPTER 1

Introduction and preliminaries

1.1. History

The theory of Diophantine equations is a classical subject that involves solving
an equation of the form f(x1, x2, . . . , xn) = 0, where f is an n-variable function
and x1, x2, . . . , xn are required to be integers or rational numbers. Many methods
have been devoted to the study of Diophantine equations theoretically, an observation
which may come with no surprise given that the study of such equations goes back
thousands of years. Concerning a Diophantine equation, there are some questions one
should arise:

● Is the equation solvable ?
● If it is solvable, is the solution set to this equation finite or infinite ?
● If it is solvable, is it possible to give an effective procedure to find all the

solutions ?

Indeed, there are many questions that one can ask regarding the solutions of Dio-
phantine equations. In this dissertation, we will study the solutions of some types
of Diophantine equations concerning linear recurrence sequences. Furthermore, we
give some strategies to completely determine such solutions. Before presenting our
main results, we introduce a historical survey related to Diophantine equations with
some relevant problems, concepts and notations, which will be used throughout the
dissertation. The name of these equations is in honor of the mathematician Diophan-
tus who did his work and lived in Alexandria around 300 AD. He was well known by
his ancient text Diophantus’ Arithmetica which was comprised of thirteen books, but
only six Greek manuscripts have survived into the modern era, and they have been
edited and translated several times. In fact, one of the ancient Diophantine equations
presented by the equation

xn + yn = zn, (1)

where all the variables including n are rational integers. If n = 1, equation (1) is
trivial since it stands as the sum of any two integers is clearly an integer. So we
have x + y = z. On the other hand, if n = 2, equation (1) presents Pythagorean
equation: x2 + y2 = z2, which was solved by the Greek mathematician Pythagoras
who lived around 500 BC. However, around 1500 BC the Babylonians were aware
of the solution (4961,6480,8161). Pythagoras stated and proved his theorem in the
following form:

1
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THEOREM 1.1. The square of the hypotenuse is equal to the sum of the squares
of the other two sides.

It is easy to show that there are infinitely many positive integer solutions of the
Pythagorean equation. Indeed, if (x0, y0, z0) is an arbitrary solution, then there are
infinitely many solutions for this equation of the form (cx0, cy0, cz0) for any nonneg-
ative integer c.

In case of n > 2, equation (1) has no integer solutions such that xyz ≠ 0 and this
presents what is called Fermat’s last theorem (sometimes called Fermat’s conjecture),
that was written by Pierre de Fermat (1601−1665) by the following note in the margin
of his edition of Diophantus’ Arithmetica:

" CUBUM AUTEM IN DUOS CUBOS, AUT QUADRATO QUADRATUM IN
DUOSQUADRATO QUADRATOS, ET GENERALITER NULLAM IN INFINITUM ULTRA

QUA-DRATUM POTESTATEM IN DUOS EJUSDEM NOMINIS FAS EST DIVIDERE;
CUJUSREI DEMONSTRATIONEM MIRABILE SANE DETEXI. HANC MARGINIS

EXIGUITASNON CAPERET."
He claimed to have a proof of this conjecture, but it was never found. In fact, this
statement was published by his son after his death. Moreover, Fermat proved that
the equation x4 + y4 = z2 has no nontrivial solutions using his method of infinite
descent, which was not so well known. This method was found in a letter entitled
"Relation des nouvelles decouvertes en la science des nombres" that he wrote to Pierre
de Carcavi in 1659 (see e.g. [69]), telling him that he has discovered a new method of
demonstration, which can be applied to many problems in the theory of number.

In case of n = 4, equation (1) can be written as x4 + y4 = (z2)2, so the infinite de-
scent proves Fermat’s conjecture for n = 4, see e.g. [16], [74], [95] and the references
given there.

One of the most well known results on Fermat’s last theorem was given around
1820 by Sophie Germain where n is an odd prime number, and the result stated in the
following theorem, that was named after her (see e.g. [140]).

THEOREM 1.2. If l is a prime number greater than 2 such that q = 2l + 1 is also
prime, then the equation

xl + yl = zl (2)
has no solutions in nonzero integers x, y, z, which are not divisible by l.

This theorem was considered as the first general proposition on Fermat’s last the-
orem. In fact, Germain’s theorem was called the first case of Fermat’s last theorem,
and the case where equation (2) has no solutions in nonzero integers x, y, z in which
at least one of them is divisible by l is considered as the second case. These cases
were studied by many mathematicians who realized that these two cases have roughly
the same difficulties in their proofs, although in the first case simpler techniques were
used. By using similar techniques used by Germain, Terjanian [245] proved the fol-
lowing theorem, that shows the Germain’s theorem is possible if l is replaced by an
even exponent.
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THEOREM 1.3. If the equation

x2l
+ y2l

= z2l

has a nonzero solution in integers x, y, z, then either x or y is divisible by 2l, where
l ≥ 3 is a prime number.

In addition, elegant proofs were given by Kummer for these two cases of Fermat’s
last theorem. It was the first time of using some important concepts of algebraic
number theory such as cyclotomic fields in the proof of this theorem. He in fact
showed that how the subject of the number of divisor classes of cyclotomic fields leads
to the proof of Fermat’s last theorem at these cases. His approach mainly depends on
the factorization of equation (2) into the form

l−1

∏
k=0

(x + ζkl y) = z
l

over the ring Z[ζl] generated by the lth roots of unity. For more details about Kum-
mer’s approach in the proofs of the cases of Fermat’s last theorem, one can see e.g.
[32], [65], [66], [255] and the references given there.

The first proof of Fermat’s conjecture was discovered in 1994 and published in
1995 by Wiles [257] while working on a more general problem in geometry in a joint
work with Taylor in [239]. His proof was completely based on elliptic curves, which
is an important field of Diophantine number theory, and the proof was a consequence
of proving that every semistable elliptic curve over Q is modular. In the following we
summarize Wiles’ approach for proving Fermat’s last theorem. We start by recalling
some important concepts used in the proof of this theorem. Indeed, some of these
concepts may appear later in connection with our main results.

First of all, we define elliptic curves and the modularity and semistability of el-
liptic curves. In general, curves are very important for a lot of reasons. For instance,
in the curves of genus zero, rational curves, everything is algorithmic and they can be
parameterized by rational functions, so they can be understood very well. Moreover,
the curves of genus g ≥ 2 are not easy to handle, however curves of genus g = 1 that
can be parameterized by elliptic functions called the elliptic curves. Elliptic curves
have a very rich structure since they have a natural group law, and they appeared in
the study of Diophantine equations and their history dates back to ancient Greece and
beyond. They have occurred in these equations with two different approaches, one is
algebraic number theory, and the other is the analysis of algebraic varieties. The first
one uses properties of the rings and fields for which the solutions lie in, whereas the
analysis of algebraic varieties studies geometric objects. For later use we also recall
the following. The points on a curve where both partial derivatives vanish are called
singular points on the curve. Hence, a curve with no singular points is called a non-
singular curve. It is known that a cubic curve is a projective curve of degree 3, and
the general homogeneous cubic polynomial
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F (X ∶ Y ∶ Z) = c0X
3
+ c1X

2Y + c2XY
2
+c3Y

3
+ c4X

2Z + c5XY Z+

+c6Y
2Z + c7XZ

2
+ c8Y Z

2
+ c9Z

3,

with constants c0, ..., c9 in some field K, for which F = 0 defines an elliptic curve
E. Moreover, the most general definition of a curve E over a field K given by the
nonsingular generalized Weierstrass equation in its affine form

y2
+ α1xy + α3y = x

3
+ α2x

2
+ α4x + α6, (3)

where α1, . . . , α6 ∈ K with nonzero discriminant ∆, which is defined as follows
⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆ = −β2
2β8 − 8β3

4 − 27β2
6 + 9β2β4β6,

β2 = α2
1 + 4α2,

β4 = 2α4 + α1α3,
β6 = α2

3 + 4α6,
β8 = α2

1α6 + 4α2α6 − α1α3α4 + α2α
2
3 − α

2
4.

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

Indeed, this form is useful when working with fields of characteristic 2 and character-
istic 3. If we work with fields with characteristic different of 2, then dividing equation
(3) by 2 and completing the square lead to an equation of the form

y2
1 = x

3
+ α′2x

2
+ α′4x + α

′
6, (4)

where y1 = y + α1

2 x +
α3

2 with some constants α′2, α
′
4, α

′
6 ∈ K. In the case when the

characteristic is not 2 or 3, then by substituting x1 = x +
α′2
3 in (4) we get the form

y2
1 = x

3
1 +Ax1 +B,

where A,B ∈ K. This latter equation is referred to as Weierstrass equation for an el-
liptic curve. Moreover, two elliptic curves over Q of the form (4) that can be obtained
from each others by changing of the coordinates x = a2X + b and y = a3Y + cX + d,
where a, b, c, d ∈ Q and then dividing by a6 are called isomorphic. Every elliptic curve
over Q is isomorphic to a curve of the form (4) in which the coefficients are rational
integers. For deep details about the study of elliptic curves and their applications, one
can see e.g. [218], [256] and the references given there.

On the other hand, if Ψ denotes the complex upper half plane. An elliptic curve
E is called modular if there exists a homomorphism from the classical modular curve,
X0(N) for a natural number N, onto the curve E such that X0(N) is a compact Rie-
mann surface that is formed by completing the noncompact quotient space Ψ/Γ0(N)

to be compact by adjoining finitely many equivalent classes of Q ∪ {∞}, called the
cusps, under the act of the group

Γ0(N) =

⎧⎪⎪
⎨
⎪⎪⎩

(
a1 a2

a3 a4
) ∈ SL2(Z), where N divides a3

⎫⎪⎪
⎬
⎪⎪⎭

.

Furthermore, an elliptic curve E over Q is called semistable if it is semistable at every
prime number p, which means it is isomorphic to an elliptic curve over Q in which
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modulo every prime p is either nonsingular or has a singular point with two tangents of
distinct directions. For more details about the modularity and semistability of elliptic
curves, see e.g. [199], [212] and the references given there.

In fact, the relation between elliptic curves and Fermat’s last theorem started when
Taniyama (1927− 1958) proposed a problem related to the following theorem, that is
called Taniyama-Shimura Conjecture (see e.g. [211]).

THEOREM 1.4. Every elliptic curve over Q is modular.

This conjecture became more clear after some related studies by Shimura. Then,
in the the beginning of 1970′s Hellegouarch [112, 113] connected Fermat equations
of the form (1) with elliptic curves of the form

Y 2
=X(X + xn)(X − yn) (5)

to prove some results related to elliptic curves using the results of Fermat’s last theo-
rem. On the other hand, in 1985 Frey [85] stated that elliptic curves arising from coun-
terexamples to Fermat’s last theorem could not be modular, and not so long later by
using some ideas of Serre in [209] this was proved by Ribet [196] since he proved that
if n > 3 is a prime number with the nonzero integers x, y and z satisfying xn+yn = zn,
then the elliptic curve (5) is not modular. Finally, Wiles presented the following theo-
rem that leads to a proof of Fermat’s last theorem.

THEOREM 1.5. Let the nonzero integers A1 and B1 be relatively prime such that
16∣A1B2(A1 −B2), then the elliptic curve

Y 2
=X(X +A1)(X +B1)

is modular.

It is clear that the conditions of this theorem are satisfied if we let A1 = xn and
B1 = −y

n, where x, y, z and n are presumptive solution of the Fermat’s equation with
n > 4 and one of the integers x, y or z is even. Thus, Theorem 1.5 and Ribet’s result
together imply the Fermat’s last theorem. Indeed, Theorem 1.5 is proved due to his
following result with Taylor:

THEOREM 1.6. Every semistable elliptic curve over Q is modular.

As a conclusion, having the elliptic curves (5) be modular, contradicting the con-
clusion of Ribet’s work and establishing that counterexamples to Fermat’s last theo-
rem do not exist. For more details about the proofs of the latter two theorems and the
history of Wiles’ proof related to Fermat’s last theorem, see e.g. [199], [257] and the
references given there.

In the next section, we recall some special types of Diophantine equations with
their related results, that will appear briefly or in details later with our main results.
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1.2. Special types of Diophantine equations

1.2.1. Pell type Diophantine equations.

Consider the equation
x2

− ay2
= b, (6)

where x and y are unknown rational integers, b is any rational integer and a is a
given positive integer that is not a perfect square, since otherwise there are clearly no
nontrivial integral solutions. Furthermore, if a is a square, then equation (6) can be
written as (x+ay)(x−ay) = b and therefore solved without using any further theory.
Around 1768 Lagrange ([137], Oeuvres II, pages 377 − 535) studied the solutions of
this equation in which gcd(x, y) = 1 and gave a recursive method for the general
solution. This method depends on reducing this problem to the case where ∣b∣ <

√
a

and the solutions (x, y) are found in correspondence to (pn, qn) such that the fraction
(
pn
qn

) converges to the simple continued fraction of
√
a. If b ≠ 1, then equation (6)

may have no solutions. Indeed, if there is a nontrivial solution, then it has infinitely
many integer solutions (x, y) generated by a finite number of bases. Moreover, the
first nontrivial solution (x0, y0) is called a fundamental solution of this equation. As
particular equations represented in (6) are the equations x2 − ay2 = ±1, which are
known as the classical Pell equations. The equation

x2
− ay2

= 1 (7)

is called the Pell equation due to a mistake on the part of Euler (1707 − 1783) who
attributed the solution of the equation to John Pell. This equation is also known as
the Pellian equation. In fact, John Pell (1611 − 1685) did not make any independent
contribution to this equation other than referring to it in a paper that he wrote in
algebra. This equation was firstly stated by Fermat (1601 − 1665) by claiming this
equation has infinitely many solutions, but he did not provide a proof to it. Around
the same year of announcing this problem by Fermat, Brouncker gave a systematic
method for solving this equation. Lagrange [137] (also see e.g. [73, page 358])
gave a complete discussion about equation (7) with publishing a complete such a
proof since he used the simple continued fraction expansion of

√
a to its solvability

in nontrivial rational integers x and y. It is well known that equation (7) has infinitely
many solutions (u, v) given by

(uk + vk
√
a) = (u1 + v1

√
a)k,

where k is any rational integer and (u1, v1) is its fundamental solution. On the other
hand, the equation

x2
− ay2

= −1 (8)
is called the negative Pell equation, which does not always have a solution. Indeed,
it has a solution if and only if the length of the period of the continued fraction of
√
a is congruent to 1 modulo 2, see e.g. [217]. It is clear to observe that if (a1, b1)

is a fundamental solution for (8), then all the solutions are given by odd powers k.
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Furthermore, if the negative Pell equation (8) is solvable with the fundamental solu-
tion (a1, b1), then the fundamental solution of the positive Pell equation (7) can be
obtained by

(u1 + v1

√
a) = (a1 + b1

√
a)2.

On the other hand, if (uk, vk) represents the kth solution of the Pellian equation (7),
then the solutions of equation (6) are given by

(xk ± yk
√
a) = (xb ± yb

√
a)(uk ± vk

√
a),

where (xb, yb) is a base solution of equation (6). For further details about the solutions
of equation (6), see e.g. [41]. The problems of the determination of a fundamental
solution of the equation (6) in general and deciding whether the equation (8) has a
solution seem ancient problems, and they have been studied by many authors. For
instance, a fundamental solution can be determined using the Chakravala method in
[78], that was introduced by the Indian mathematicians Jayadeva (9th century) and
Bhāskara II (12th century). In 1770, by using the simple continued fraction, Lagrange
([137], Oeuvres II, pages 655 − 726) gave one more algorithm that was considered as
a generalization of the method of solving equations (7) and (8). This latter algorithm
has been simplified by Matthews [165] and Mollin [172] using simple continued frac-
tions. Kaplan and Williams [126] showed that the solvability of equation (8) leads
to the solvability of equation (6), where b = −4 in positive relatively prime rational
integers if and only if the length of the period of the continued fraction expansion of
√
a is congruent to the length of the period of the continued fraction expansion of

(1
2(1+

√
a)) modulo 4. Moreover, several authors provided other methods for finding

the fundamental solutions, studying whether equation (8) has a solution or not and
investigating the solvability of equation (6) in general or some specific types of this
equation, see e.g. [118], [146], [173], [202], [222], [240] and the references given
there.

1.2.2. Fermat-Catalan type Diophantine equations.

In 1785, Legendre [145] investigated the equation

0 = f(x, y, z) ∶= Ax2
+By2

+Cz2, (9)

where the coefficients A,B and C are rational integers. By reducing this equation
into its normal form in which these coefficients are squarefree and pairwise relatively
prime, he found necessary conditions to show that this equation can be solvable in
nontrivial rational integers x, y and z and stated his result in the following theorem,
that was named after him.

THEOREM 1.7. The equation (9) has a solution in rational integers x, y, z, not
all zero, if and only if

● the coefficients A,B,C are not all of the same sign,
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● there exist rational integers X,Y and Z such that BX2 +C ≡ 0 (mod A),
CY 2 +A ≡ 0 (mod B) and AZ2 +B ≡ 0 (mod C).

Holzer [117] proved that a nontrivial rational integer solution exists for equation
(9) under all of the above assumptions, where

∣x∣ ≤
√

∣BC ∣, ∣y∣ ≤
√

∣AC ∣, ∣z∣ ≤
√

∣AB∣. (10)

Moreover, a proof of an estimate weaker than that of Holzer’s in (10) under the same
assumptions was given by Mordell [174]. This was also found later by Skolem [220].
If equation (9) is solvable under the conditions of Theorem 1.7, Birch and Davenport
[30] proved a theorem that gives the following estimate:

0 < ∣A∣x2
+ ∣B∣ y2

+ ∣C ∣ z2
≤ 8 ∣ABC ∣ .

After that, Kneser [133] established a deep result of the form

∣z∣ ≤ k(r)
√

∣AB∣,

where r = lcm(2,ABC) and k(r) < 1 in some cases. Mordell [177] again estab-
lished an elementary proof of Holzer’s estimate in (10) under the above assumptions
since he showed that if a solution (x0, y0, z0) exists such that x0 and y0 are relatively
prime and ∣z0∣ >

√
∣AB∣, then it is possible to find another solution (x, y, z) with

∣z∣ < ∣z0∣. Hence, the estimate in (10) follows. In fact, this argument is not quite com-
plete since he did not prove the constructed integer z is nonzero. Therefore, Williams
[258] tried to complete Mordell’s proof with removing unnecessary assumptions in
which A,B,C being squarefree and pairwise relatively prime by proving the follow-
ing result:

THEOREM 1.8. If the equation (9) has a solution in rational integers x, y, z, not
all zero, where A,B,C are nonzero integers, then there exists a solution of equation
(9) satisfying

∣x∣ ≤

√
∣BC ∣

(A,B,C)
, ∣y∣ ≤

√
∣AC ∣

(A,B,C)
, ∣z∣ ≤

√
∣AB∣

(A,B,C)
.

On the other hand, due to Smith’s observation [223] about carrying the conditions
in Theorem 1.7 over the case in which the coefficients and unknowns are Gaussian
integers, Samet [201] proved a similar theorem of Theorem 1.7 in Z[i]. Furthermore,
Leal-Ruperto [143] adapted the proof of Holzer’s estimate that was established by
Mordell in [177] to prove that if equation (9) in Z[i], reduced into its normal form,
then it has a solution (x, y, z) which satisfies

∣z∣ ≤
√

(1 +
√

2) ∣AB∣.

The latter bound was improved by Santos and Diaz-Vargas [72] by giving a modifi-
cation of Leal-Ruperto’s result [143] where the coefficients and unknowns are in the
ring of integers of Q(

√
d) for d = 1,2,3,7,11. In fact, they proved that if equation



1.2. SPECIAL TYPES OF DIOPHANTINE EQUATIONS 9

(9), in its normal form, has a solution in Q(
√
d) for d = 1,2,3,7,11 then it has a

solution with

∣z0∣ ≤

√
4

3 − d
∣AB∣ for d = 1,2,

∣z0∣ ≤

√
16d

−d2 + 14d − 1
∣AB∣ for d = 3,7,11.

If we consider equation (9) with A = B = C = 1 and f(x, y, z) = 3xyz, then we
obtain one of the well known Diophantine equations called Markoff equation; that is,

x2
+ y2

+ z2
= 3xyz,

which was deeply studied by Markoff (1879,1880) [160, 161] in case of x, y, z ∈

Z and 1 ≤ x ≤ y ≤ z. A triple (x, y, z) of positive integers that satisfies Markoff
equation is called a Markoff triple, and the numbers x, y and z are called Markoff
numbers. Markoff showed that there are infinitely many Markoff triples, which can
be constructed from one fundamental solution (1,1,1). In fact, he gave a procedure
to construct new solutions from old ones. In these papers, Markoff numbers have been
introduced to describe minimal values of indefinite quadratic forms with exceptionally
large minima greater than 1/3 of the square root of the discriminant. He showed
that these forms are in one-to-one correspondence with the Markoff triples. More
precisely, these numbers of which the first few are

1,2,5,13,29,34,89,169,194,233,433,610,985,1325,1597, . . .

play a role in a famous theorem of Markoff: the GL2(Z)-equivalence classes of real
indefinite binary quadratic forms Q of discriminant 1 for which the invariant

µ(Q) = {min ∣Q(x, y)∣ ∶ (x, y) ∈ Z2 and (x, y) ≠ (0,0)} >
1

3

are in one-to-one correspondence with the Markoff triples. Indeed, the invariant µ(Q)

for the form, that is corresponding to (x, y, z) being (9−4z−2)−1/2. Thus, the Markoff
numbers exactly describe the part of the Markoff spectrum (the set of all µ(Q)) lying
above 1/3. An equivalent result is as follows, under the action of SL2(Z) on R ∪∞

given by t→ (at + b)/(ct + d), the SL2(Z)-equivalence classes of real numbers t for
which the approximation measure

µ(t) = lim
y→∞

sup (y ⋅min
x∈Z

∣yt − x∣) >
1

3

are in one-to-one correspondence with the Markoff triples. Indeed, the spectrum is
being the same as above, namely µ(t) = 5−1/2 with t is equivalent to the golden ratio
and µ(t) ≤ 8−1/2 for all other t (for more details about these equivalent results, see
also [264]). Since then, the Markoff numbers are important in both the theory of
quadratic forms and in the theory of Diophantine approximation. In 1913, Frobenius
[86] gave the following long-standing conjecture:
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CONJECTURE 1.9. If (x, y, z) and (x′, y′, z) are two Markoff triples, where x ≤

y ≤ z and x′ ≤ y′ ≤ z, then x = x′ and y = y′.

This conjecture is called the Markoff numbers unicity conjecture or the Frobenius
unicity conjecture and has remained open. The first partial results on this conjec-
ture were settled by Baragar [14] for prime Markoff numbers and by Button [49]
and Schmutz [207] for Markoff numbers that are prime powers or two times a prime
power. For other results related to this conjecture, see e.g. [53], [138], [229] and
the references given there. Other generalizations and studies related to the Markoff
equation will be mentioned later with our results concerning this equation in Section
3.2 of Chapter 3.

One of the interesting results related to the Legendre’s equation (9) was intro-
duced in 1844 [52] by the French and Belgian mathematician Catalan who wrote to
Crelle’s Journal, a mathematics journal that was founded by the German mathemati-
cian Crelle in 1826, the following conjecture:

CONJECTURE 1.10. The equation

xn = ym + 1 (11)

has no nontrivial rational integer solutions other than (x, y, n,m) = (±3,2,2,3) if
n,m > 1.

Following this unproved conjecture, Lebesgue [144] proved that the equation

xp = y2
+ 1

has no nontrivial solutions in rational integers x, y and p if p is a prime number.
Cassels [51] proved that if equation (11) is satisfied, then n∣x and m∣y, where n and
m are prime numbers. On the other hand, Ko [134] showed that if the prime number
q ≥ 5, then equation

x2
= yq + 1

has no nontrivial solutions x and y in rational integers. Tijdeman [247] used Baker’s
theory in [12], dealing with linear forms in the logarithms of algebraic numbers, to
show that there is an effective bound on the size of n and m that satisfy equation
(11) such that n and m are prime numbers. There were several mathematicians who
intended to prove Catalan’s problem using computer technologies, but without any
success till 2004 when the Romanian mathematician Mihăilescu [170] gave a com-
plete proof to it using the theory of cyclotomic fields. Indeed, many developments
have occurred on Catalan’s conjecture, for example the Diophantine equation

x2
+ T = ym, (12)

where x, y, T,m are positive integers with m > 2, has been considered and studied
in several papers. For instance, Cohn [59] studied the integral solutions x, y,m of
equation (12) for several values of T in the range 1 ≤ T ≤ 100. Bugeaud, Mignotte and
Siksek [48] used some modular methods to study the solutions of (12) in the integers
x, y,m, and they solved it completely for all values of T between 1 and 100. Tengely
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[242] computed the solutions of the equations x2+a2 = yp and x2+a2 = 2yp in rational
integers x, y and a prime number p > 2 for all a in the range 3 ≤ a ≤ 501. Berczes and
Pink [20] determined all the solutions of equation (12) in integers x > 0, y > 1,m, k
in case of T = p2k, where k is a nonnegative integer, p is a prime number in the
range of 2 ≤ p < 100 and the integers x and y are relatively prime. Soydan [224]
studied equation (12) in case of T = 7a111a2 and computed all of its the solutions in
nonnegative integers x, y, a1, a2,m ≥ 3, where gcd(x, y) = 1 except a1x and a2 are
odd and even, respectively. For the complete history of Catalan’s conjecture and other
related developments, see e.g. [38], [168], [192], [208] and the references given there.

One of the most well known generalizations of Fermat’s equation, Legendre’s
equation and Catalan’s equation is the following equation, that is known as Fermat-
Catalan Diophantine equation. The equation

0 = g(x, y, z) ∶= A1x
a
+B1y

b
+C1z

r (13)

in the integers x, y, z, a, b, r, where a, b and r are greater than 1, and A1,B1 and C1

are given integers such thatA1B1C1 ≠ 0. Next, we mention some of the known results
related to this equation, starting with the result of Darmon and Granville [67] in which
they proved the following:

THEOREM 1.11. For any given integers A1,B1,C1, a, b, r such that A1B1C1 ≠ 0
and a, b and r greater than 1 satisfying 1

a +
1
b +

1
r < 1, equation (13) has only finitely

many relatively prime solutions (x, y, z) in integers.

On the other hand, Beukers [22] gave the following theorem:

THEOREM 1.12. For any given integers A1,B1,C1, a, b, r such that A1B1C1 ≠ 0
and a, b and r greater than 1 satisfying 1

a +
1
b +

1
r > 1, equation (13) has either no

solution or infinitely many relatively prime integer solutions (x, y, z).

For the remaining case where 1
a +

1
b +

1
r = 1, we see an easy calculation gives that

the set {a, b, r} equals to {2,4,4},{3,3,3} or {2,3,6}. In this case the solution of
the equation comes down to the determination of rational points on twists of genus 1
curves over Q.

Note that if a = b = 2,C1 = −1 and r is odd, then according to Mordell [176, page
111] one can obtain for the equation

A1x
2
+B1y

2
= zr (14)

the following parametrizations for its solutions by putting

z = A1p
2
+B1q

2,

where p and q are arbitrary integers, and taking

x
√
A1 + y

√
−B1 = (p

√
A1 + q

√
−B1)

r,

x
√
A1 − y

√
−B1 = (p

√
A1 − q

√
−B1)

r.
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Therefore, x and y are expressed as polynomials in p and q. For other developments,
generalizations and explicit methods related to Fermat-Catalan equation, see e.g. [18],
[24], [79], [84], [92] and the references given there.

1.2.3. Runge type Diophantine equations.

Let G(x, y) = 0 be a binary Diophantine equation that is irreducible in a class
including those polynomials in which the leading form of G is not a constant multiple
of a power of an irreducible polynomial. In 1887, Runge [200] proved that such
an equation G(x, y) = 0 has finitely many solutions. Indeed, from the proof of his
method he showed the existence of an effective upper bound for each of the values
of ∣x∣ and ∣y∣, where x and y represent integral solutions of this equation. In the
following we consider one of the most well studied equation of this form, which is the
polynomial

G(x, y) =
m

∑
i=0

n

∑
j=0

bi,jx
iyj

of rational integer coefficients with degx(G) = m > 0 and degy(G) = n > 0. If
G(x, y) is an irreducible polynomial over Q[x, y], unless the following conditions
hold for G, then it is said that G satisfies Runge’s condition:

● for all nonzero i and j, bi,n = bm,j = 0,
● all the pairs (i, j) in the terms bi,jxiyj of the polynomial G satisfy mn ≥

ni +mj,
● for which nm = ni +mj the sum of all bi,jxiyj of G is a constant multiple

of a power of an irreducible polynomial in Z[x, y],
● the algebraic function y = y(x) defined by G(x, y) = 0 has only one system

of conjugate Puiseux expansions at x =∞.

Indeed, Runge proved that the equation G(x, y) = 0 has finitely many integral solu-
tions x and y if at least one of the above conditions does not hold. The first effective
upper bound of this method was obtained by Hilliker and Straus [114] since they used
a quantitative version of Eisenstein’s theorem on power series expansions of algebraic
functions to show that if M1 = max{m,n} and M2 = maxi,j ∣ai,j ∣, then the solutions
of G(x, y) = 0 satisfy

max{∣x∣ , ∣y∣} <

⎧⎪⎪
⎨
⎪⎪⎩

4(1 +M2)
2 if M1 = 1,

(8M1M2)
M

2M3
1

1 if M1 > 1.

Walsh [253] improved the result of Hilliker and Straus by using the result of Dwork
and van der Poorten in [77] to Runge’s method. In fact, he modified the result of
Hilliker and Straus by removing of the double exponential in M1 with the following
result:
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THEOREM 1.13. If G(x, y) satisfies Runge’s Condition, then all solutions
(x, y) ∈ Z2 of the Diophantine equation G(x, y) = 0 satisfy

max{∣x∣ , ∣y∣} < (2M1)
18M7

1M
12M6

1
2 .

Applying the Skolem’s method in [219] based on using the elimination theory,
upper bounds for the integral solutions of G(x, y) = 0 were obtained by Grytczuk and
Schinzel [97]. Using the transcendental construction by algebraic functions, Laurent
and Poulakis [142] extended Walsh’s result, which was applied on the field of rational
numbers, to the algebraic number fields in which they obtained an effective version
of Runge’s result in the context of interpolation determinants. Unfortunately, all of
these bounds, that have been obtained are usually large to examine all the possibilities
for the integral solutions of G(x, y) = 0. Beukers and Tengely [23] suggested a
practical algorithm for determining the solutions if the coefficients and degx(G) and
degy(G) are not too large. Szalay [237] extended the version of Runge’s method
given by Poulakis in [189] who provided a method to solve an equation of the form
y2 = g(x), where g(x) is a degree four polynomial with integer coefficients and
nonzero discriminant, to solve completely certain Diophantine equations of the form

H(x, y) = z2

in integers x, y and z such that

H(x, y) = ∑
i+j≤4

bi,jx
iyj

is a nonhomogeneous polynomial with rational integer coefficients and satisfies some
technical conditions. Furthermore, many refinements, developments and generaliza-
tions related to Runge’s idea have been presented by several authors, see e.g. [28],
[102], [234], [235], [241] and the references given there.

1.2.4. Thue and superelliptic type Diophantine equations.

One of the most known general results in the theory of Diophantine equation was
obtained in 1909 by Thue [246] who proved that the equation

F (x, y) =m1, (15)

where F (x, y) ∈ Z[x, y] is an irreducible homogeneous polynomial of degree d > 2
and m1 is a nonzero rational integer, admits at most a finite number of solutions in
rational integers x and y. This is called Thue’s theorem.

On the other hand, the Diophantine equation

F (x) ∶= a0x
n
+ a1x

n−1
+ . . . + an = y

m2 in x, y ∈ Z (16)

is called hyperelliptic equation if m2 = 2, otherwise it is called superelliptic equation.
In 1926, Siegel [215] proved that if m2 = 2 and F (x) has at least three simple roots,
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then equation (16) has only a finite number of solutions in rational integers. Further-
more, he showed using the same method that if m2 > 2 and F (x) has at least two
simple roots, then equation (16) has a finite number of rational integer solutions.

Moreover, if F (x, y) is an absolutely irreducible polynomial with rational integer
coefficients such that F (x, y) = 0 represents a curve, which has a component of
genus 0, Siegel [216] showed this equation has infinitely many integral solutions.
In other words, if the algebraic curve defined by (16) is of genus > 0, then the number
of the integral points on that curve is finite. We refer to this result by the Thue-
Siegel’s theorem. The latter Siegel’s result was extended by Mahler [159] in which
he conjectured that a similar statement holds for points having only a finite number of
primes in their denominators and proved this conjecture for curves of genus 1 over the
rationals Q by his p-adic analogue of the Thue-Siegel’s theorem. Independently, Lang
[139] and LeVeque [147] established the p-adic analogue of this theorem to prove
that equation (16) has only finitely many S-integral solutions. Furthermore, in order
to have the algebraic curve defined by equation (16) with positive genus, LeVeque
[148] gave a necessary and sufficient condition for that. All of these results are based
on Thue’s method, and hence are ineffective since their proofs do not provide any
algorithm for finding the solutions.

On the other hand, in the 1960′s Baker [7, 10] gave a nontrivial effective lower
bound for the linear forms of logarithms

Λ = b1 log a1 + b2 log a2 + . . . + bm log am,

where m ∈ Z,m > 0, bi ∈ Z for i = 1, . . . ,m and a1, a2, . . . , am are any algebraic
numbers that are not 0 or 1, and log denotes fixed determination of the logarithmic
function. Therefore, by using his estimates, Baker [8] gave an effective proof of
Thue’s theorem and provided an algorithm for the complete solutions of (15), which
is stated in the following theorem:

THEOREM 1.14. All the integral solutions x and y of the Thue equation (15),
under its conditions with d < C2 − 1, satisfy

max(∣x∣ , ∣y∣) < C1 exp{(logm1)
C2},

where C1 is computed effectively depending only on the values of d,C2 and the coef-
ficients of F (x, y).

As applications of this method, Baker [9, 11] extended the result that he estab-
lished on the Diophantine equation

y2
= ax3

+ bx2
+ cx + d

to the class of the Diophantine equations of the form (16) as stated in the following
theorems:

THEOREM 1.15. If m2 > 2, n > 2, a0 ≠ 0, a1, a2, . . . , an ∈ Z, and the polynomial
on the left hand side of the superelliptic equation of (16) has at least two simple roots,
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then all the integral solutions x and y of equation (16) satisfy

max(∣x∣ , ∣y∣) < exp exp{(5m2)
10
(n10nH)

n2

},

where H = {max ∣ aj ∣∶ for all j = 0, . . . , n}.

THEOREM 1.16. If m2 = 2 and the polynomial on the left hand side of the hyper-
elliptic equation of (16) has at least three simple roots, then all the integral solutions
x and y of equation (16) satisfy

max(∣x∣ , ∣y∣) < exp exp exp{(n10nH)
n2

}.

In the 1970′s Baker’s estimates were improved by Sprindžuk [225, 226, 227]
whose results were also generalized to the S-integral solutions of (16) by Trelina
[248]. Using the mentioned results of Baker and LeVeque; Györy, Tijdeman and
Voorhoeve [100, 101] proved finiteness results concerning some exponential Diophan-
tine equations. But, due to the ineffective character of LeVeque’s theorem, their earlier
result in [100] is ineffective. Five years later, Brindza [37] improved the latter result
to be effective. Moreover, Baker’s bounds have also been improved and generalized
by several authors, including Shorey and Tijdeman [214], Bugeaud [42], Hajdu and
Herendi [103]. In fact, the best known bounds concerning the solutions of elliptic
equations over Q are due to Hajdu and Herendi [103] in 1998. For other improve-
ments and applications of Baker’s method on other types of Diophantine equations,
see e.g. [25], [29], [99], [188], [206], [228], [251] and the references given there.

In the following section, we recall some important concepts and notations related
to the subject of linear recurrence sequences, that will be used throughout the disserta-
tion. Then we recite some recent results related to the solutions of some Diophantine
equations concerning particular linear recurrence sequences.

1.3. Diophantine properties of linear recursive sequences

1.3.1. Background and notations.

The linear recurrences have an ancient history in Number Theory especially in
the study of particular Diophantine equations. In fact, they have been widely studied
for their own sake and also as auxiliary tools toward other Diophantine problems. A
sequence (Gn)n≥0 ⊆ C (it is also denoted by {Gn}n≥0 or simply {Gn}) is called a
linear recurrence relation of order k if the recurrence

Gn+k = a1Gn+k−1 + a2Gn+k−2 + . . . + akGn + f(n)

holds for all n ≥ 0 with the coefficients a1, a2, . . . , (ak ≠ 0) ∈ C and f(n) a function
depending on n only. If f(n) = 0 such a recurrence relation is called homogeneous,
otherwise it is called nonhomogeneous.
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For the homogeneous recurrence relation, the polynomial

F (X) =Xk
− a1X

k−1
− . . . − ak =

s

∏
i=1

(X − αi)
ri ∈ C[X],

where α1, α2, . . . , αs and r1, r2, ..., rs are respectively the distinct roots of F (X) and
their corresponding multiplicities, is called the characteristic polynomial of (Gn)n≥0.
Thus, if F (X) ∈ Z[X] has k distinct roots, then there exist constants c1, c2, . . . , ck ∈
Q(α1, α2, . . . , αk) such that

Gn =
k

∑
i=1

ciα
n
i

holds for all the nonnegative values of n. This sequence is called a non-degenerate
sequence if none of the quotients αi/αj (1 ≤ i < j ≤ s) is a root of unity. If k = 3,
then the sequence is called a ternary linear recurrence sequence. Most of the well
known ternary linear recurrence sequences are the Tribonacci sequence and Berstel’s
sequence, that are given by

T0 = T1 = 0, T2 = 1, Tn+3 = Tn+2 + Tn+1 + Tn for n ≥ 0, (17)
B0 = B1 = 0,B2 = 1, Bn+3 = 2Bn+2 − 4Bn+1 + 4Bn for n ≥ 0, (18)

respectively. On the other hand, if k = 2 and a1 and a2 are nonzero integers such that
a2

1 + 4a2 ≠ 0, then (Gn)n≥0 represents a binary recurrence sequence whose character-
istic polynomial is

F (X) =X2
− a1X − a2 = (X − α1)(X − α2),

with α1 ≠ α2. Again, this sequence is called a non-degenerate sequence if c1c2α1α2 ≠

0 and the ratio α1

α2
is not a root of unity. Since a major part of our main results will

be mainly depending on considering special non-degenerate binary linear recurrence
sequences, let us define these sequences in a more precise and detailed way. Let P
and Q be nonzero relatively prime integers and D = P 2 − 4Q be called the discrimi-
nant. Let Un = Un(P,Q) and Vn = Vn(P,Q) be defined by the following recurrence
relations with their initials:

U0 = 0, U1 = 1, Un = PUn−1 −QUn−2 for n ≥ 2, (19)

V0 = 2, V1 = P, Vn = PVn−1 −QVn−2 for n ≥ 2, (20)
respectively. Therefore, the characteristic polynomial of the recurrences is given by

X2
− PX +Q,

which has the roots

α =
P +

√
D

2
and β =

P −
√
D

2
,

with α ≠ β,α + β = P,α ⋅ β = Q and (α − β)2 = D. The sequences {Un} and {Vn}
are called the (first and second kind) Lucas sequences with the parameters (P,Q),
respectively. Moreover, {Un} is also called Lucas sequence and {Vn} is called the
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associated Lucas sequence or the companion Lucas sequence. Sometimes these se-
quences are both called Lucas sequences, and the numbers in them are the generalized
Lucas numbers. The terms of the Lucas sequences of the first and second kind satisfy
the identity

V 2
n =DU2

n + 4Qn. (21)
Furthermore, the Lucas sequences of the first and second kind can be respectively
written by the following formulas that are known as Binet’s formulas:

Un =
αn − βn

α − β
and Vn = α

n
+ βn for n ≥ 0. (22)

As mentioned earlier, if the ratio ζ = α
β is a root of unity, then the sequences {Un}

and {Vn} are said to be degenerate, and non-degenerate otherwise. Describing all of
the degenerate Lucas sequences of first and second kind follows from the fact that

∣ζ + ζ−1∣ = ∣
α

β
+
β

α
∣ ≤ 2.

Since α
β +

β
α =

P 2−2Q
Q , it follows that P 2−2Q = 0,±Q,±2Q. This implies that P 2 = Q,

2Q,3Q,4Q. Since gcd(P,Q) = 1, we have (P,Q) = (1,1), (−1,1), (2,1) or (−2,1).
Therefore, ifD = 0 orD = −3, then the sequence is degenerate. For more details about
the degenerate and non-degenerate Lucas sequences of the first and second kind and
the proof of Binet’s formulas, see e.g. (Chapter 1 in [193]). Most of the well known
and interesting Lucas sequences of the first and second kind are the sequences of the
Fibonacci numbers, Pell numbers, Lucas numbers, Pell-Lucas numbers, Jacobsthal
numbers, Jacobsthal-Lucas numbers, balancing numbers and companion balancing
numbers, which are respectively given by

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2, (23)
P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2 for n ≥ 2, (24)
L0 = 2, L1 = 1, Ln = Ln−1 +Ln−2 for n ≥ 2, (25)
Q0 = 2,Q1 = 2, Qn = 2Qn−1 +Qn−2 for n ≥ 2, (26)
J0 = 0, J1 = 1, Jn = Jn−1 + 2Jn−2 for n ≥ 2, (27)
j0 = 2, j1 = 1, jn = jn−1 + 2jn−2 for n ≥ 2, (28)
B0 = 0,B1 = 1, Bn = 6Bn−1 −Bn−2 for n ≥ 2, (29)
b0 = 2, b1 = 6, bn = 6bn−1 − bn−2 for n ≥ 2. (30)

Therefore, the Binet’s formulas for these eight sequences are given as follows

Fn =
αn1 − β

n
1

α1 − β1
and Ln = α

n
1 + β

n
1 for n ≥ 0, (31)

Pn =
αn2 − β

n
2

α2 − β2
and Qn = α

n
2 + β

n
2 for n ≥ 0, (32)

Jn =
αn3 − β

n
3

α3 − β3
and jn = α

n
3 + β

n
3 for n ≥ 0, (33)
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Bn =
αn4 − β

n
4

α4 − β4
and bn = α

n
4 + β

n
4 for n ≥ 0, (34)

where (α1, β1) = (1+
√

5
2 , 1−

√
5

2 ), (α2, β2) = (1 +
√

2,1 −
√

2), (α3, β3) = (2,−1) and
(α4, β4) = (3 + 2

√
2,3 − 2

√
2).

Furthermore, based on the above Binet’s formulas one can easily show that

αn−2
1 ≤ Fn ≤ α

n−1
1 and αn−1

1 ≤ Ln ≤ α
n+1
1 for n ≥ 1, (35)

αn−2
2 ≤ Pn ≤ α

n−1
2 and αn−1

2 ≤ Qn ≤ α
n+1
2 for n ≥ 1, (36)

αn−1
3

3
≤ Jn ≤ α

n−1
3 and αn3 − 1 ≤ jn ≤ α

n
3 + 1 for n ≥ 1, (37)

αn−1
4 ≤ Bn ≤ α

n
4 and αn4 − 1 ≤ bn ≤ α

n
4 + 1 for n ≥ 1. (38)

Historically, the study of Lucas sequences goes back to the XIIIth century. For
instance, the Fibonacci numbers were first introduced in 1202 by the Italian mathe-
matician Fibonacci who was also known as Leonardo of Pisa in his book Liber abaci
concerning the reproduction patterns of rabbits. So the sequence of Fibonacci num-
bers appeared in the solution of the following rabbits’ problem:

" SUPPOSE WE HAVE A PAIR OF EARLY BORN RABBITS AND AFTER THEY GET
MATURED, THEY BEGET EVERY MONTH A NEW PAIR OF RABBITS THAT BECOMES
PRODUCTIVE AT THE AGE OF TWO MONTHS. HOW MANY PAIRS OF RABBITS CAN

BE PRODUCED IN A YEAR IF WE ASSUME THAT THE RABBITS NEVER DIE ? "

Since that time till our days many mathematicians have studied and investigated the
Fibonacci sequence, which appears in several areas of life and sciences. For example,
the Fibonacci sequence has many connections and applications in music, architec-
ture, painting, chemistry, medical sciences, geography and physics; see e.g. Lowman
[150], Preziosi [190], Hedian [111], Wlodarski [260], Hung, Shannon and Thornton
[121], Sharp [210] and Davis [68], respectively.

On the other hand, the first significant work on the subject is by Lucas with his
seminal paper of 1878. Subsequently, many papers appeared related to prime divisions
of special sequences of binomials. A prime number p is called a primitive divisor of
the Lucas number Un if p divides Un but it does not divide (α−β)2U1 . . . Un−1, where
α and β are the roots of the characteristic polynomial of the Lucas sequences. The
first general result about the existence of the primitive divisors goes back to the early
of 1892 due to the work of Zsigmondy [265] when he proved that for all n > 6, Un has
a primitive divisor in case of α,β ∈ Z. Independently, after 12 years later, this result
rediscovered by Birkhoff and Vandiver [31]. In case of α,β ∈ R, the same result was
obtained by Carmichael [50]. Moreover, Schinzel [203] proved that if α,β ∈ C and α

β

is not a root of unity and if n is sufficiently large, then the nth term in the associated
Lucas sequence has a primitive divisor. Stewart [232] showed that if n = 5 or n > 6,
then there are only finitely many Lucas sequences that do not have a primitive divisor.
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Following the prior works of Schinzel and Stewart; Bilu, Hanrot and Voutier [26]
finished off the case when the roots α,β ∈ C such that α,β ∉ R.

Many of the mentioned results related to the primitive divisor of the Lucas se-
quence extended to a known general version of the Lucas sequence that is called a
Lehmer sequence, which is defined as the following: Let a1 and a2 be nonzero rela-
tively prime integers, and let α and β be the roots of the equation

x2
−
√
a1x − a2 = 0,

with α
β is not a root of unity. Then the Lehmer sequence (Wn)n≥0 is defined by

Wn =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

αn−βn

α−β if n is odd,

αn−βn

α2−β2 if n is even.

A prime number p is called a primitive divisor of a Lehmer number Wn if p divides
Wn but it does not divide (α2 − β2)2W1 . . .Wn−1. There are many related results to
the Lehmer sequence. For instance, Ward [254] extended the result of Carmichael
[50] to the Lehmer sequence in case of α,β ∈ R. Bilu, Hanrot and Voutier [26] also
dealt with the case where the roots α,β are complex but not real.

For other developments, generalizations and applications related to the primitive
divisors of Lucas and Lehmer sequences, see e.g. [152], [154], [252], [263] and the
references given there.

1.3.2. Historical survey.

Several authors have studied the solutions of different types of Diophantine
equations related to linear recurrence sequences. For instance, consider the mixed
exponential-polynomial Diophantine equation

Gn = P (x), (39)

where Gn denotes the nth (or general) term of a linear recurrence sequence and
P (x) ∈ Z[x] is a polynomial of degree d > 1. Many authors have investigated the
integral solutions (n,x) of equation (39) by obtaining an upper bound for the number
of solutions, proving that the number of solutions is finite or using some techniques
to solve such a problem completely. However, there are not many methods that prove
the completeness of the set of the solutions of this problem.

In case of the polynomial P (x) = 0, several authors proved the finiteness of the
number of the solutions of equation (39) such as Evertse [80] and Schlickewei and
van der Poorten [250] in which they proved some related general finiteness results
for such equations. Also, Schlickewei [204] gave an upper bound for the number of
solutions of equation (39). For other results related to this case, see e.g. [81], [141],
[152], [205] and the references given there.

On the other hand, the case of P (x) ≠ 0 has been widely investigated by many
mathematicians since ancient times. The following problem is one of the historical
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problems of the form (39) in which P (x) ≠ 0, which was posed in 1963 by both
Moser and Carlitz [178], and Rollett [197]. In the Fibonacci sequence {Fn}: "Are
there any squares other than F0 = 0, F1 = F2 = 1 and F12 = 144 ?" The first result was
obtained by Wunderlich [261] using a sieving procedure to prove that the only squares
among the first one million Fibonacci numbers are 0,1 and 144. Independently, Cohn
[56, 57] and Wyler [262] used elementary methods to prove that the only squares
in the sequence of Fibonacci numbers are F0 = 0, F1 = F2 = 1 and F12 = 144.
Furthermore, by using Wunderlich’s technique with an upper bound for the possible
solution obtained using a lower bound for linear forms in logarithms of algebraic
numbers, Pethö [183] proved that the only cubes in the sequence of Fibonacci numbers
are F0 = 0, F1 = F2 = 1 and F6 = 8. Later in [184], he proved that only F0 = 0 and
F1 = F2 = 1 are the fifth power Fibonacci numbers. Bugeaud, Mignotte and Siksek
[48] proved that the only perfect powers in the Fibonacci sequence are F0 = 0, F1 =

F2 = 1, F6 = 8 and F12 = 144, and the only perfect powers in the Lucas sequence
are L1 = 1 and L3 = 4 by applying a combination of classical techniques with the
modular approach to solve the following pair of equations:

Fn = y
p, n ≥ 0 and p is prime,

and

Ln = y
p, n ≥ 0 and p is prime.

The former equation was generalized by Bugeaud, Luca and others [45] where they
solved the equation Fn ± 1 = yp completely in nonnegative integer solutions (n, y, p),
where p ≥ 2.

Using Cohn’s idea in [56, 57], Ribenboim and McDaniel [195] determined all
the indices n in which each of Un(P,Q),2Un(P,Q), Vn(P,Q) or 2Vn(P,Q) is a
square with odd relatively prime parameters P and Q. This result was extended by
Mignotte and Pethö [169] since they proved that if P ≥ 3 andQ = 1, then the equation
Un(P,1) = 2 has the solutions (P,n) = (338,4) or (3,6) for all n ≥ 3. In case of
P ≥ 4 and Q = 1, they showed that the equation Un(P,1) = d2 with d = 2,3 or 6
has no solution for all n ≥ 4. Nakamula and Pethö [179] determined the solutions
of the equation Un(P,−1) = d2 with d = 1,2,3 or 6. Karaatli [127] determined the
solutions of the equation Vn(P,Q) = 7kx2 for all odd relatively prime values of P
and Q such that P is divisible by k.

Furthermore, when P is odd Cohn [58] studied the solutions of the Diophantine
equations Vn(P,Q) = Vm(P,Q)x2 and Vn(P,Q) = 2Vm(P,Q)x2. Moreover, the
Diophantine equations Fn = 2Fmx

2, Ln = 2Lmx
2, Fn = 3Fmx

2, Fn = 6Fmx
2 and

Ln = 6Lmx
2 were solved completely by Keskin and Yosma [130]. Assuming that

Q = −1 and P is odd, Şiar and Keskin [63] solved the equation Vn(P,−1) = kx2

in case of k divides P . They also showed that the equations Vn(P,−1) = 3x2 for
n ≥ 3 and Vn(P,−1) = 6x2 have no solutions. Furthermore, under these assump-
tions they determined the solutions of the equations Vn(P,−1) = 3Vm(P,−1)x2
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and Vn(P,−1) = 6Vm(P,−1)x2. They also found all of the solutions of the equa-
tions Vn(P,−1) = 3x2 and Vn(P,−1) = 3Vm(P,−1)x2 for which P is even. Ke-
skin and Karaatli [129] studied the solutions of the equations Un(P,−1) = 5x2 and
Un(P,−1) = 5Um(P,−1)x2 for some assumptions on P . Indeed, if P is odd, they
proved that the equation Vn(P,−1) = 5x2 is solvable only when n = 1 while the
equation Vn(P,−1) = 5Vm(P,−1)x2 is unsolvable. For other results related to such
problems, see e.g. [3], [47], [54], [61], [98], [152] and the references given there.

Other types of the Diophantine equations related to linear recurrence sequences
were investigated by other authors. For instance, Ribenboim and McDaniel studied
the following type of problems. Let {un} be a second order linear recursive sequence.
The terms un and um are said to be in the same square-class if there exists a nonzero
integer x such that

unum = x2.

A square-class is called nontrivial if it contains more than one term of the sequence.
Otherwise, it is trivial. Ribenboim [191] showed that if m ≠ 1,2,3,6 or 12, then
the square-class of a Fibonacci number Fm is trivial, which means the equation
FmFh = x2 has no solution in nonzero rational integers x and h such that h ≠ m.
Furthermore, he proved that the square-class of a Lucas number Lm is trivial if
m ≠ 0,1,3 or 6. These results were extended by Ribenboim and McDaniel for more
general sequences, i.e. the first and second kind Lucas sequences. If P and Q are
odd relatively prime integers and D = P 2 − 4Q > 0, in [194] they showed that each
square-class of each sequence is finite, and it can be computed effectively. Also, in
[167] they proved that there are finitely many nontrivial square-classes in {Un(P,Q)}

and {Vn(P,Q)} and no class contains more than three elements. In fact, they deter-
mine the integral solutions m and n of the equations Um(P,Q)Un(P,Q) = x2 and
Vm(P,Q)Vn(P,Q) = x2 in case of 1 ≤ m < n and n ≠ 3m. Moreover, they showed
that there exists a constant C such that m < C, which can be computed effectively in
case of n = 3m form > 1 andUm(P,Q)Un(P,Q) = x2 and Vm(P,Q)Vn(P,Q) = x2.
If ∣Q + 1∣ < P , they proved that no additional square-classes exist when n = 3m. For
more related results, see e.g. [64], [132], [158] and the references given there.

In addition to the above mentioned problems, the Diophantine triples and reduced
quadruples concerning linear recurrence sequences are very important and investi-
gated problems that have a rich history. A Diophantine m-tuple is a set {a1, a2, ...,
am} of positive integers such that aiaj + 1 is a square for all 1 ≤ i < j ≤ m. His-
torically, after Fermat found the integer quadruple {1,3,8,120}, Diophantus found
the rational quadruple {1/16,33/16,17/4,105/16}. Indeed, it is clear that there are
infinitely many Diophantine quadruples of integers. Dujella [75] proved that there is
no Diophantine sextuple, but there are finitely many Diophantine quintuples, which
can be computed effectively. There have been some generalizations of this problem
appearing in several papers. For instance, replacing the squares by higher powers of
fixed or variable exponents was considered by Bugeaud and Dujella in [43], Bugeaud
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and Gyarmati in [44] and Luca in [153]; or replacing the squares by members of non-
degenerate binary recurrences by Fuchs, Luca and Szalay in [90]. Moreover, Luca
and Szalay [156] proved that there are no Diophantine triples (a, b, c) for which the
components a, b and c are distinct positive integers with ab + 1, ac + 1 and bc + 1
present all three members of values in the Fibonacci sequence (Fn)n≥0. Furthermore,
they [157] showed that (a, b, c) = (1,2,3) is the only Diophantine triple with values
in the Lucas companion (Ln)n≥0 of the Fibonacci sequence. Ruiz and Luca [93] gen-
eralized the latter results in case of the Tribonacci sequence (Tn)n≥0. In fact, they
proved that there exist no positive integers a1 < a2 < a3 < a4 such that aiaj +1 = Tni,j
with 1 ≤ i < j ≤ 4, for some positive integers ni,j . For more related results, see e.g.
[87], [88], [238] and the references given there.

For other types of Diophantine equation problems related to linear recurrences,
see e.g. [19], [21], [27], [34], [89], [131], [162], [185],[186], [187], [213] and the
references given there.

1.4. Summary of new results and plan of the dissertation

It is often that, with the currently available methods, we are unable to completely
solve the problems of Diophantine equations concerning linear recurrence sequences.
In fact, we are usually able to obtain an upper bound for the number of solutions
or to prove the finiteness of the number of solutions. Therefore, in this dissertation
we investigate the solutions of some well known Diophantine equations connected
to some linear recurrence sequences using smooth techniques with which we show
whether or not such special solutions exist and then determine the complete set of
solutions. The literature of the investigated problems will be mentioned together with
our main results. We also remark that regarding the notations and preliminaries of the
linear recurrence sequences, that will appear latter in the following two chapters, we
use the same ones presented in Section 1.3 of Chapter 1.

In Chapter 2, we respectively study the integral solutions of some Diophantine
equations related to reciprocals and repdigits with linear recurrence sequences. This
chapter contains two sections. In the first section, we provide results for the solutions
of the following Diophantine equations:

● equations of the form

1

Un(P2,Q2)
=

∞

∑
k=1

Uk−1(P1,Q1)

xk
,

where the sequence {Un(P,Q)} represents the Lucas sequence of the first
kind with certain pairs (P,Q) such that (P1,Q1) ≠ (P2,Q2).

● equations of the form
∞

∑
k=1

Uk−1(P,Q)

xk
=

∞

∑
k=1

Rk−1

yk
,
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with some pairs (P,Q), and the sequence {Rn} is a ternary linear recurrence
sequence represented by the Tribonacci sequence {Tn} or Berstel’s sequence
{Bn}.

● equations of the form
∞

∑
k=1

Uk−1(P1,Q1)

xk
=

∞

∑
k=1

Uk−1(P2,Q2)

yk
,

where the pairs (P1,Q1) ≠ (P2,Q2).
● equations of the form

∞

∑
k=1

Tk−1(a2, a1, a0)

xk
=

∞

∑
k=1

Tk−1(b2, b1, b0)

yk
,

where the triples (a2, a1, a0) ≠ (b2, b1, b0) and Tn denotes the general term
of the generalized Tribonacci sequence that is given by

T0(p, q, r) = T1(p, q, r) = 0, T2(p, q, r) = 1 and

Tn(p, q, r) = pTn−1(p, q, r) + qTn−2(p, q, r) + rTn−3(p, q, r),

for n ≥ 3.

In the second section, we firstly give a finiteness result for the solutions of the Dio-
phantine equation

Gn = B ⋅ (
glm − 1

gl − 1
),

where (Gn)n≥1 is an integer linear recurrence sequence represented by the Lucas
sequence of the first kind {Un(P,Q)} or of the second kind {Vn(P,Q)} (in case of
Q = ±1) and n,m, g, l,B ∈ Z+ such that m,g > 1, l is even and 1 ≤ B ≤ gl − 1.
Then we apply this result on some binary recurrence sequences, e.g. the sequences of
Fibonacci numbers {Fn} and Pell numbers {Pn}, to solve such equations completely.
Furthermore, with the first application we determine all the solutions (n,m, g,B, l)

of the equation Fn = B ⋅ (
glm−1
gl−1

), where 2 ≤ g ≤ 9 and l = 1.

In Chapter 3, we investigate the solutions of some Diophantine equations of the
form G(X,Y,Z) ∶= AX2 + BY r + CZ2 (that have infinitely many solutions in ra-
tional integers) from particular linear recurrence sequences for certain nonzero in-
tegers A,B,C and r. This chapter consists of two sections in which we respec-
tively study the solutions of such equations in case of G(X,Y,Z) = 0 and in case
of G(X,Y,Z) ≠ 0. In the first section, we present a technique with which we can in-
vestigate the nontrivial integer solutions (X,Y,Z) of any equation, that satisfies some
conditions, of the form

AX2
+ Y r

= C ′Z2,

for certain nonzero integers A,C ′ and r with r > 1 is odd and (X,Y ) = (Ln, Fn)
(or (X,Y ) = (Fn, Ln)), where Fn and Ln denote the general terms of the sequences
of Fibonacci numbers and Lucas numbers, respectively. More precisely, we represent
the procedure of this technique in case of (A,C ′, r) = (7,1,7).
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In the other section, we provide a technique for studying the solutions of some
generalizations of Markoff equation from certain binary linear recurrence sequences.
This section contains two subsections. In the first subsection, we determine all the so-
lutions (X,Y,Z) = (FI , FJ , FK), where FI , FJ and FK represent nonzero Fibonacci
numbers satisfying a generalization of the Markoff equation called the Jin-Schmidt
equation; that is,

AX2
+BY 2

+CZ2
=DXY Z + 1,

where (A,B,C,D) ∈ S, with

S = {(2,2,3,6), (2,1,2,2), (7,2,14,14), (3,1,6,6), (6,10,15,30), (5,1,5,5)}.

In the other one, we consider the generalized Lucas number solutions of another gen-
eralization of the Markoff equation called the Markoff-Rosenberger equation, that has
the form

ax2
+ by2

+ cz2
= dxyz,

where (a, b, c, d) ∈ T such that

T = {(1,1,1,1), (1,1,1,3), (1,1,2,2), (1,1,2,4), (1,1,5,5), (1,2,3,6)}.

In other words, we give results for the solutions (x, y, z) = (Ri,Rj ,Rk), where Ri
denotes the ith generalized Lucas number of first/second kind, i.e. Ri = Ui or Vi.
Furthermore, we apply the results to completely resolve concrete equations, e.g. we
determine solutions containing only balancing numbers Bn and Jacobsthal numbers
Jn, respectively.

The results of this dissertation have been published in the papers [104, 105, 106,
107] and accepted for publication in the papers [108, Mathematica Bohemica journal]
and [110, Periodica Mathematica Hungarica journal]. As one can see, the main theme
of our theorems is Diophantine equations involving linear recurrences sequences. We
also note that we have a different result in [109] (that is accepted for publication
in the journal "Rad HAZU, Matematičke znanosti") in which we use the frequency
analysis technique to break a public key cryptosystem called ITRU, which is a variant
of NTRU (N th Degree Truncated Polynomial Ring) cryptosystem. However, to keep
the presentation coherent, this result is not included in this dissertation.
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Diophantine equations related to reciprocals and repdigits
with linear recurrence sequences

2.1. Diophantine equations related to reciprocals of linear recurrence sequences

Suppose that P and Q are nonzero relatively prime integers and {Un(P,Q)} and
{Vn(P,Q)} represent the Lucas sequences of the first and second kind, which are
defined by (19) and (20), respectively. The study of the representations of reciprocals
of Lucas sequences has been of interest to many mathematicians, and in the following
we mention some of the related results. In 1953, Stancliff [230] noted an interesting
property of the Fibonacci number F11 = 89 in the the Fibonacci sequence {Fn} =

{Un(1,−1)}, namely

1

F11
=

1

89
= 0.0112358 . . . =

∞

∑
k=0

Fk
10k+1

.

In 1980, Winans [259] studied the related sums

∞

∑
k=0

Fαk
10k+1

for certain values of α. In 1981, Hudson and Winans [120] characterized all decimal
fractions that can be approximated by sums of the type

1

Fα

n

∑
k=1

Fαk
10l(k+1)

, α, l ≥ 1.

In the same year, Long [149] obtained a general identity for binary recurrence se-
quences from which one obtains e.g.

1

109
=

∞

∑
k=0

Fk
(−10)k+1

,
1

10099
=

∞

∑
k=0

Fk
(−100)k+1

.

In 1995, in case of the equation

1

Un(P,Q)
=

∞

∑
k=1

Uk−1(P,Q)

xk
,

25
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De Weger [70] determined all x ≥ 2 in case of (P,Q) = (1,−1). The solutions are as
follows

1

F1
=

1

F2
=

1

1
=

∞

∑
k=1

Fk−1

2k
,

1

F5
=

1

5
=

∞

∑
k=1

Fk−1

3k
,

1

F10
=

1

55
=

∞

∑
k=1

Fk−1

8k
,

1

F11
=

1

89
=

∞

∑
k=1

Fk−1

10k
.

In 2009, Ohtsuka and Nakamura [181] proved that
⎢
⎢
⎢
⎢
⎢
⎣

(
∞

∑
k=n

1

Fk
)

−1⎥
⎥
⎥
⎥
⎥
⎦

=

⎧⎪⎪
⎨
⎪⎪⎩

Fn−2 if n ≥ 2 is even,
Fn−2 − 1 if n ≥ 1 is odd,

where ⌊⋅⌋ denotes the floor function. This result has been investigated by several other
mathematicians, see e.g. [116] and [136]. The above De Weger’s result in [70] was
extended in 2015 by Tengely [243] in which he obtained e.g.

1

U10
=

1

416020
=

∞

∑
k=1

Uk−1

647k
,

where U0 = 0, U1 = 1 and Un = 4Un−1 + Un−2, n ≥ 2. Moreover, there are many
other nice results in the literature dealing with Diophantine equations related to base
b representations and binary linear recurrence sequences. For instance, in 2016 Bravo
and Luca [35] completely solved the equation

Fm + Fn = 2a.

Recently, Chim and Ziegler [55] generalized their result in which they solved the
equation

Fn1 + Fn2 = 2m1 + 2m2 + 2m3

in nonnegative integers (n1, n2,m1,m2,m3). Other related results dealing with Dio-
phantine equations involving repdigits and linear recurrence sequences will be men-
tioned along with our results in the next section of this chapter, i.e. 2.2.

In this section, we present our new results in which we first extend the result of
Tengely in [243] by determining the integral solutions (n,x) of the equation

1

Un(P2,Q2)
=

∞

∑
k=1

Uk−1(P1,Q1)

xk
, (40)

for certain given pairs (P1,Q1) ≠ (P2,Q2). Here, we consider non-degenerate se-
quences with 1 ≤ P ≤ 3 and Q = ±1 (for more details about the non-degenerate Lucas
sequences, we refer to Subsection 1.3.1 of Chapter 1). Furthermore, we investigate
the integral solutions (x, y) of the equation

∞

∑
k=1

Uk−1(P,Q)

xk
=

∞

∑
k=1

Rk−1

yk
, (41)
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where the Lucas sequence of the first kind {Un(P,Q)} is non-degenerate with 1 ≤

P ≤ 3 and Q = ±1, and the sequence {Rn} is a ternary linear recurrence sequence
represented by the Tribonacci sequence {Tn} or Berstel’s sequence {Bn} that are
defined by (17) or (18), respectively. We also provide general results related to the
integral solutions (x, y) of the equations

∞

∑
k=1

Uk−1(P1,Q1)

xk
=

∞

∑
k=1

Uk−1(P2,Q2)

yk
, (42)

with arbitrary pairs (P1,Q1) ≠ (P2,Q2), and
∞

∑
k=1

Tk−1(a2, a1, a0)

xk
=

∞

∑
k=1

Tk−1(b2, b1, b0)

yk
, (43)

where the triples (a2, a1, a0) ≠ (b2, b1, b0) and Tn denotes the general term of the
generalized Tribonacci sequence that is given by

T0(p, q, r) = T1(p, q, r) = 0, T2(p, q, r) = 1 and

Tn(p, q, r) = pTn−1(p, q, r) + qTn−2(p, q, r) + rTn−3(p, q, r),

for n ≥ 3. Then we apply these results to completely resolve some concrete equations.

Before presenting our new results, we mention some auxiliary results, which play
the key roles in the proofs of our theorems.

2.1.1. Auxiliary results.

The following two results are due to Köhler [135].

LEMMA 2.1. LetA,B, a0, a1 be arbitrary complex numbers. Define the sequence
{an} by the recursion an+1 = Aan +Ban−1. Then the formula

∞

∑
k=1

ak−1

xk
=
a0x −Aa0 + a1

x2 −Ax −B

holds for all complex x such that ∣x∣ is larger than the absolute values of the zeros of
x2 −Ax −B.

LEMMA 2.2. Let arbitrary complex numbers A0,A1, . . . ,Am,a0, a1, . . . , am be
given. Define the sequence {an} by the recursion

an+1 = A0an +A1an−1 +⋯ +Aman−m.

Then for all complex z such that ∣z∣ is larger than the absolute values of all zeros of
q(z) = zm+1 −A0z

m −A1z
m−1 −⋯ −Am, the formula

∞

∑
k=1

ak−1

zk
=
p(z)

q(z)

holds with p(z) = a0z
m + b1z

m−1 + ⋯ + bm, where bk = ak − ∑
k−1
i=0 Aiak−1−i for

1 ≤ k ≤m.
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2.1.2. New results.

Here, we present our new results related to the integral solutions of equations (40)-
(43). The following two results are related to equations (40) and (41), respectively.
Indeed, they are Theorems 1 and 2 in [105], respectively. For that, we define the set
S as follows

S = {u1(n) = Un(1,−1), u2(n) = Un(2,−1), u3(n) = Un(3,−1),

u4(n) = Un(3,1)}.

THEOREM 2.3. The equation

1

uj(n)
=

∞

∑
k=1

ui(k − 1)

xk
, (44)

has the following solutions with 1 ≤ i, j ≤ 4, i ≠ j

(i, j, n, x) ∈ {(1,2,1,2), (1,2,3,3), (1,2,5,6), (1,3,1,2), (1,3,5,11),

(1,3,7,35), (1,4,1,2), (1,4,5,8), (2,1,3,3), (2,1,9,7), (3,1,4,4),

(3,1,14,21), (3,4,2,4), (3,4,7,21), (4,1,{1,2},3), (4,1,5,4), (4,

1,10,9), (4,1,11,11), (4,2,1,3), (4,2,3,4), (4,2,5,7), (4,3,1,3),

(4,3,5,12), (4,3,7,36)}.

THEOREM 2.4. The complete list of solutions of the equation
∞

∑
k=1

uj(k − 1)

xk
=

∞

∑
k=1

Rk−1

yk
, (45)

with un ∈ S,Rn ∈ {Bn, Tn} and positive integers x, y satisfying conditions of Lemmas
2.1 and 2.2 is as follows

un Rn (x, y) un Rn (x, y)

u1 Bn {(25,9)} u1 Tn {(2,2)}

u2 Bn {} u2 Tn {(t(t2 − 2) + 1, t2 − 1) ∶ t ≥ 2, t ∈ N}

u3 Bn {(6,3), (18,7)} u3 Tn {}

u4 Bn {(26,9)} u4 Tn {(3,2)}

Using elementary number theory, we prove the following results, which are re-
lated to equations (42) and (43), respectively. These results are Theorem 1 and The-
orem 2 in [106], respectively. For the sake of simplicity in presenting these results,
we define the following. For a given polynomial f(x) over integers, let m(f) =

max{∣x∣ ∶ f(x) = 0}.

THEOREM 2.5. Let P1,Q1, P2,Q2 be non-zero integers such that (P1,Q1) ≠

(P2,Q2). If (P 2
2 −P

2
1 )+4(Q1−Q2) = d1d2 ≠ 0 and d1−d2 ≡ −2P1 (mod 4), d1+d2 ≡
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−2P2 (mod 4), then the positive integral solutions x, y of
∞

∑
k=1

Uk−1(P1,Q1)

xk
=

∞

∑
k=1

Uk−1(P2,Q2)

yk

satisfy

x =
d1 − d2 + 2P1

4
>m(x2

− P1x +Q1), y =
d1 + d2 + 2P2

4
>m(x2

− P2x +Q2).

If (P 2
2 − P 2

1 ) + 4(Q1 − Q2) = 0 and P1 ≡ P2 (mod 2), then the positive integral
solutions x, y of

∞

∑
k=1

Uk−1(P1,Q1)

xk
=

∞

∑
k=1

Uk−1(P2,Q2)

yk

satisfy

x >m(x2
− P1x +Q1), y = ±x +

P2 ∓ P1

2
>m(x2

− P2x +Q2),

where Q2 = Q1 +
P 2
2 −P

2
1

4 .

THEOREM 2.6. If (x, y) is an integral solution of the equation
∞

∑
k=1

Tk−1(a2, a1, a0)

xk
=

∞

∑
k=1

Tk−1(b2, b1, b0)

yk
,

for given (a2, a1, a0) ≠ (b2, b1, b0), then either

9 (a2
2 − b

2
2 + 3a1 − 3 b1)y + 2a3

2 − 3a2
2b2 + b

3
2 + 9a1a2 − 9a1b2 + 27a0 − 27 b0 = 0

or in case of ∣y∣ > B we have

∣3x − 3y − a2 + b2∣ < C,

where B,C are constants depending only on ai, bi, i = 0,1,2.

2.1.3. Proofs of the results.

PROOF OF THEOREM 2.3. Consider equation (40) (in particular, (44)), by
Lemma 2.1 we obtain that

∞

∑
k=1

Uk−1(P1,Q1)

xk
=

1

x2 − P1x +Q1
.

Hence, we have that Un(P2,Q2) = x2 − P1x + Q1. Combining the latter equation
with the identity relationship between the terms of Lucas sequences of the first and
second kind at the parameters P2 and Q2, which is defined in (21) (i.e. V 2

n (P2,Q2) =

DU2
n(P2,Q2) + 4Qn2 , with D = P 2

2 − 4Q2) we get

Vn(P2,Q2)
2
= (P 2

2 − 4Q2)(x
2
− P1x +Q1)

2
+ 4Qn2 .

The so-called two-cover descent by Bruin and Stoll [40] can be used to prove that a
given hyperelliptic curve has no rational points. It is implemented in Magma [33], the
procedure is called TwoCoverDescent. If it fails and we do not find any rational
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points on the curve, then we apply the argument by Alekseyev and Tengely [4], that
reduces the problem to Thue equations. If we have a rational point on the curve,
then using a method by Tzanakis in [249] the integral points can be determined. This
algorithm is implemented in Magma as IntegralQuarticPoints. In this way
we collect the possible values of x.

(P1,Q1, P2,Q2) x (P1,Q1, P2,Q2) x

(1,−1,2,−1) 2,3,6 (3,−1,1,−1) 4,21

(1,−1,3,−1) 2,11,35 (3,−1,2,−1) −

(1,−1,3,1) 2,8 (3,−1,3,1) 4,21

(2,−1,1,−1) 3,7 (3,1,1,−1) 3,4,9,11

(2,−1,3,−1) − (3,1,2,−1) 3,4,7

(2,−1,3,1) − (3,1,3,−1) 3,12,36

It remains to compute the set of possible values of n. We provide details of the
computation in case of (P1,Q1, P2,Q2) = (3,−1,1,−1), and following these steps
all other equations can be handled. In case of (P1,Q1, P2,Q2) = (3,−1,1,−1) we
have that x ∈ {4,21}. If x = 4, then we define a matrix T as follows

T = (
3/4 1/4
1/4 0

) .

We have that
1

4
(T 0

+ T 1
+ T 2

+⋯ + TN−1)(
1
0
) = (

∗

∑
N
k=1

Uk−1(3,−1)
4k

) .

It follows that
N

∑

k=1

Uk−1(3,−1)

4k
= −

2−3N−1

39
((

√

13 + 3)
N
(5
√

13 + 13) + (13 − 5
√

13) (−
√

13 + 3)
N
− 13 ⋅ 2

3N+1
).

Hence, we have that

lim
N→∞

N

∑
k=1

Uk−1(3,−1)

4k
=

1

3
=

1

U4(1,−1)
.

In this case, we obtain that n = 4. If x = 21, then

T = (
3/21 1/21
1/21 0

) .

In a similar way than in case of x = 4, we get that
N

∑

k=1

Uk−1(3,−1)

21k
=

(7N3N2N+1 − (
√

13 + 3)
N
(3
√

13 + 1) + (3
√

13 − 1) (−
√

13 + 3)
N
)2−N−1

377 ⋅ 7N3N
.

Therefore,

lim
N→∞

N

∑
k=1

Uk−1(3,−1)

21k
=

1

377
=

1

U14(1,−1)
.

The only solution in this case is given by n = 14. �
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PROOF OF THEOREM 2.4. We provide a general argument that works for other
sequences as well. Let

a0 = 0, a1 = 1 and an+1 = Aan +Ban−1

and
b0 = b1 = 0, b2 = 1 and bn+1 = Cbn +Dbn−1 +Ebn−2.

Equation (45) yields that

Y 2
=X3

− 4CX2
− 16DX + 16A2

+ 64B − 64E,

where Y = 8x − 4A and X = 4y. If the cubic polynomial in X is square-free, then
we have an elliptic equation and the integral points can be determined using the so-
called elliptic logarithm method developed by Stroeker and Tzanakis [233] and in-
dependently by Gebel, Pethő and Zimmer [91]. There exists a number of software
implementations for determining integral points on elliptic curves based on this tech-
nique, here we used SageMath [231]. Let us consider the case with u1(n), Tn. We
obtain the elliptic curve

Y 2
=X3

− 4X2
− 16X + 16.

Using the SageMath function integral_points() we get

[(−3 ∶ 1 ∶ 1), (0 ∶ 4 ∶ 1), (8 ∶ 12 ∶ 1)].

From these points we have that (x, y) ∈ {(2,2)}. As a second example, consider the
case with u3,Bn. The elliptic curve is given by

Y 2
=X3

− 8X2
+ 64X − 48.

The list of integral points is

[(1 ∶ 3 ∶ 1), (4 ∶ 12 ∶ 1), (12 ∶ 36 ∶ 1), (28 ∶ 132 ∶ 1)].

Thus, we get that (x, y) ∈ {(6,3), (18,7)}. Finally, let us deal with the special case
with u2, Tn. The cubic polynomial is not square-free, it is (X+4)(X−4)2. Therefore,
we have that

X + 4 = 4y + 4 = u2.

Hence, y = t2 −1 for some integer t ≥ 2. It follows that x = t(t2 −2)+1. So we obtain
infinitely many identities of the form

∞

∑
k=1

u2(k − 1)

(t(t2 − 2) + 1)k
=

∞

∑
k=1

Tk−1

(t2 − 1)k
.

�

PROOF OF THEOREM 2.5. By applying Lemma 2.1 to equation (42), we get that
1

x2 − P1x +Q1
=

1

y2 − P2y +Q2
.

By algebraic manipulations, we obtain the equation

(2y + 2x − P1 − P2)(2y − 2x + P1 − P2) = P
2
2 − P

2
1 + 4(Q1 −Q2). (46)
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If P 2
2 − P

2
1 + 4(Q1 −Q2) ≠ 0, then for all d1∣P

2
2 − P

2
1 + 4(Q1 −Q2) we consider the

following system of equations

2y + 2x − P1 − P2 = d1,

2y − 2x + P1 − P2 = d2 =
P 2

2 − P
2
1 + 4(Q1 −Q2)

d1
.

We obtain integral solutions if

d1 − d2 ≡ −2P1 (mod 4) and d1 + d2 ≡ −2P2 (mod 4).

In this case, the solutions are given by

x =
d1 − d2 + 2P1

4
and y =

d1 + d2 + 2P2

4
.

If P 2
2 − P

2
1 + 4(Q1 −Q2) = 0, then

Q2 = Q1 +
P 2

2 − P
2
1

4
,

and Q2 is an integer if P1 ≡ P2 (mod 2). There are two possible cases, either

2y + 2x − P1 − P2 = 0 or 2y − 2x + P1 − P2 = 0.

In the former case we have y = −x + P1+P2

2 and in the latter one we get y = x +
P2−P1

2 . �

PROOF OF THEOREM 2.6. Using Köhler’s result given in Lemma 2.2, equation
(43) yields that

1

x3 − a2x2 − a1x − a0
=

1

y3 − b2y2 − b1y − b0
.

Hence,
H(x, y) = x3

− a2x
2
− a1x − a0 − y

3
+ b2y

2
+ b1y + b0 = 0.

This equation satisfies Runge’s condition [200]. Therefore, in case when H(x, y) is
irreducible over the rationals, there exist only finitely many integral solutions (x, y).
We obtain that

0 = 27H(x, y) = (3x − 3y − a2 + b2)G(x, y) − I(y),

where

G(x, y) = 9x2 + 9xy + 9 y2 − 3 (2a2 + b2)x − 3 (a2 + 2 b2)y − 2a22 + a2b2 + b
2
2 − 9a1

and

I(y) = 9 (a22 − b
2
2 + 3a1 − 3 b1)y + 2a32 − 3a22b2 + b

3
2 + 9a1a2 − 9a1b2 + 27a0 − 27 b0.

Here, we may have that I(y) is identically equal to 0, then H(x, y) is reducible over
the rationals. In this case, solutions can be obtained from

3x − 3y − a2 + b2 = 0 or G(x, y) = 0.
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Now, assume that I(y) ≠ 0. We obtain that

3x − 3y − a2 + b2 =
I(y)

G(x, y)

=
4I(y)

27 y2 − 18 b2y − 12a22 + 3 b22 − 36a1 + (6x + 3y − (2a2 + b2))2
.

Here, one can determine a bound B for ∣y∣ such that if ∣y∣ > B, then

27 y2
− 18 b2y − 12a2

2 + 3 b22 − 36a1 + (6x + 3y − (2a2 + b2))
2
> 26y2.

Thus,

∣3x − 3y − a2 + b2∣ <
4I(y)

26y2
.

Since I(y) is linear, we get that

4∣I(y)∣

26y2
< C

for some positive constant C and the statement follows. �

Next, we present some applications related to Theorems 2.5 and 2.6. Indeed, these
applications also appear in [106].

2.1.4. Applications.

EXAMPLE 2.1. As an application of Theorem 2.5, consider the following exam-
ple. Let (P1,Q1) = (1,−1) and (P2,Q2) = (18,1). We have that

(P 2
2 − P

2
1 ) + 4(Q1 −Q2) = (182

− 1) + 4(−1 − 1) = 315.

We obtain a system of equations given by

2y + 2x − 19 = d1,

2y − 2x − 17 =
315

d1
,

where

d1 ∈ {±1,±3,±5,±7,±9,±15,±21,±35,±45,±63,±105,±315}.

The solutions are as follows

(x, y) ∈ {(79,−70) , (26,−18) , (15,−8) , (10,−4) , (7,−2) , (2,0) , (−1,0) ,

(−6,−2) , (−9,−4) , (−14,−8) , (−25,−18) , (−78,−70) , (−78,88) ,

(−25,36) , (−14,26) , (−9,22) , (−6,20) , (−1,18) , (2,18) , (7,20) ,

(10,22) , (15,26) , (26,36) , (79,88)}.
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Here, we havem(x2−x−1) ≈ 1.618, so x ≥ 2 and m(x2−18x+1) ≈ 17.944. Hence,
y ≥ 18. Thus, the solutions are as follows

∞

∑
k=1

Uk−1(1,−1)

2k
=

∞

∑
k=1

Uk−1(18,1)

18k
= 1,

∞

∑
k=1

Uk−1(1,−1)

7k
=

∞

∑
k=1

Uk−1(18,1)

20k
=

1

41
,

∞

∑
k=1

Uk−1(1,−1)

10k
=

∞

∑
k=1

Uk−1(18,1)

22k
=

1

89
,

∞

∑
k=1

Uk−1(1,−1)

15k
=

∞

∑
k=1

Uk−1(18,1)

26k
=

1

209
,

∞

∑
k=1

Uk−1(1,−1)

26k
=

∞

∑
k=1

Uk−1(18,1)

36k
=

1

649
,

∞

∑
k=1

Uk−1(1,−1)

79k
=

∞

∑
k=1

Uk−1(18,1)

88k
=

1

6161
.

EXAMPLE 2.2. As a next example, consider the case with (P1,Q1) = (1,−1) and
(P2,Q2) = (2t + 1, t2 + t − 1) for some t ∈ Z. We get that

∞

∑
k=1

Uk−1(1,−1)

xk
=

∞

∑
k=1

Uk−1(2t + 1, t2 + t − 1)

(x + t)k
=

1

x2 − x − 1

for x ≥ 2.

EXAMPLE 2.3. Consider the positive integral solutions x, y of the equation
∞

∑
k=1

Tk−1(−1,7,3)

xk
=

∞

∑
k=1

Tk−1(5,−5,−3)

yk
.

Lemma 2.2 implies that
1

x3 + x2 − 7x − 3
=

1

y3 − 5y2 + 5y + 3
.

Therefore, we get that

x3
+ x2

− 7x − 3 = y3
− 5y2

+ 5y + 3.

Following the proof of Theorem 2.6, we have that

H(x, y) = x3
+ x2

− 7x − y3
+ 5y2

− 5y − 6 = 0.

We determine G(x, y) and I(y), these are given by

G(x, y) = 9x2
+ 9xy + 9y2

− 9x − 27y − 45, I(y) = 108y − 108.

If I(y) = 0, then y = 1 and it follows that

x3
+ x2

− 7x − 3 = 4,



2.1. EQUATIONS RELATED TO RECIPROCALS 35

that is x = −1. Hence, we do not get positive integral solutions in this case. Assume
that I(y) ≠ 0. We get that

3x − 3y + 6 =
4(108y − 108)

9x2 + 9xy + 9y2 − 9x − 27y − 45
.

It can be written as

3x − 3y + 6 =
4(108y − 108)

27y2 − 90y − 189 + (6x + 3y − 3)2
.

We have that
26y2

< 27y2
− 90y − 189 + (6x + 3y − 3)2

for positive integers if y ≥ 93. It follows that

∣3x − 3y + 6∣ < 1 if y ≥ 93.

That is 3x−3y+6 = 0, so we obtain that I(y) = 0, a contradiction. It remains to deal
with the values of y for which

3 =m(x3
− 5x2

+ 5x + 3) ≤ y ≤ 93.

Using SageMath [231], we obtain that the only integral solutions in this range are
given by x = −3, y = 3 and x = −2, y = 4, so we do not get positive integral solutions.

EXAMPLE 2.4. As a second application of Theorem 2.6, let us consider the equa-
tion

∞

∑
k=1

Tk−1(−4,−5,−6)

xk
=

∞

∑
k=1

Tk−1(1,8,18)

yk
.

Here, we obtain that

H(x, y) = x3
− y3

+ 4x2
+ y2

+ 5x + 8y + 24,

G(x, y) = 9x2
+ 9xy + 9y2

+ 21x + 6y + 10,

I(y) = −216y − 598.

The equation I(y) = 0 does not have integral solutions. We obtain that

4G(x, y) > 26y2 if y > 18

and
∣3x − 3y + 5∣ < 1 if y > 30.

Hence, we have that if y > 30, then 3x − 3y + 5 = 0. Therefore, I(y) = 0, a contra-
diction. It remains to deal with the cases y ∈ [5,6, . . . ,30]. It follows that the only
positive solution is given by (x, y) = (9,11), that is we have

∞

∑
k=1

Tk−1(−4,−5,−6)

9k
=

∞

∑
k=1

Tk−1(1,8,18)

11k
=

1

1104
.
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EXAMPLE 2.5. Finally, let us describe an example with identically zero I(y),
in which case we obtain infinitely many solutions. Let (a2, a1, a0) = (1,6,5) and
(b2, b1, b0) = (4,1,1). It follows that

H(x, y) = x3
− y3

− x2
+ 4y2

− 6x + y − 4,

G(x, y) = 9x2
+ 9xy + 9y2

− 18x − 27y − 36,

I(y) = 0.

We obtain that either

3x − 3y + 3 = 0 or G(x, y) = 0.

In the former case y = x + 1 and
∞

∑
k=1

Tk−1(1,6,5)

xk
=

∞

∑
k=1

Tk−1(4,1,1)

(x + 1)k
=

1

x3 − x2 − 6x − 5
, x ≥ 4.

In the latter case we have that

0 = 12G(x, y) = 3(6x + 3y − 6)2
+ (9y − 12)2

− 684.

We do not get new integral solutions since the equation

(9y − 12)2
+ 3(6x + 3y − 6)2

= 684

has no solutions in Z.

2.2. Diophantine equations related to repdigits with linear recurrence sequences

A natural number N is called a base g-repdigit for g ≥ 2 if all of its base g-digits
are equal; that is, if

N = b ⋅ (
gm − 1

g − 1
) for some m ≥ 1 and b ∈ {1, . . . , g − 1}.

Diophantine equations involving repdigits and recurrence sequences have been stud-
ied in several papers. The problem of finding all perfect powers among repdigits was
presented in 1956 by Obláth [180] and then solved by Bugeaud and Mignotte [46] in
1999. Thereafter, many authors have started to investigate the solutions of such Dio-
phantine equations. For instance, Luca [151] used an elementary way to show that the
largest number whose decimal expansion has only one distinct digit in the sequence of
Fibonacci numbers or Lucas numbers is F10 = 55 or L5 = 11, respectively (the terms
of the Fibonacci sequence {Fn} and Lucas sequence {Ln} are given by (23) and (25),
respectively). In addition, Díaz-Alvarado and Luca [71] found all Fibonacci numbers
that are sums of two repdigits. Furthermore, a similar problem was investigated in
case of Lucas numbers by Adegbindin, Luca and Togbé [2]. For other related results,
we refer to [36], [62], [82], [124], [164] and the references given there. Luca’s result
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in [151] was generalized by Marques and Togbé [163] in which they determined all
the solutions of the Diophantine equations

Fn = B ⋅ (
10lm − 1

10l − 1
) and Ln = B ⋅ (

10lm − 1

10l − 1
) (47)

in positive integers m,n and l, with m > 1,1 ≤ l ≤ 10 and 1 ≤ B ≤ 10l − 1, which
are (m,n, l) = (2,10,1) and (m,n, l) = (2,5,1) in the Fibonacci and Lucas cases,
respectively. It is clear that these equations have solutions only with l = 1. In general,
if (Gn)n≥1 is an integer linear recurrence sequence, they gave a finiteness result for
the equation

Gn = B ⋅ (
glm − 1

gl − 1
), (48)

where n,m, g, l and B are positive integers such that m > 1, g > 1, 1 ≤ B ≤ gl − 1. In
fact, they proved their results using heavy computations followed by a result due to
Matveev [166] on the lower bound on linear forms of logarithms of algebraic numbers
to obtain bounds for n and m. As these bounds could be very high, they used a
result due to Dujella and Pethő [76] on the Baker-Davenport reduction to reduce these
bounds. With respect to these results, the following natural questions arise:

● Is there another approach that is easier to apply to such concrete equations?
● Do the equations in (47) have solutions in any base g other than 10, say
g ≥ 2, in case of l = 1?

In this section, we firstly use a different and direct approach to obtain a general finite-
ness result for the Diophantine equation (48) in which the sequence {Gn} is rep-
resented by the non-degenerate Lucas sequences of the first and second kind (i.e.
{Un(P,Q)} and {Vn(P,Q)}, which are defined by (19) and (20), respectively) with
Q ∈ {−1,1} and l is an even positive integer. Again, we refer to Subsection 1.3.1 of
Chapter 1 for more details about the non-degenerate Lucas sequences. Our argument
is based on combining equation (48) with the identity relationship between Lucas se-
quences of the first and second kind (21) (that is V 2

n =DU2
n+4Qn, withD = P 2−4Q)

to produce biquadratic elliptic curves of the form

y2
= ax4

+ bx2
+ c, (49)

with integer coefficients a, b, c and discriminant ∆ = 16ac(b2 − 4ac)2 ≠ 0. The inte-
gral points of a biquadratic elliptic curve can be determined using an algorithm im-
plemented in Magma [33] as SIntegralLjunggrenPoints() (based on results
obtained by Tzanakis [249]) or an algorithm described by Alekseyev and Tengely [4]
in which they gave an algorithmic reduction of the search for integral points on such a
curve by solving a finite number of Thue equations. It is clear that such a biquadratic
elliptic curve in the form (49) can be further written as an elliptic curve of the form

Y 2
=X3

+ bX2
+ acX, (50)

where X = ax2, Y = axy and its discriminant is a2c2(b2 − 4ac) ≠ 0. As mentioned
earlier in the proof of Theorem 2.4 in Section 2.1, for determining all integral points
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on a given elliptic curve one can follow the so-called elliptic logarithm method devel-
oped by Stroeker and Tzanakis [233] and independently by Gebel, Pethő and Zimmer
[91]. Thus, for determining the integral points on such elliptic curves based on this
technique, we use the SageMath [231] function integral_points(). The finite-
ness of the number of the integral points on the curves (49) or (50) is guaranteed by
Baker’s result [11] presented in Theorem 1.16 and its best improvement concerning
the solutions of elliptic equations over Q, that is due to Hajdu and Herendi [103].
For simplicity, let us recall this result in the following theorem and call it by Baker’s
Theorem:

Baker’s Theorem: If the polynomial on the right of the Diophantine equation

y2
= a0x

n
+ a1x

n−1
+ . . . + an,

where n ≥ 3 and a0 ≠ 0, a1, . . . , an ∈ Z, possesses at least three simple zeros, then all
of its solutions in integers x, y satisfy

max(∣x∣ , ∣y∣) < exp exp exp{(n10nH)
n2

},

where H = max0≤i≤n ∣ai∣.

For more details about Baker’s results and their improvements, we refer to Sub-
section 1.2.4 of Chapter 1.

REMARK 2.7. Since a finiteness result for equation (48) in case of Gn = Un or
Gn = Vn can be obtained in a similar way, we only present and prove this result in
detail in the case of Gn = Un and omit the proof of the remaining case.

As applications of our result, we apply our method on the sequence of Fibonacci
numbers {Fn} and the sequence of Pell numbers {Pn} (which is defined by (24)) that
satisfy equation (48). Furthermore, with the first application we also generalize the
result of Marques and Togbé in [163] in case of Fibonacci numbers by determining
all the solutions (n,m, g,B, l) of the equation Fn = B ⋅ (

glm−1
gl−1

) in case of 2 ≤ g ≤ 9

and l = 1. Note that the case of Lucas numbers can be generalized similarly, therefore
we omit the details of this case. More precisely, we use our approach in case where
we have l is even, otherwise we follow the technique of Marques and Togbé in [163]
of using the result of Matveev on linear forms in three logarithms and the result of
Dujella and Pethő on the method of Baker-Davenport reduction.

For the sake of simplicity, we next recall some useful results that will be used in
the proof of Theorem 2.11 of our main results (particularly, in case of l = 1).

2.2.1. Auxiliary results.

From (31) and (35), we respectively recall the Binet’s Fibonacci numbers for-
mula and the bounds for the nth Fibonacci number as follows. The Binet’s Fibonacci
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numbers formula is defined as

Fn =
αn − βn

α − β
, where (α,β) = (

1 +
√

5

2
,
1 −

√
5

2
) (51)

for all n ≥ 0, where α is called the golden ratio and β = −1
α . Moreover, it is also known

that
αn−2

≤ Fn ≤ α
n−1 holds for all n ≥ 1. (52)

Also, we recall the logarithmic height of an s-degree algebraic number α that is
defined as

h(α) =
1

s
(log ∣a∣ +

s

∑
j=1

log max{1, ∣α(j)∣}), (53)

where a is the leading coefficient of the minimal polynomial of α (over Z),
(α(j))1≤j≤s are the conjugates of the algebraic number α, and the absolute value of a
complex number z = x + iy is determined by ∣z∣ =

√
x2 + y2.

In order to obtain some bounds for n and m, we need to use a lower bound for
a linear form logarithms á la Baker, which was given by the following lemma due to
Matveev [166] (also see Lemma 2 in [163]).

LEMMA 2.8. Define

Λ = a1 logα1 + a2 logα2 + a3 logα3, (54)

where a1, a2 and a3 are nonzero integers and α1, α2 and α3 are nonzero algebraic
numbers. Let d be the degree of the number field Q(α1, α2, α3) over Q and χ =

[R(α1, α2, α3) ∶ R]. If Λ ≠ 0, then

log ∣Λ∣ ≥ −C1d
2A1A2A3 log(1.5edB′ log(ed)),

where A1,A2 and A3 are real numbers satisfying the condition

Aj ≥ max{dh(αj), ∣log(αj)∣ ,0.16}, for all j ∈ {1,2,3}, (55)

B′
≥ max{1,max{∣aj ∣Aj/A1 ∶ 1 ≤ j ≤ 3}}, (56)

and

C1 =
5.165

6χ
.e3

(7 + 2χ)(20.2 + log(35.5d2 log(ed))). (57)

After finding upper bounds for n and m, which could be very large, the next step
is we have to reduce them. For that, we use the following lemma, which is a variant
of the Baker-Davenport lemma, due to the result of Dujella and Pethő (see Lemma 5
in [76]).

LEMMA 2.9. Suppose that M is a positive integer. Let p/q be the convergent of
the continued fraction expansion of κ such that q > 6M and let ε = ∥µq∥ −M∥κq∥,
where ∥⋅∥ denotes the distance from the nearest integer. If ε > 0, then there is no
solution of the inequality

0 <mκ − n + µ < AK−m
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in n,m ∈ Z in the range
log(Aq/ε)

log(K)
≤m ≤M.

2.2.2. New results.

Here, we present two main theorems. The first one is our main theoretical result
related to the finiteness result of equation (48) in case of l is even, and in the second
theorem we present our computational results regarding to applications of our method
on the sequences of Fibonacci and Pell numbers and a generalization of the Fibonacci
case in the result of Marques and Togbé in [163]. We also remark that in Theorem
2.10; g ≥ 2, l is even and 1 ≤ B ≤ gl − 1 are assumed. But in practice, determining
the solutions of any equation of the form (48) (for a particular sequence and any even
number l) is achieved similarly for every g ∈ {2,3, . . .} and B ∈ {1,2, . . . , gl − 1}.
Therefore, to make the presentation simpler, in Theorem 2.11 we assume that 2 ≤ g ≤
9, l ∈ {1,2,4} and 1 ≤ B ≤ min{10, gl − 1} in case of Gn = Fn and 2 ≤ g ≤ 9, l = 2
and 1 ≤ B ≤ min{5, gl − 1} in case of Gn = Pn. These results are obtained in [108].

THEOREM 2.10. Let P and Q be nonzero relatively prime integers with Q ∈

{−1,1} and t be a positive integer. If Gn = Un(P,Q) is non-degenerate and
l = 2t, then the Diophantine equation (48) has finitely many solutions of the form
(n,m, g,B, l), which can be effectively determined.

THEOREM 2.11. If Gn = Fn, then the Diophantine equation (48) has the follow-
ing solutions with 2 ≤ g ≤ 9, l ∈ {1,2,4} and 1 ≤ B ≤ min{10, gl − 1}.

(n,m, g,B, l) ∈ {(4,2,2,1,1), (5,2,4,1,1), (6,2,3,2,1), (6,2,7,1,1),

(7,3,3,1,1), (8,2,6,3,1), (8,3,4,1,1), (5,2,2,1,2), (8,3,2,1,2),

(9,2,4,2,2), (9,2,2,2,4)}.

Furthermore, suppose that 2 ≤ g ≤ 9, l = 2,1 ≤ B ≤ min{5, gl − 1} and Gn = Pn, then
equation (48) has no more solutions other than (n,m, g,B, l) = (3,2,2,1,2).

2.2.3. Proofs of the results.

PROOF OF THEOREM 2.10. Since Gn = Un(P,Q) = Un with Q ∈ {−1,1} and
l = 2t for an integer t ≥ 1, we combine equation (48) with identity (21) to obtain

(g2t
− 1)2V 2

n =DB2
(g2tm

− 1)2
+ 4(g2t

− 1)2Qn,

which can be further written as biquadratic curves of the form

y2
=DB2

(x4
− 2x2

+ 1) + 4G2Qn, (58)

where D = P 2 − 4Q,G = (g2t − 1),1 ≤ B ≤ (g2t − 1), x = gtm and y = GVn such that
m,g ≥ 2. Next, we show that the given curves have nonzero discriminants in order
to prove they present elliptic curves. Since Q ∈ {−1,1}, we split the prove into two
cases
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◻ Case 1. If Q = 1, then equation (58) becomes

y2
=D1B

2
(x4

− 2x2
+ 1) + 4G2, (59)

where D1 = (P 2 − 4), whose discriminant is

∆1 = 4096D3
1G

4B6
(D1B

2
+ 4G2

).

In addition to P is nonzero, we consider only non-degenerate Lucas se-
quences, i.e.

(P,Q) ∉ {(−2,1), (−1,1), (1,1), (2,1)}.

Hence, D1 > 0, which implies that (D1B
2 + 4G2) > 0 as B > 0 and G > 0.

Therefore, it is clear that ∆1 ≠ 0 (indeed, ∆1 > 0).

◻ Case 2. Similarly, if Q = −1, we obtain the curves

y2
=D2B

2
(x4

− 2x2
+ 1) + 4G2 (60)

and
y2

=D2B
2
(x4

− 2x2
+ 1) − 4G2, (61)

where D2 = (P 2 + 4), and their discriminants are

∆2 = 4096D3
2G

4B6
(D2B

2
+ 4G2

)

and
∆3 = 4096D3

2G
4B6

(D2B
2
− 4G2

),

respectively. Again, it is obvious that ∆2 ≠ 0 as D2 > 0,B > 0 and G > 0.
For a contradiction, we assume that ∆3 = 0, which is true if and only if

D2B
2
− 4G2

= 0.

The latter equation is true if and only if D2 is a square number; that is, if
there exists a nonzero integer T such that

T 2
− P 2

= 4,

which has no more rational integer solutions other than (T,P ) ∈ {(−2,0),
(2,0)}, which contradicts that P ≠ 0. Thus, ∆3 ≠ 0.

Therefore, we conclude that the biquadratic curves (58) represent elliptic curves.
Moreover, as mentioned earlier that the biquadratic curves (58) can be written in the
form (50); that is,

Y 2
=X3

− 2DB2X2
+DB2

(DB2
+ 4G2Qn)X, (62)

where X = DB2x2 and Y = DB2xy. In a similar way, one can easily show that
the latter curves have nonzero discriminants. Thus, the curves (62) represent elliptic
curves. Finally, by the result of Baker’s Theorem and its best improvement by Hajdu
and Herendi, the number of the integral points of the curves (58) or (62) is finite.
Hence, these points can be effectively determined using the techniques mentioned
earlier. The only problem that may appear here is that there is no known algorithm to
determine the rank and generators of the Mordell-Weil groups of elliptic curves, there
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are techniques that work well in practice but there is no guarantee to succeed. If we
have such an elliptic curve, then we may follow the previously mentioned argument
of Alekseyev and Tengely. As a result, the number of the solutions (n,m, g,B, l) is
finite, and they can be effectively determined. This completes the proof of Theorem
2.10. �

PROOF OF THEOREM 2.11. We split the proof of this theorem into two cases
regarding the sequences of Fibonacci numbers and Pell numbers in which they satisfy
equation (48). The proof of Fibonacci case is divided into two subcases: the first one
is if l = 1 in which we use the result of Matveev on linear forms in three logarithms
and the result of Dujella and Pethő on the method of Baker-Davenport reduction, and
the other is the case of l = 2,4 in which we apply our approach presented in Theorem
2.10. On the other hand, the proof of the Pell case will be handled in a similar way
using only the result of Theorem 2.10.

The Fibonacci case: Gn = Fn.
(a) For l = 1 ∶

● Step 1. Finding a bound for n in the equation

Fn = B ⋅ (
gm − 1

g − 1
), (63)

where 2 ≤ g ≤ 9,1 ≤ B ≤ min{10, g − 1} and m ≥ 2. Note that
since (g − 1) < 10 for all 2 ≤ g ≤ 9, here we only use the range 1 ≤

B ≤ (g − 1). Suppose that n > 50. By substituting Binet’s Fibonacci
numbers formula (51) in equation (63), we get that

αn − βn
√

5
= B ⋅ (

gm − 1

g − 1
),

which can be further written as

αn − (

√
5B

g − 1
)gm = βn − (

√
5B

g − 1
). (64)

By taking the absolute value for both sides of the latter equation, we
obtain that

∣αn − (

√
5B

g − 1
)gm∣ ≤ α−50

+
√

5 < 2.3 (65)

as β = −1
α , n > 50 and B ≤ (g − 1). Define

Λ = log (

√
5B

g − 1
) − n log(α) +m log(g). (66)

Since eΛ = (
√

5B
g−1 )α−ngm, we get (from inequality (65)) that

∣eΛ
− 1∣ <

2.3

αn
< α−n+2. (67)
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To apply Lemma 2.8, we first state and prove the following claim:

Claim: Suppose that Λ is defined in equation (66), then Λ > 0.

Proof: From equation (64) and the fact that β = −1
α , we deduce that

1 − eΛ
=

1

αn
(βn −

√
5B

g − 1
) =

1

αn
((−1)nα−n −

√
5B

g − 1
). (68)

Now, we consider the following cases regarding the values of n.
– If n is even, then equation (68), with the hypotheses: −n < −50,
g ≤ 9 and B ≥ 1, implies that

1 − eΛ
=

1

αn
(α−n −

√
5B

g − 1
)

<
1

αn
(α−50

−

√
5

8
) < 0,

which leads to Λ > 0.
– If n is odd, then for all n > 50,2 ≤ g ≤ 9 and 1 ≤ B ≤ (g − 1) we

have that ((α−1)n +
√

5B
g−1 ) > 0. Therefore, equation (68) again

gives

1 − eΛ
=
−1

αn
((α−1

)
n
+

√
5B

g − 1
) < 0,

which also implies that Λ > 0.
Thus, the claim is completely proved.

From (67) and the fact that Λ > 0, we obtain that Λ < eΛ − 1 < α−n+2.
Therefore,

log ∣Λ∣ < (−n + 2) log(α). (69)

With respect to the notation of Lemma 2.8 and by comparing equations
(54) and (66), we have that

α1 = (

√
5B

g − 1
), α2 = α,α3 = g, a1 = 1, a2 = −n and a3 =m.

We also note that the number field Q(α1, α2, α3) = Q(
√

5) is of degree
d = 2. Furthermore, the conjugates of α1, α2 and α3 are α′1 = −α1,
α′2 = β and α′3 = α3, respectively. Clearly, the minimal polynomial of
α1 is

(x − α1)(x − α
′
1) = x

2
−

5B2

(g − 1)2
,

which is a divisor of (g − 1)2x2 − 5B2. Therefore, by using the defini-
tion of the logarithmic height of algebraic numbers in (53) we get the
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logarithmic height of the 2-degree algebraic number α1 is

h(α1) ≤
1

2
(2 log(8) + 2 log(

√
5)) < 2.89

as g ≤ 9 and B ≤ (g − 1). Similarly, h(α2) =
log(α)

2 < 0.25 and
h(α3) = log(g) < 2.2 as g ≤ 9. Hence, from inequality (55) we take
A1 = 5.78,A2 = 0.5 and A3 = 4.4.

Furthermore, to obtain an estimated value for B′ using inequality (56),
let us first consider and prove the following claim:

Claim: The values of n and m in equation (63) satisfy that n >m.

Proof: First of all, from equation (63) we have that

Fn ≥ (
gm − 1

g − 1
) as B ≥ 1. (70)

On the other hand, we see that

(
gm − 1

g − 1
) − gm−1

= gm ⋅ (
1

g − 1
−

1

g
) − (

1

g − 1
)

= gm ⋅ (
1

g(g − 1)
) − (

1

g − 1
)

> 0 as m > 1,

which gives

(
gm − 1

g − 1
) > gm−1. (71)

Combining the inequalities (70), (71) and (52), we get that

gm−1
< Fn ≤ α

n−1. (72)

Taking the logarithm for both sides, we obtain (m − 1) log(g) < (n −
1) log(α), which leads to

m < (n − 1)
log(α)

log(g)
+ 1. (73)

Since log(α)
log(g) < 1 as g ≥ 2, we get that m < (n − 1) + 1 = n with m ≥ 2.

This proves the claim.

Therefore, since n > 50 we have that

max{1,max{∣aj ∣Aj/A1 ∶ 1 ≤ j ≤ 3}} = max{
0.5

5.78
n,

4.4

5.78
m},

and then it suffices to take B′ = 5
6n as n > m. From (57), we get that

C1 < 4.45 ⋅ 109 since χ = 1 and d = 2. Therefore, Lemma 2.8 yields

log ∣Λ∣ > −2.27 ⋅ 1011 log(11.51n). (74)
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Combining inequalities (69) and (74), we obtain that

2.27 ⋅ 1011 log(11.51n) > (n − 2) log(α),

which implies that n < 1014.

● Step 2. Finding a bound for m in equation (63). For that, we first give
the following lemma:

LEMMA 2.12. The solutions of equation (63) satisfy

(n − 2)
log(α)

log(g)
<m < (n − 1)

log(α)

log(g)
+ 1. (75)

PROOF. The proof follows easily from combining the fact (52) and
equation (63). Indeed, for all 2 ≤ g ≤ 9,1 ≤ B ≤ (g − 1) and m > 1, one
can see that

αn−2
≤ Fn < g

m.

Taking the logarithm for both sides, we obtain that

(n − 2) log(α) <m log(g),

which leads to

(n − 2)
log(α)

log(g)
<m. (76)

The upper bound follows from inequality (73). Hence, Lemma 2.12 is
proved.

Thus, from the upper bound of inequality (75) and the estimate of n
(that is n < 1014) we obtain that

m < (1014
− 1)

log(α)

log(g)
+ 1 < 7 ⋅ 1013 as g ≥ 2.

● Step 3. Reducing the obtained bounds. We know that 0 < Λ < α−n+2.
From inequality (72), we also know that αn−1 > gm−1, which leads to

α−n+2
< g−m+1α < g−m+2

as α < g for all 2 ≤ g ≤ 9. Hence,

0 <m log(α3) − n log(α2) + log(α1) < g
−m+2.

Dividing the latter inequality by log(α2), we get that

0 <m
log(α3)

log(α2)
− n +

log(α1)

log(α2)
< 3 ⋅ g2

⋅ g−m. (77)

Without loss of generality and to be more precise, since α1 = (
√

5B
g−1 ),

α2 = α and α3 = g for all g ∈ {2,3, . . . ,9} and 1 ≤ B ≤ (g − 1), we
respectively use the notation ”ng,mg,Bg” instead of ”n,m,B” for the
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rest of the proof of the bounds reduction step. Therefore, we rewrite
(77) in the form

0 <mgκg − ng + µg < 3 ⋅ g2
⋅ g−mg , (78)

where κg =
log(g)
log(α) and µg =

log(
√

5Bg
g−1

)

log(α) . It is clear that µg ≥
log(

√

5
g−1

)

log(α)

as Bg ≥ 1. Since α and g are multiplicatively independent, we have
κg is irrational. Thus, we may denote

P
(k,g)

Q
(k,g)

be the kth convergent of
the continued fraction of κg. Now, we use Lemma 2.9 to reduce the
upper bound of mg (which is very large since mg < 7 ⋅ 1013). That will
lead to reduce the upper bound of ng. Therefore, we take M = Mg =

7 ⋅ 1013. Moreover, if the conditions of Lemma 2.9 are satisfied; that
are, if Q(k,g) > 6M and εg = ∥µgQ(k,g)∥ −M∥κgQ(k,g)∥ > 0, then we

take Ag = 3 ⋅ g2 and Kg = g. For g = 2, we have B2 = 1, κ2 =
log(2)
log(α) and

µ2 ≥
log(
√

5)
log(α) . Therefore, we obtain that

P(32,2)

Q(32,2)

=
2683806884597620

1863211227378077

of which we have Q(32,2) > 6M and

ε2 ≥ ∥
log(

√
5)

log(α)
Q(32,2)∥ −M∥

log(2)

log(α)
Q(32,2)∥ > 0.4 > 0.

Therefore, we have thatA2 = 3 ⋅22 andK2 = 2. Hence, Lemma 2.9 tells
us that there is no solution to inequality (78) (and then to the Diophan-
tine equation (63) in case of g = 2; that is,

Fn2 = (2m2 − 1)) (79)

in the range

[⌊
log(A2Q(32,2)/ε2)

log(K2)
⌋ + 1,M] = [56,7 ⋅ 1013

].

Therefore, m2 ≤ 56 and inequality (76) gives us n2 < 83. To finish,
we use SageMath [231] to print all the Fibonacci numbers in the range
50 < n2 < 83 of which we see that there are no Fibonacci numbers
satisfying equation (79) with 2 ≤ m2 ≤ 56. However, in the range 3 ≤

n2 ≤ 50 we get the solution (n2,m2, g,B2, l) = (4,2,2,1,1). Let us
now consider the case g = 6, which implies that 1 ≤ B6 ≤ 5, κ6 =

log(6)
log(α)

and µ6 ≥
log(1/

√
5)

log(α) . Thus, Q(30,6) = 1232281049712607 > 6M and
ε6 > 0.1 > 0. For that, we take A6 = 3 ⋅ 62 and K6 = 6, and Lemma 2.9
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leads to the unsolvablity of the equation

Fn6 =
B6

5
⋅ (6m6 − 1), (80)

with 24 ≤ m6 ≤ M . Therefore, m6 ≤ 24, which implies that n6 < 92.
Again, we get no solutions to equation (80) (in fact, to equation (63) in
case of g = 6) with 50 < n6 < 92, but we get the solution (8,2,6,3,1)
where 3 ≤ n6 ≤ 50. In a similar way, for all the remaining values of
g, one can show that the hypotheses of Lemma 2.9 are satisfied and
determine the other desired solutions in the theorem in case of l = 1.

(b) For l ∈ {2,4} ∶

● If l = 2, then quation (48) becomes

Fn = B ⋅ (
g2m − 1

g2 − 1
). (81)

We consider in detail the case where we have g = 2, and the remaining
values of g will be pursued in a similar way following the proof of
Theorem 2.10. Since P = 1,Q = −1, l = 2, t = 1 and g = 2, we have that
D2 = 5,G = 3 and 1 ≤ B ≤ 3. Therefore, for all B ∈ {1,2,3}, equation
(60) leads to the biquadratic elliptic curves

y2
= 5x4

− 10x2
+ 41, (82)

y2
= 20x4

− 40x2
+ 56, (83)

y2
= 45x4

− 90x2
+ 81, (84)

and also equation (61) gives the curves

y2
= 5x4

− 10x2
− 31, (85)

y2
= 20x4

− 40x2
− 16, (86)

y2
= 45x4

− 90x2
+ 9, (87)

respectively, where x = 2m and y = 3Ln. Let us now consider
the curve (82) and by using the previously mentioned Magma func-
tion SIntegralLjunggrenPoints(), we get the following integral
points with positive values for the x−coordinates

[[1,−6], [2,9], [5,54], [8,−141]].

Combining the values of x of these integral points with x = 2m, we only
obtain m = 3. Therefore, since B = 1, g = 2 and m = 3, equation (81)
implies that n = 8. Hence, we get the solution (n,m, g,B, l) = (8,3,2,
1,2). Next, we consider (83), which has no integral points other than
[x, y] = [1,6] in which the value of x is positive. Thus, we have no
solution for equation (81). Similarly, we get no solution for (81) in
case of equations (84), (86) and (87). Finally, we deal with equation
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(85) and here we get x = 4, which leads to m = 2. Hence, we get the
solution (5,2,2,1,2). The other remaining values of g can be treated in
a similar way. Indeed, we get only one solution, which is (9,2,4,2,2)
in case of having B = 2 and g = 4.

● If l = 4, then quation (48) implies that

Fn = B ⋅ (
g4m − 1

g4 − 1
). (88)

In fact, it can be proven completely following the same approach in the
previous case in which we had l = 2. But, let us treat this case using the
elliptic curve equation (62). For that, we may consider the case where
we have g = 2 and B = 2. Again, since D = 5, t = 2 and G = 15,
equation (62) gives the curves

Y 2
=X3

− 40X2
− 17600X, (89)

Y 2
=X3

− 40X2
+ 18400X, (90)

where X = 20(16)m and Y = 300(4)mLn. By considering equation
(89) and using the SageMath function integral_points(), we get
the integral points

[(176 ∶ 1056 ∶ 1), (220 ∶ 2200 ∶ 1), (225 ∶ 2325 ∶ 1),

(320 ∶ 4800 ∶ 1), (529 ∶ 11293 ∶ 1), (4400 ∶ 290400 ∶

1), (5120 ∶ 364800 ∶ 1), (818620 ∶ 740649800 ∶ 1)]

in which we considered only the points with positive values for the
X−coordinates. From these points, only X = 5120 leads to a solution
of equation (88), that is (n,m, g,B, l) = (9,2,2,2,4). On the other
hand, the integral points of the elliptic curve (90) give no solution to
equation (88). Furthermore, the other remaining cases for all the values
of g can be handled in a similar way. More precisely, one can show that
the equation (88) has no more solutions.

The Fibonacci case is completely proved.

The Pell case: Gn = Pn.

Here, we have l = 2. Thus, equation (48) becomes

Pn = B ⋅ (
g2m − 1

g2 − 1
). (91)

Solving this equation completely is handled in a similar way in case of Fi-
bonacci numbers with l is even. Here, we have D2 = 8 and t = 1. If we
consider g = 2 and B = 1, then we get G = 3. These lead to the biquadratic
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elliptic curves

y2
= 8x4

− 16x2
− 28, (92)

y2
= 8x4

− 16x2
+ 44, (93)

where x = 2m and y = 3Qn such that Qn denotes the general term of the
sequence of Pell-Lucas numbers that is defined in (26). Equation (92) leads
to the solution (n,m, g, B, l) = (3,2,2,1,2), and equation (93) implies no
solution to equation (91). The remaining cases are treated similarly. As a
result, equation (91) does not have any more solutions. Hence, this case is
also proved.

Therefore, Theorem 2.11 is completely proved. �





CHAPTER 3

Diophantine equations of the form
G(X,Y,Z) ∶= AX2

+BY r
+CZ2 involving linear recurrence

sequences

3.1. Solutions of the Diophantine equation 7X2 + Y 7 = Z2 from linear
recurrence sequences

Consider the Diophantine equation

AX2
+BY r

= C ′Z2, (94)

where A,B,C ′ and r are nonzero integers such that r > 1. According to the result of
Beukers [22] mentioned in Theorem 1.12 related to the Fermat-Catalan Diophantine
equation, we have that equation (94) has either no solution or infinitely many relatively
prime integer solutions (X,Y,Z) (see also, e.g. [67] or [176]). Indeed, according to
Mordell [176, page 111] equation (94) has infinitely many integer solutions if B = 1
and r is odd.

If (Fn)n≥0 and (Ln)n≥0 are the sequences of Fibonacci and Lucas numbers
(which are defined by (23) and (25), respectively), in this section we present a tech-
nique with which we can investigate the nontrivial integer solutions (X,Y,Z) of
equations of the form

AX2
+ Y r

= C ′Z2,

where A,C ′ and r are certain nonzero integers with r > 1 being odd and (X,Y ) =

(Ln, Fn)(or (X,Y ) = (Fn, Ln)). We also remark that this technique can be applied
on such equations for which they satisfy some conditions, that will be mentioned later
along a procedure presented by Kedlaya in [128] (i.e. Kedlaya’s procedure in 3.1.1.1).
We indeed present the use of this technique for studying such special solutions of the
Diophantine equation

7X2
+ Y 7

= Z2. (95)

Based on the parametrizations of the solutions of equation (14) (according to [176,
page 111]), the integer solutions of the above equation can be parametrized as

X = 7a6
1b1 + 245a4

1b
3
1 + 1029a2

1b
5
1 + 343b71,

Y = a2
1 − 7b21,

Z = a7
1 + 147a5

1b
2
1 + 1715a3

1b
4
1 + 2401a1b

6
1,

51
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where a1 and b1 are arbitrary integers, which provide infinitely many integer solutions
of equation (95). More precisely, in this section we deal with special solutions of this
equation, namely where (X,Y ) = (Ln, Fn)(or (X,Y ) = (Fn, Ln)). By using the
identity relationship between the terms of the Fibonacci and Lucas sequences derived
from equation (21), i.e. L2

n − 5F 2
n = ±4, these solutions are clearly equivalent to the

solutions of the systems

L2
n − 5F 2

n = ±4, 7L2
n + F

7
n = Z2

and
L2
n − 5F 2

n = ±4, L7
n + 7F 2

n = Z2.

In other words, we examine the solutions to the following systems of Diophantine
equations

x2
− 5y2

= ±4, 7x2
+ y7

= z2, (96)

x2
− 5y2

= ±4, x7
+ 7y2

= z2, (97)

where x = Ln, y = Fn and z = Z is a nonzero integer. A solution (x, y, z) of any
system in (96) or (97) represents a solution (x, y) of one of its special Pell equations
with the restriction given by the corresponding equation.

Historically, several authors investigated the existence and nonexistence of the
integer solutions of certain systems of Diophantine equations of the form

x2
− ay2

= b, P (x, y) = z2, (98)

where a is a positive integer that is not a perfect square, b is a nonzero integer and
P (x, y) is a polynomial with integer coefficients. Many of the studies related to sys-
tems of the form (98) use Baker’s results on linear forms in logarithms of algebraic
numbers [10] to give an upper bound on the size of the solutions. Using this bound
with some techniques of Diophantine approximation, Baker and Davenport [13]
proved that there is no solution in nonnegative integers other than (x, y, z) = (1,1,1)
or (19,11,31) for the system

x2
− 3y2

= −2, z2
− 8y2

= −7.

Brown [39] proved that the equations

y2
− 8t2 = 1, u2

− 5t2 = 1

have no common solution other than (y, t, u) = (1,0,1) using Grinstead’s technique
in [96]. Szalay [236] presented an alternative procedure for solving systems of simul-
taneous Pell equations

a1x
2
+ b1y

2
= c1, a2x

2
+ b2z

2
= c2

in nonnegative integers x, y and z, with relatively small coefficients. He implemented
the algorithm of this procedure in Magma to verify famous examples and give a new
theorem related to such systems. In general, one can guarantee the finiteness of the
number of solutions of (98) by the work of Thue [246] or Siegel [216]. On the other
hand, many authors have given elementary solutions to systems of the form (98) such
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as Cohn [57] who considered the case where P is a linear polynomial. Cohn’s method
uses congruence arguments to eliminate some cases and a clever invocation of qua-
dratic reciprocity to handle the remaining cases. The congruence arguments are very
sufficient if there exists no solution in such a system, however they fail in the pres-
ence of a solution. Mohanty and Ramasamy [171] adapted this method to show that
the system of equations

x2
− 5y2

= −20, z2
− 2y2

= 1

has no solution other than (x, y, z) = (0,2,3). Muriefah and Al Rashed [1] showed
that the system

y2
− 5x2

= 4, z2
− 442x2

= 441

has no integer solutions using a similar method to that presented by Mohanty and
Ramasamy. Additionally, Peker and Cenberci [182] proved that the system

y2
− 10x2

= 9, z2
− 17x2

= 16

can not be solved simultaneously in nonzero integers x, y, z using the same method
with Muriefah and Rashed. Kedlaya [128] gave a general procedure, based on the
methods of Cohn and the theory of Pell equations, that solves many systems of the
form (98). In fact, he applied this approach on several examples in which P is uni-
variate with degree at most two. Moreover, in some cases this procedure fails to solve
a system completely. To investigate the solutions of the Diophantine equation (95)
from the sequences of Fibonacci numbers and Lucas numbers, i.e. (X,Y ) = (Ln, Fn)
(or (X,Y ) = (Fn, Ln)), we use Kedlaya’s procedure and similar techniques adapted
by the methods of Mohanty and Ramasamy, Muriefah and Rashed, and Peker and
Cenberci to determine and prove whether or not each of the four systems of equations
in (96) and (97) has a solution. We employ Kedlaya’s procedure and the techniques of
using the congruence arguments and the quadratic reciprocity to prove that the system

x2
− 5y2

= 4, 7x2
+ y7

= z2

has no more solutions other than (x, y, z) = (3,1,±8), and each of the other three
systems can not be solved simultaneously.

Next, we introduce some auxiliary results for which we need to prove our main
results.

3.1.1. Auxiliary results.

For the proofs of our theorems, we need the following Lemma 3.1 presented by
Copley [60], Lemmas 3.2, 3.3 and 3.4 and a procedure presented by Kedlaya [128]
for checking if a given list of solutions to a system of the form (98) is complete, and
a remark, i.e. Remark 3.5, that shows the general forms of nonnegative solutions for
the Pell type equations

x2
− 5y2

= ±4.
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LEMMA 3.1. Let (xk + yk
√
a)(k = 0,1,2,3, . . .) be the solution of x2 − ay2 = b

in a fixed class C, where b is a given nonzero integer and a is a positive integer which
is not a square, then

x−k = xk, y−k = −yk, (99)
xk+r = urxk + avryk, (100)
yk+r = uryk + vrxk, (101)

where (ur + vr
√
a) = (u1 + v1

√
a)r such that (u1, v1) is the fundamental solution of

the Pell equation u2 − av2 = 1.

LEMMA 3.2. For all k,ω, r we have yk+2ωr ≡ (−1)ωyk (mod ur) and yk+2ωr ≡

yk (mod vr) (of course, the same result holds for uk, vk or xk as well).

LEMMA 3.3. For all k,ω we have vk∣vωk; if ω is odd, we also have uk∣uωk.

LEMMA 3.4. If the sequence {fk} satisfies the recurrence relation

fk+1 = 2fku1 − fk−1,

then for any positive integer χ,{fk (mod χ)} is completely periodic (of course, the
same result holds for fk = uk, vk, xk or yk as well).

3.1.1.1. Kedlaya’s procedure.

Denote by (uk, vk) be the kth solution of the Pell equation

u2
− av2

= 1.

For each base solution (x0, y0) of the equation x2−ay2 = b, let S be the set of integers
m such that (xm, ym) is in the given list of solutions. One can prove that P (xm, ym)

is a prefect square if and only if m ∈ S as follows (without having to give up):
● For each m ∈ S, let α = P (−xm,−ym).
● If ∣α∣ is a perfect square, we give up; otherwise, let β be the product of all

the primes that divide α an odd number of times.
● Let l be the period of {uk(mod β)} (the period is guaranteed by Lemma

3.4) and d be the largest odd divisor of l.
● Let q be the largest integer such that 2q ∣l, unless 4 does not divide l, in which

case let q = 2.
● Let s be the order of 2 in the group (Z/dZ)×.
● Define the set U = {t ∈ {0, . . . , d − 1} ∶ (u2qtβ ) = −1}.
● If U is empty, we give up; otherwise find an odd number j such that for each
ε = q, . . . , q + s − 1, there exist t ∈ U and g ∣ j with 2ε−qg ≡ t (mod β).

● Let γm = 2qj and γ be twice the least common multiple of γm for all m ∈ S.
● Find an integer δ with the following property: for every k ∈ {0, . . . , δγ − 1},

either k ≡ m (mod 2γm) for some m ∈ S; or there exists a prime number
p such that P (xk, yk) is a nonresidue (mod p), with {xi (mod p)} and
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{yi (mod p)} have periods dividing δγ. Using Lemmas 3.2 and 3.3, we
note that the period condition can be guaranteed by having p∣vκ for some κ,
where 2κ∣δγ.

● Suppose that δ can be found satisfying the specified properties. To show that
P (xm, ym) is a prefect square if and only if m ∈ S, assume that there exists
k ∉ S such that P (xk, yk) is a perfect square. By the construction of δ, there
exists m such that k ≡ m (mod 2γm), or else there exists a prime number
p such that P (xk, yk) is a nonresidue (mod p). Since k ∉ S, so k ≠m and
k = m + 2ε+1jh for some h, ε with h odd and ε ≥ q. Using Lemma 3.2, we
get that

xk ≡ −xm (mod uj2ε) and yk ≡ −ym (mod uj2ε).

Therefore,

P (xk, yk) ≡ P (−xm,−ym) = α (mod uj2ε).

The construction gives that for some t ∈ U and some g ∣ j with 2ε−qg ≡ t
(mod β). It is clear that ε ≥ q ≥ 2 and {uk (mod 8)} has period dividing 4.
Thus, the Jacobi symbols ( −1

u2εg
) and ( 2

u2εg
) both equal 1. Since ∣α∣ /β is a

perfect square and ug2ε ∣uj2ε by Lemma 3.3, we have by quadratic reciprocity

(
P (xk,yk)
u2εg

) = ( α
u2εg

) = (
β

u2εg
) = (

u2εg
β ) = (

u2qt
β ) = −1,

which contradicts the assumption that P (xk, yk) is a perfect square.

REMARK 3.5. The Pell equation u2 − 5v2 = 1 has the fundamental solution
(u1, v1) = (9,4), and the Pell type equation x2 − 5y2 = 4 has three non associated
classes of solutions with the fundamental solutions 3 +

√
5,3 −

√
5 and 2. Therefore,

its general solutions are given by

xk + yk
√

5 = (3 +
√

5)(9 + 4
√

5)k, (102)

xk + yk
√

5 = (3 −
√

5)(9 + 4
√

5)k, (103)

xk + yk
√

5 = (2)(9 + 4
√

5)k, (104)

respectively. Similarly, the general solutions of the Pell type equation x2 − 5y2 = −4
are given by

xk + yk
√

5 = (1 +
√

5)(9 + 4
√

5)k, (105)

xk + yk
√

5 = (−1 +
√

5)(9 + 4
√

5)k, (106)

xk + yk
√

5 = (4 + 2
√

5)(9 + 4
√

5)k, (107)

respectively. For more details about the Pell type equations, see Subsection 1.2.1 of
Chapter 1.
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3.1.2. New results.

In the following we present our main results related to the solutions of the Dio-
phantine equation (95) in case of (X,Y ) = (Ln, Fn)(or (X,Y ) = (Fn, Ln)) and Z
is a nonzero integer. These results consist of two theorems, which are respectively
represented as Theorem 1 and Theorem 2 in [104].

THEOREM 3.6. Suppose thatX = Ln and Y = Fn, then the Diophantine equation
(95) has no more solutions other than (X,Y,Z) = (3,1,±8).

THEOREM 3.7. The Diophantine equation (95) has no solutions in integers X,Y
and Z if X = Fn and Y = Ln.

3.1.3. Proofs of the results.

PROOF OF THEOREM 3.6. To prove this theorem, we have to show that (3,1,8)
and (3,1,−8) are the only solutions to the systems of the simultaneous Diophantine
equations in (96). In fact, they are the only solutions to the system

x2
− 5y2

= 4, (108)

7x2
+ y7

= z2, (109)

where x = Ln, y = Fn and z = Z. Now, let P (x, y) = 7x2 + y7. Considering equation
(102) and using Kedlaya’s procedure described in 3.1.1.1, it is possible to show that
P (xm, ym) is a perfect square if and only if m ∈ S = {0} and the set

{(x0, y0, z)} = {(3,1,−8), (3,1,8)}

is a complete list of solutions to the system of the Diophantine equations (108) and
(109) with the procedure’s output: α = β = 62, l = d = 5, q = 2, s = 3, U = {2,3}, γm =

60, γ = 120 and δ = 1 such that for k = 0, k ≡ m ≡ 0 (mod 120). Following the last
step in the procedure, one can easily show that there exists no k other than k = 0
such that k ≡ 0 (mod 120) and P (xk, yk) is a perfect square. Assume, for the sake
of contradiction, that there exists k ∉ S such that k ≡ 0 (mod 120) and P (xk, yk)
is a perfect square. Therefore, k = 2ε+1jh = 2ε+115h for some h, ε with h odd and
ε ≥ q = 2. Using Lemma 3.2, we obtain

xk ≡ −x0 = −3 (mod u2ε15) and yk ≡ −y0 = −1 (mod u2ε15),

which imply that P (xk, yk) ≡ P (−3,−1) = 62 = α (mod u2ε15). Since

2ε−qg ≡ t (mod β)

for some t ∈ U = {2,3} and some g ∣ 15 and ∣α∣ /β is equal 1 which is a perfect square,
we get that u2εg ∣u2ε15 by Lemma 3.3. Moreover, we have the Jacobi symbol ( 2

u2εg
)

is equal 1. Therefore, we obtain by the quadratic reciprocity that

(
P (xk, yk)

u2εg
) = (

62

u2εg
) = (

u2εg

62
) = (

u22t

62
) = (

37

62
) = −1
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for all t, contradicting the assumption that P (xk, yk) is a perfect square. Next, we
consider k ≠ 0. From equations (100) and (101) in Lemma 3.1, we can write

xk+15 = (3220013013190122249)xk + 5(1440033597185408060)yk, (110)

yk+15 = (3220013013190122249)yk + (1440033597185408060)xk, (111)

which imply that

xk+15 ≡ xk (mod 11) and yk+15 ≡ yk (mod 11), (112)

xk+15 ≡ −xk (mod 17) and yk+15 ≡ −yk (mod 17), (113)

xk+15 ≡ xk (mod 19) and yk+15 ≡ yk (mod 19), (114)

xk+15 ≡ 35yk (mod 41) and yk+15 ≡ 7xk (mod 41), (115)

xk+15 ≡ −xk (mod 61) and yk+15 ≡ −yk (mod 61), (116)

xk+15 ≡ 40yk (mod 107) and yk+15 ≡ 8xk (mod 107), (117)

xk+15 ≡ xk (mod 181) and yk+15 ≡ yk (mod 181), (118)

xk+15 ≡ xk (mod 541) and yk+15 ≡ yk (mod 541), (119)

xk+15 ≡ −xk (mod 109441) and yk+15 ≡ −yk (mod 109441), (120)

xk+15 ≡ 4160200yk (mod ξ) and yk+15 ≡ 832040xk (mod ξ), (121)

where ξ = 10783342081. From (112), equation (109) becomes

z2
≡ 7x2

k + y
7
k (mod 11).

If k ≡ 1 (mod 15), then xk ≡ x1 ≡ 3 (mod 11) and yk ≡ y1 ≡ 10 (mod 11),
which imply that z2 ≡ 7 (mod 11), but the Legendre symbol ( 7

11
) = −1. So k ≢ 1

(mod 15). Next, if k ≡ 3 (mod 15), then z2 ≡ 6 (mod 11), which is impossible
since ( 6

11
) = −1. Hence, k ≢ 3 (mod 15). From (113), equation (109) implies that

z2
≡ 7x2

k − y
7
k (mod 17).

If k ≡ 4 (mod 15), we get xk ≡ x4 ≡ 4 (mod 17) and yk ≡ y4 ≡ 13 (mod 17). Thus,
z2 ≡ 6 (mod 17), but ( 6

17
) = −1. Therefore, k ≢ 4 (mod 15). Moreover, if k ≡ 5

(mod 15) leads to z2 ≡ 14 (mod 17), then this gives a contradiction again. Thus,
k ≢ 5 (mod 15). Using (115) and from equation (109), we get

z2
≡ 17x7

k + 6y2
k (mod 41).

If k ≡ 12,14 (mod 15), we obtain z2 ≡ 29 (mod 41). This is impossible since 29
is a quadratic nonresidue modulo 41. Hence, k ≢ 12,14 (mod 15). From (116),
equation (109) gives

z2
≡ 7x2

k − y
7
k (mod 61).

Similarly, if k ≡ 7 (mod 15) or k ≡ 9 (mod 15), then z2 ≡ 43 (mod 61) or z2 ≡ 29
(mod 61), respectively. But, these yield a contradiction since (43

61
) = −1 = (29

61
). So

k ≢ 7,9 (mod 15). Finally, using (119), equation (109) implies that

z2
≡ 7x2

k + y
7
k (mod 541),
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which is impossible if k ≡ 2,6,8,10,11,13 (mod 15). Therefore,

k ≢ 2,6,8,10,11,13 (mod 15).

Here, we have proved the completeness of the given list of solutions related to equa-
tion (102). Then it remains to show that the equations (108) and (109) have no com-
mon solution at the equations (103) and (104) using the above techniques of congru-
ence arguments and the quadratic reciprocity. Now, we consider equation (103). By
using (112), we get z2 ≡ 7 (mod 11) if k ≡ 0 (mod 15). However, ( 7

11
) = −1. Also,

if k ≡ 2 (mod 15), we get a contradiction since z2 ≡ 6 (mod 11) is impossible.
Therefore, k ≢ 0,2 (mod 15). Next, from (114), equation (109) leads to

z2
≡ 7x2

k + y
7
k (mod 19).

If k ≡ 1 (mod 15), then xk ≡ x1 ≡ 7 (mod 19) and yk ≡ y1 ≡ 3 (mod 19). So
z2 ≡ 3 (mod 19), but this is impossible since 3 is a quadratic nonresidue modulo 19,
hence k ≢ 1 (mod 15). From (115), if k ≡ 10 (mod 15), then z2 ≡ 14 (mod 41).
This again leads to a contradiction since (14

41
) = −1, thus k ≢ 10 (mod 15). Using

(116), the equation
z2

≡ 7x2
k − y

7
k (mod 61)

leads to z2 ≡ 51 (mod 61), z2 ≡ 29 (mod 61) or z2 ≡ 43 (mod 61) if k ≡ 4
(mod 15), k ≡ 6 (mod 15) or k ≡ 8 (mod 15), respectively. But, 29,43 and 51
are quadratic nonresidues modulo 61, which implies that k ≢ 4,6,8 (mod 15). If we
use equation (118), (109) implies that

z2
≡ 7x2

k + y
7
k (mod 181).

Here, we face a contradiction if k ≡ 3,7,9 (mod 15). Therefore,

k ≢ 3,7,9 (mod 15).

From (119), the equation

z2
≡ 7x2

k + y
7
k (mod 541)

and k ≡ 5,11,12,13,14 (mod 15) yield a contradiction. So

k ≢ 5,11,12,13,14 (mod 15).

Finally, we consider (104). If k ≡ 0 (mod 15), then z2 ≡ 11 (mod 17), again
giving a contradiction since (11

17
) = −1. Moreover, if k ≡ 5 (mod 15), then z2 ≡ 5

(mod 17). This is again impossible, so k ≢ 0,5 (mod 15). Now, we use equation
(114). If k ≡ 1 (mod 15), then xk ≡ x1 ≡ 18 (mod 19) and yk ≡ y1 ≡ 8 (mod 19).
This implies that z2 ≡ 15 (mod 19), but 15 is a quadratic nonresidue modulo 19.
Hence, k ≢ 1 (mod 15). From (118), we get

z2
≡ 155 (mod 181)

if k ≡ 2 (mod 15). But, (155
181

) = −1. Furthermore, if k ≡ 3 (mod 15), we obtain
z2 ≡ 22 (mod 181), again yielding a contradiction. Similarly,

k ≡ 4,6,9,10,11,12,13,14 (mod 15)
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again leads to a contradiction. So

k ≢ 2,3,4,6,9,10,11,12,13,14 (mod 15).

Using equation (119) with k ≡ 7 (mod 15), we get z2 ≡ 502 (mod 541). This is also
impossible since (502

541
) = −1. Therefore, k ≢ 7 (mod 15). If we use equation (121)

for k ≡ 8 (mod 15), then (109) implies that

z2
≡ 3401662621 (mod 10783342081).

This is impossible and hence k ≢ 8 (mod 15). We have thus proved that the equations
(108) and (109) have no common solutions other than

(x, y, z) = (3,1,±8) = (L2,{F1, F2}, z) = (X,Y,Z).

To complete the proof of the theorem, we must show that the other system of the
simultaneous Diophantine equations in (96), i.e.

x2
− 5y2

= −4, (122)

7x2
+ y7

= z2, (123)

has no integer solution (x, y, z) such that x = Ln, y = Fn and z = Z. Again, we use
the same techniques of congruence arguments and the quadratic reciprocity to exhaust
all the possibilities of k ≡ ρ (mod r) for a proper r and ρ = 0,1,2, . . . , r − 1. From
equations (100) and (101), we can write

xk+10 = (1730726404001)xk + 5(774004377960)yk, (124)

yk+10 = (1730726404001)yk + (774004377960)xk, (125)

which lead to

xk+10 ≡ xk (mod 11) and yk+10 ≡ yk (mod 11), (126)

xk+10 ≡ 15yk (mod 23) and yk+10 ≡ 3xk (mod 23), (127)

xk+10 ≡ xk (mod 31) and yk+10 ≡ yk (mod 31), (128)

xk+10 ≡ −xk (mod 41) and yk+10 ≡ −yk (mod 41), (129)

xk+10 ≡ xk (mod 61) and yk+10 ≡ yk (mod 61), (130)

xk+10 ≡ 85yk (mod 241) and yk+10 ≡ 17xk (mod 241), (131)

xk+10 ≡ −xk (mod 2521) and yk+10 ≡ −yk (mod 2521). (132)

First, we consider (105). From (126), equation (123) gives

z2
≡ 7x2

k + y
7
k (mod 11).

If k ≡ 0,3 (mod 10), then z2 ≡ 8 (mod 11). But, 8 is a quadratic nonresidue modulo
11. So k ≢ 0,3 (mod 10). Using (128), equation (123) implies that

z2
≡ 7x2

k + y
7
k (mod 31).

If k ≡ 2 (mod 10), then xk ≡ x2 ≡ 25 (mod 31) and yk ≡ y2 ≡ 16 (mod 31), which
yield z2 ≡ 12 (mod 31). This is impossible, hence k ≢ 2 (mod 10). Moreover, if
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k ≡ 4 (mod 10), then z2 ≡ 15 (mod 31), again leading to a contradiction. So k ≢ 4
(mod 10). From (130), we get

z2
≡ 7x2

k + y
7
k (mod 61).

If k ≡ 1 (mod 10), then z2 ≡ 44 (mod 61). However, (44
61

) = −1. This gives k ≢ 1
(mod 10). In a similar way, if k ≡ 5,6,9 (mod 10), we obtain a contradiction again.
Therefore, k ≢ 5,6,9 (mod 10). From (131), equation (123) leads to

z2
≡ 23x7

k + 206y2
k (mod 241).

If k ≡ 7 (mod 10) or k ≡ 8 (mod 10), then z2 ≡ 153 (mod 241) or z2 ≡ 68
(mod 241), respectively and again giving a contradiction. Hence, k ≢ 7,8 (mod 10).

Next, we consider (106). From (129), equation (123) gives

z2
≡ 7x2

k − y
7
k (mod 41),

which is impossible if k ≡ 0,1,2,3,4,5,6,7 (mod 10). This requires

k ≢ 0,1,2,3,4,5,6,7 (mod 10).

Using (130), we get z2 ≡ 44 (mod 61) if k ≡ 9 (mod 10). This gives a contradiction
again, so k ≢ 9 (mod 10). From (132), we obtain

z2
≡ 7x2

k − y
7
k (mod 2521).

Then z2 ≡ 1129 (mod 2521) if k ≡ 8 (mod 10). But, (1129
2521

) = −1. Hence, k ≢ 8
(mod 10).

Finally, we consider (107). Using (127), equation (123) implies that

z2
≡ 2x7

k + 11y2
k (mod 23),

which is impossible if k ≡ 0,1,2,3,4,5,6,7 (mod 10). This forces

k ≢ 0,1,2,3,4,5,6,7 (mod 10).

It remains to consider k ≡ 8,9 (mod 10). Here, we use equation (129). If k ≡ 8
(mod 10) or k ≡ 9 (mod 10), then z2 ≡ 30 (mod 41) or z2 ≡ 35 (mod 41), respec-
tively. But, 30 and 35 are quadratic nonresidues modulo 41. So k ≢ 8,9 (mod 10).
Thus, the simultaneous Diophantine equations (122) and (123) can not be solved si-
multaneously. Hence, Theorem 3.6 is proved. �

PROOF OF THEOREM 3.7. We prove this theorem by showing the simultaneous
Diophantine equations in (97) have no common solutions. Firstly, we consider the
system of Diophantine equations

x2
− 5y2

= 4, (133)

x7
+ 7y2

= z2, (134)

where x = Ln, y = Fn and z = Z. To prove this system has no solution, we follow
the same approach used in the proof of Theorem 3.6 to exhaust all the possibilities
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of k ≡ ρ (mod 15) for ρ = 0,1,2, . . . ,14, with using some equations of (110)-(121).
Firstly, we consider (102). From (112), equation (134) gives

z2
≡ x7

k + 7y2
k (mod 11).

If k ≡ 3 (mod 15), then z2 ≡ 7 (mod 11). This is impossible, so k ≢ 3 (mod 15).
Using (117), we get z2 ≡ 51 (mod 107) if k ≡ 7 (mod 15). But, ( 51

107
) = −1. So

k ≢ 7 (mod 15). From (118), we get a contradiction if k ≡ 0,1,2,5,6,8,10,12
(mod 15). To exclude the rest possibilities, we use (119), which leads to

z2
≡ x7

k + 7y2
k (mod 541).

If k ≡ 4 (mod 15), then z2 ≡ 206 (mod 541). This gives a contradiction since 206
is a quadratic nonresidue modulo 541. Similarly, k ≡ 9,11,13,14 (mod 15) leads to
a contradiction again. Therefore,

k ≢ 4,9,11,13,14 (mod 15).

Now, we consider (103). From (116), equation (134) implies that

z2
≡ 7y2

k − x
7
k (mod 61).

Starting with k ≡ 8 (mod 15), we get z2 ≡ 43 (mod 61). Again, we get a contradic-
tion, thus k ≢ 8 (mod 15). Using (118), we get

z2
≡ x7

k + 7y2
k (mod 181).

If k ≡ 0 (mod 15), then xk ≡ x0 ≡ 3 (mod 181) and yk ≡ y0 ≡ 180 (mod 181),
which give z2 ≡ 22 (mod 181). This is impossible since ( 22

181
) = −1. Furthermore,

k ≡ 3,5,7,9,10,13,14 (mod 15) yields a contradiction again. Therefore,

k ≢ 0,3,5,7,9,10,13,14 (mod 15).

From (119), the equation

z2
≡ x7

k + 7y2
k (mod 541)

is impossible if k ≡ 1,2,4,6,11 (mod 15). So

k ≢ 1,2,4,6,11 (mod 15).

Using (120), we get
z2

≡ 7y2
k − x

7
k (mod 109441).

If k ≡ 12 (mod 15), then z2 ≡ 98563 (mod 109441). This is impossible since 98563
is a quadratic nonresidue modulo 109441. Hence, k ≢ 12 (mod 15).

Finally, we consider (104). Equation (118) leads to

z2
≡ x7

k + 7y2
k (mod 181),

which is impossible if

k ≡ 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14 (mod 15).
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Therefore, they are all excluded. Hence, the simultaneous Diophantine equations
(133) and (134) have no common solutions. We finish the proof of the theorem by
proving the system of the Diophantine equations

x2
− 5y2

= −4, (135)

x7
+ 7y2

= z2, (136)

where x = Ln, y = Fn and z = Z, can not be solved simultaneously. Again, we use
some appropriate equations of (124)-(132) to exclude all the possibilities of k ≡ ρ
(mod 10) for ρ = 0,1,2, . . . ,9. First of all, we consider equation (105). From (126),
equation (136) leads to z2 ≡ 8 (mod 11), z2 ≡ 6 (mod 11) or z2 ≡ 10 (mod 11) if
k ≡ 0 (mod 10), k ≡ 3 (mod 10) or k ≡ 4 (mod 10), respectively. However, 6, 8
and 10 are quadratic nonresidues modulo 11. So k ≢ 0,3,4 (mod 10). Using (127),
we get

z2
≡ 17x2

k + 11y7
k (mod 23).

If k ≡ 1 (mod 10), then z2 ≡ 21 (mod 23). This yields a contradiction, hence k ≢ 1
(mod 10). If we use (129), we obtain

z2
≡ 7y2

k − x
7
k (mod 41),

which can not be held for k ≡ 5,6,7,8,9 (mod 10). Thus,

k ≢ 5,6,7,8,9 (mod 10).

From (130), we get z2 ≡ 31 (mod 61) for k ≡ 2 (mod 10). But, (31
61

) = −1. There-
fore, k ≢ 2 (mod 10).

Next, we consider (106). In fact, equation (126) and k ≡ 0 (mod 10) give z2 ≡ 6
(mod 11), again yielding a contradiction. So k ≢ 0 (mod 10). Similarly, we get a
contradiction again if we use (129) for k ≡ 1,2,3,4,5,7 (mod 10). Hence,

k ≢ 1,2,3,4,5,7 (mod 10)

From (131), we obtain

z2
≡ 95x2

k + 220y7
k (mod 241).

If k ≡ 6 (mod 10), then z2 ≡ 7 (mod 241). Moreover, if k ≡ 8 (mod 10) or k ≡ 9
(mod 10), then z2 ≡ 21 (mod 241) or z2 ≡ 37 (mod 241), respectively. But, 7, 21
and 37 are quadratic nonresidues modulo 241. So k ≢ 6,8,9 (mod 10).

Lastly, we consider (107). From (126), we have z2 ≡ 8 (mod 11) if k ≡ 3
(mod 10). This is impossible. Therefore, k ≢ 3 (mod 10). Equation (130) leads
to a contradiction again if k ≡ 6 (mod 10). So k ≢ 6 (mod 10). In a similar way,
we can use (129) to eliminate all the remaining possibilities of k ≡ ρ (mod 10) such
that ρ = 0,1,2,4,5,7,8,9. Hence, the simultaneous Diophantine equations (135) and
(136) have no common solutions. Therefore, Theorem 3.7 is completely proved. �
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3.2. Solutions of generalizations of Markoff equation from linear recurrence
sequences

From Subsection 1.2.2 of Chapter 1, we recall Markoff equation; that is, the Dio-
phantine equation

x2
+ y2

+ z2
= 3xyz (137)

in positive integers x ≤ y ≤ z, which was deeply studied by Markoff [160, 161]
demonstrating a relationship between its integer solutions (so-called Markoff triples)
and Diophantine approximation. As mentioned earlier that Markoff obtained many
interesting results related to the Markoff triples such as there are infinitely many
Markoff triples, which can be generated from the fundamental solution (1,1,1) and
the branching operation

(x, y, z)

(x, z,3xz − y) (y, z,3yz − x).

In fact, the set of ordered positive solutions can be organized in a tree called
Markoff’s tree. A component of some Markoff triple is called a Markoff number. The
sequence of Markoff numbers is as follows

1,2,5,13,29,34,89,169,194,233,433,610,985,1325,1597, . . .

(sequence A002559 [221]), which appear as coordinates of Markoff triples

(1,1,1), (1,1,2), (1,2,5), (1,5,13), (2,5,29), (1,13,34), (1,34,89),

(2,29,169), (5,13,194), (1,89,233), (5,29,433), (1,233,610),

(2,169,985), (13,34,1325), . . . .

This equation has been generalized by several authors. For instance, Hurwitz [122]
applied Markoff’s descent technique to the equation

x2
1 + x

2
2 + . . . + x

2
n = ax1x2 . . . xn,

with a being a nonzero integer and n ≥ 3. Mordell [175] studied the integer solutions
of the equation

x2
+ y2

+ z2
= axyz + b,

where a and b are integers with a > 0. Another generalization was considered by
Rosenberger [198], which has the form

ax2
+ by2

+ cz2
= dxyz. (138)

This equation is often called the Markoff-Rosenberger equation. Rosenberger proved
that if a, b, c, d ∈ N are integers such that gcd(a, b) = gcd(a, c) = gcd(b, c) = 1 and
a, b, c∣d, then nontrivial solutions exist only if (a, b, c, d) ∈ T, where

T = {(1,1,1,1), (1,1,1,3), (1,1,2,2), (1,1,2,4), (1,1,5,5), (1,2,3,6)}.



64 CHAPTER 3. EQUATIONS OF THE FORM G(X,Y,Z) ∶= AX2 +BY r +CZ2

The Markoff-Rosenberger equation was generalized by Jin and Schmidt [123] in
which they determined the positive integer solutions of the equation

AX2
+BY 2

+CZ2
=DXY Z + 1. (139)

Jin and Schmidt showed that equation (139) has a fundamental solution if and only if

(A,B,C,D) ∈ {(2,2,3,6), (2,1,2,2), (7,2,14,14), (3,1,6,6),

(6,10,15,30), (5,1,5,5), (1, t, t,2t)},with t ∈ N.

Respecting the authors of this generalization, we call equation (139) the Jin-Schmidt
equation. Other generalizations and studies related to the Markoff equation can be
found in [6], [15], [94], [119] and the references given there. One of the recent studies
related to the Markoff equation (137) was introduced by Luca and Srinivasan [155] in
which they proved that the only solution of Markoff equation with x ≤ y ≤ z such that
(x, y, z) = (Fi, Fj , Fk) is given by the well-known identity related to the Fibonacci
numbers

1 + F 2
2n−1 + F

2
2n+1 = 3F2n−1F2n+1.

Moreover, Kafle, Srinivasan and Togbé [125] determined all triples of Pell numbers
(x, y, z) = (Pi, Pj , Pk) satisfying Markoff equation. Here, there is an other identity
given by

22
+ P 2

2m−1 + P
2
2m+1 = 3 ⋅ 2 ⋅ P2m−1P2m+1.

Recently, Altassan and Luca [5] considered the Markoff-Rosenberger equation (138)
with integer solutions (x, y, z), which are all members of a Lucas sequence whose
characteristic equation has roots which are quadratic units.

In this section, we present our new results in the following two subsections in
which we extend the result of Luca and Srinivasan by simplifying their strategy with
having upper bounds for the minimum of the indices to provide a direct approach
for investigating such special solutions of the Jin-Schmidt equation (139) and the
Markoff-Rosenberger equation (138), respectively. In the first subsection we find all
the triples of Fibonacci numbers satisfying the Jin-Schmidt equation (the terms of
the Fibonacci sequence {Fn} are given by (23)), and in the other one we consider
the generalized Lucas number solutions of the Markoff-Rosenberger equation (the
generalized Lucas numbers are presented by the terms of the Lucas sequences {Un}
and {Vn} that are given by (19) and (20), respectively). Then we apply the obtained
results to completely resolve concrete equations, e.g. we determine solutions con-
taining only balancing numbers and Jacobsthal numbers, respectively (the terms of
the sequences of balancing numbers (Bn)n≥0 and Jacobsthal numbers (Jn)n≥0 are re-
spectively given by (29) and (27)). Following the same strategy, Markoff-Rosenberger
triples containing only Fibonacci numbers were determined by Tengely [244].



3.2. SOLUTIONS OF GENERALIZATIONS OF MARKOFF EQUATION 65

3.2.1. Solutions of the Jin-Schmidt equation in Fibonacci numbers.

Here, we investigate the solutions (X,Y,Z) = (FI , FJ , FK) in positive integers
of the Jin-Schmidt equation (139). In other words, we study the solutions of the
following Diophantine equations in the sequence of Fibonacci numbers:

2X2
+ 2Y 2

+ 3Z2
= 6XY Z + 1, (140)

2X2
+ Y 2

+ 2Z2
= 2XY Z + 1, (141)

7X2
+ 2Y 2

+ 14Z2
= 14XY Z + 1, (142)

3X2
+ Y 2

+ 6Z2
= 6XY Z + 1, (143)

6X2
+ 10Y 2

+ 15Z2
= 30XY Z + 1, (144)

5X2
+ Y 2

+ 5Z2
= 5XY Z + 1. (145)

We remark that the same technique can be applied in case of (A,B,C,D) = (1, t,
t,2t) for given values of t. One of the interesting motivations about the Jin-Schmidt
equation is that the equation (140) appeared in connection with the description of the
lower part of the approximation spectrum for quaternions. Moreover, it is connected
with the description of approximation constants for complex numbers on the circle
{z ∈ C ∣ ∣z∣ = 1√

2
} with respect to integers in the field Q(

√
−3). For more details

about these connections, one can see e.g. [123] and the references given there.

Next, we introduce the procedure which we use to study the existence and nonex-
istence of such special solutions of the Jin-Schmidt equation (particularly, equations
(140)-(145)). Since this procedure can be adapted to study the solutions of any equa-
tion of the form ax2 + by2 + cz2 = dxyz + e (for certain nonzero integer coefficients)
from certain binary linear recurrence sequences, we call it the general investigative
procedure.

3.2.1.1. General investigative procedure.

To start the procedure off, we first have to obtain all the possible distinct equations

ax2
+ by2

+ cz2
= dxyz + 1 (146)

of equation (139) by permuting the coefficients A,B and C for

(A,B,C,D) ∈ S = {(2,2,3,6), (2,1,2,2), (7,2,14,14), (3,1,6,6),

(6,10,15,30), (5,1,5,5)}.

The following steps summarize the technique of investigating all the solutions
(x, y, z) = (Fi, Fj , Fk) with 2 ≤ i ≤ j ≤ k for every equation of the form (146)
for a given tuple (a, b, c, d); that is,

aF 2
i + bF

2
j + cF

2
k = dFiFjFk + 1, (147)

where 2 ≤ i ≤ j ≤ k. Note that we assumed that i ≥ 2 since F1 = F2 = 1.
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● Determining an upper bound for i in equation (147). We first rewrite the
equation in the form

cFk − dFiFj = −
aF 2

i + bF
2
j

Fk
+

1

Fk
. (148)

Inserting the values of Fi, Fj and Fk in the left-hand side of equation
(148) with using the Binet’s Fibonacci numbers formula in (31) (that is
Fn =

αn−βn

α−β , where (α,β) = (1+
√

5
2 , 1−

√
5

2 ) for all n ≥ 0 and α is called

the golden ratio and β = −1
α ), we obtain that

c
√

5
αk −

d

5
αi+j = −

aF 2
i + bF

2
j

Fk
+

1

Fk
+

c
√

5
βk (149)

−
d

5
(αiβj + αjβi − βi+j).

Based on the inequalities for the nth Fibonacci number in (35) (that isαn−2 ≤

Fn ≤ α
n−1 holds for all n ≥ 1) and 2 ≤ i ≤ j ≤ k (that is 1 ≤ Fi ≤ Fj ≤ Fk),

we have that

aF 2
i + bF

2
j

Fk
≤ (a + b)

F 2
j

Fk
≤ (a + b)α2j−k

≤ (a + b)αj , (150)

1

Fk
≤ 1 < αj , (151)

∣
c

√
5
βk∣ = ∣−

c
√

5
α−k∣ ≤

c
√

5
α−j ≤

c

5
αj , (152)

∣
d

5
(αiβj + αjβi − βi+j)∣ ≤

d

5
(2αj + 1) ≤

3d

5
αj . (153)

Taking the absolute values to equation (149) and using the inequalities (150)-
(153), we obtain that

∣
c

√
5
αk −

d

5
αi+j∣ < (1 + a + b +

c + 3d

5
)αj .

Multiplying across by
√

5
cαi+j

, we get that

∣αk−i−j −
d

c
√

5
∣ <

h

αi
, (154)

where h =
√

5
c (1 + a + b + c+3d

5 ). Suppose that

min
n∈Z

∣αn −
d

c
√

5
∣ > g > 0,
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so inequality (154) implies that

g <
h

αi
,

which clearly gives

i ≤ ⌊
ln(hg )

ln(α)
⌋ = l. (155)

● Determining an upper bound for k − j in equation (147). In fact, for a given
i one can use inequality (154) to obtain an upper bound for k − j. Here,
we provide such a bound using the upper bound for i (that is i ≤ l) and
inequality (154). We have that 1 ≤ a, b, c ≤ 15 and 2 ≤ d = D ≤ 30, which
imply that h ≤ 52

√
5 < 116.3. Therefore, inequality (154) becomes

∣∣αk−i−j ∣ − ∣
d

c
√

5
∣∣ ≤ ∣αk−i−j −

d

c
√

5
∣ <

116.3

α2
< 44.5

as i ≥ 2, which leads to

∣αk−i−j ∣ < 44.5 + ∣
d

c
√

5
∣ < 44.5 +

30
√

5
< 58

as d ≤ 30 and c ≥ 1. Hence,

k − j < i +
ln(58)

ln(α)
< l + 9 or k ≤ j + l + 8 (156)

as i ≤ l.
● Eliminating the values of i for i ∈ [2, l] in which equation (147) does not

hold (and then equation (146) for which (x, y, z) = (Fi, Fj , Fk) with 2 ≤ i ≤
j ≤ k). For that, we solve the Diophantine equation

aF 2
i + by

2
+ cz2

− dFiyz − 1 = 0 (157)

for y and z. This can be done by SageMath [231] using the function
solve_diophantine(). If there exists no i for which equation (157)
is satisfied, then equation (146) does not have any solution (x, y, z) = (Fi,
Fj , Fk) with 2 ≤ i ≤ j ≤ k at the tuple (a, b, c, d).

● Fixing i and k for an arbitrary k ∈ {j, j + 1, . . . , j + l + 8} in equation (147),
we get that

bF 2
j − sFj +w = 0, (158)

where s = dFiFk and w = aF 2
i + cF

2
k − 1. We note that the equation above

only depends on j for all j ≥ i ≥ 2.
● Determining whether there exists j for which equation (158) holds using any

of the following arguments:
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(i) The technique of using the quadratic formula and the identity relation-
ship between the Fibonacci numbers and Lucas numbers. Indeed, the
sequence of Lucas numbers (Lk)k≥0 is defined by (25), and from (21)
the terms of the Fibonacci and Lucas sequences satisfy the identity

L2
k = 5F 2

k ± 4. (159)

Multiplying (158) by 4b and adding s2 to both sides lead to

(2bFj − s)
2
= s2

− 4bw. (160)

Multiplying equations (159) and (160) together yields

Y 2
1 = (5X2

1 ± 4)(d2F 2
i X

2
1 − 4b(aF 2

i + cX
2
1 − 1)),

where X1 = Fk and Y1 = Lk(2bFj − dFiFk). Therefore, our problem
is reduced to obtain integral points on these biquadratic genus 1 curves.
This will be realized using an algorithm implemented in Magma [33]
as SIntegralLjunggrenPoints() (based on results obtained by
Tzanakis [249]) or an algorithm described by Alekseyev and Tengely
[4] in which they gave an algorithmic reduction of the search for inte-
gral points on such a curve to solving a finite number of Thue equations.

(ii) The Fibonacci identities substitution technique in which we use the Fi-
bonacci sequence formula or some related identities to eliminate equa-
tion (158).

(iii) The congruence argument technique in which we eliminate equation
(158) modulo a prime number p.

Applications of these arguments will be shown in details in the proof of
Theorem 3.8.

● From every obtained solution (x, y, z) = (Fi, Fj , Fk) of equation (146) at
the tuple (a, b, c, d), we derive the corresponding solution (X,Y,Z) = (FI ,
FJ , FK) of equation (139) at the tuple (A,B,C,D) by comparing the posi-
tions of the components of their tuples.

3.2.1.2. New result.

In the following we present our main result regarding the solutions of the Jin-
Schmidt equation (139) in Fibonacci numbers. This result appears as Theorem 3.1 in
[107].

THEOREM 3.8. Let m be a positive integer greater than 1. If (X,Y,Z) = (FI ,
FJ , FK) is a solution of equation (139) with (A,B,C,D) ∈ S, then the complete list
of solutions is given by
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Eq. (A,B,C,D) {(X,Y,Z)}

(140) (2,2,3,6) {(1,1,1), (1,2,1), (1,2,3), (2,1,1), (2,1,3),

(F2m−1, F2m+1,1), (F2m+1, F2m−1,1)}

(141) (2,1,2,2) {(2,3,2), (2,5,2), (2,5,8), (8,5,2)}

(142) (7,2,14,14) {(1,2,1), (1,5,1), (3,2,1), (3,2,5)}

(143) (3,1,6,6) {(1,2,1), (3,2,1), (3,2,5)}

(144) (6,10,15,30) {(1,1,1), (1,2,1), (1,2,3)}

(145) (5,1,5,5) {}

3.2.1.3. Proof of the result.

PROOF OF THEOREM 3.8. We follow the general investigative procedure de-
scribed in 3.2.1.1 to obtain and prove the desired solutions in the theorem.

◻ Case 1. If (A,B,C,D) = (2,2,3,6). We start by permuting the coeffi-
cients of equation (140) to obtain the equations

2x2
+ 2y2

+ 3z2
= 6xyz + 1, (161)

2x2
+ 3y2

+ 2z2
= 6xyz + 1, (162)

3x2
+ 2y2

+ 2z2
= 6xyz + 1. (163)

We investigate the solutions of these equations with the assumptions of x =

Fi, y = Fj and z = Fk for 2 ≤ i ≤ j ≤ k. That will be pursued by determining
upper bounds for i and k − j as described in the procedure. Thus, we have
that the upper bounds for i in equations (161),(162) and (163) are given
by i ≤ 8, i ≤ 7 and i ≤ 7, respectively. Therefore, we get that k − j ≤

16, k − j ≤ 15 and k− j ≤ 15 in case of equations (161),(162) and (163),
respectively. Let us consider equation (161) with (x, y, z) = (Fi, Fj , Fk);
that is, 2F 2

i + 2F 2
j + 3F 2

k − 6FiFjFk − 1 = 0 with 2 ≤ i ≤ j ≤ k such that
2 ≤ i ≤ 8 and k ≤ j + 16. Here, we obtain that i ∈ {2,3,5,7} in which
the equation 2F 2

i + 2y2 + 3z2 − 6Fiyz − 1 = 0 is solvable. For i = 2 and
k ∈ {j, j + 1, . . . , j + 16}, we have that

2F 2
j − 6FkFj + 3F 2

k + 1 = 0. (164)

For each k we determine the values of j in which the latter equation is satis-
fied; we consider the equation as a quadratic in Fj and follow the argument
described in (i) with (a, b, c, d) = (2,2,3,6). It remains to solve the quartic
Diophantine equations

Y 2
1 = 60X4

1 + 8X2
1 − 32, (165)

Y 2
1 = 60X4

1 − 88X2
1 + 32, (166)

where X1 = Fk and Y1 = (4Fj − 6Fk)Lk. As mentioned earlier in the
procedure that the integral points on these equations can be obtained using
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the Magma function SIntegralLjunggrenPoints(). For equation
(165), we get that X1 ∈ {±1,±3}. In case of equation (166), we have that
X1 ∈ {±1}. It follows that Fk = 1 or 3. Hence,
− If k = j and Fk = 1, then we have that k = j = 2. Therefore, we get the

solution (x, y, z) = (F2, F2, F2) = (1,1,1).
− If k ∈ [j + 1, j + 16], then Fk = 1 is impossible for all j ≥ 2.
− If k = j and Fk = 3, then we obtain that k = j = 4. However, the triple

(1,3,3) is clearly not a solution to equation (161).
− If k = j + 1 and Fk = 3, then we get that k = 4 and j = 3. Thus, we have

the solution (x, y, z) = (1,2,3).
− If k = j + 2 and Fk = 3, then we obtain that k = 4 and j = 2. Again, we

have that (x, y, z) = (1,1,3) is not a solution to equation (161).
− Finally, we have that Fk = 3 is impossible for all k ∈ {j + 3, . . . , j + 16}

with j ≥ 2.
Now, we deal with the case of i = 3 and k ∈ [j, j+16] with j ≥ 3. In a similar
way, we follow the same argument on the following quadratic equation in
Fj :

2F 2
j − 12FkFj + 3F 2

k + 7 = 0. (167)

We obtain the equations

Y 2
1 = 600X4

1 + 200X2
1 − 224

and

Y 2
1 = 600X4

1 − 760X2
1 + 224,

with X1 = Fk and Y1 = (4Fj −12Fk)Lk. In the former equation, we get that
X1 ∈ {±1,±3}. In the latter equation, we obtain that X1 ∈ {±1}. It follows
that Fk = 1 or 3, which leads to no solution of equation (161). Furthermore,
using the same argument described in (i) one can show that equation (161)
does not have any solution of the form (x, y, z) = (Fi, Fj , Fk) with i ≤ j ≤ k
in the case of i = 5 or 7 and k ∈ [j, j + 16].

Next, for equation (162) we study the equation 2F 2
i + 3F 2

j + 2F 2
k −

6FiFjFk − 1 = 0 with 2 ≤ i ≤ 7 and j ≤ k ≤ j + 15. Again, we get that
i ∈ {2,3,5,7} in which the equation 2F 2

i + 3y2+ 2z2 − 6Fiyz − 1 = 0 is
solvable in y and z. Starting with i = 2 and k ∈ {j, j + 1, . . . , j + 15}, and
following the technique (i) we obtain that Fk ∈ {1,2}. Therefore,
− If k = j and Fk = 1, we get the solution (x, y, z) = (1,1,1).
− If j + 1 ≤ k ≤ j + 15, then Fk = 1 is impossible for all j ≥ 2.
− If k = j and Fk = 2, we obtain that (x, y, z) = (1,2,2), which is not a

solution to equation (162).
− If k = j + 1 and Fk = 2, we have the solution (x, y, z) = (1,1,2).
− If Fk = 2 and k ∈ {j + 2, . . . , j + 15} for j ≥ 2, then we get no solution

to equation (162).
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Using the same argument, one can prove that the remaining values of i do
not lead to any solution of equation (162).

Finally, we deal with equation (163) in which we have that 2 ≤ i ≤ 7 and
j ≤ k ≤ j+15. Here, we get that the equation 3F 2

i +2y2+2z2−6Fiyz−1 = 0
is solvable only at i ∈ {2,4}. If i = 2, then the equation 3F 2

i + 2F 2
j + 2F 2

k −

6FiFjFk − 1 = 0 becomes

F 2
j − 3FkFj + F

2
k + 1 = 0, (168)

where k ∈ [j, j + 15] and j ≥ 2. We obtain the solutions of equation (168)
(and then of equation (163) in case of i = 2) by direct substitutions of the
values of k in the equation or using the arguments (ii) and (iii). Thus,
− If k = j, then equation (168) implies that Fj = 1 and we get the solution

(x, y, z) = (1,1,1).
− If k = j + 1, we claim that (x, y, z) = (F2, F2, F3) = (1,1,2) is the

only solution to equation (163). To prove our claim, we must show
that equation (168) does not hold at k = j + 1 for all j ≥ 3. In other
words, we follow the idea described in the argument (ii) by using the
Fibonacci numbers formula (that is Fj = Fj−1 +Fj−2 for j > 2) to show
that F 2

j − 3FjFj+1 + F
2
j+1 + 1 < 0 for all j ≥ 3. Hence, let us start with

the left-hand side,

F 2
j − 3FjFj+1 + F

2
j+1 + 1 = F 2

j − 3Fj(Fj−1 + Fj)

+ (Fj−1 + Fj)
2
+ 1

= −F 2
j − Fj−1Fj + F

2
j−1 + 1 (169)

= −F 2
j − Fj−2Fj−1 + 1

< 0 for all j ≥ 3,

and this proves the claim.
− If k = j + 2, then equation (168) gives us the identity

F 2
j − 3FjFj+2 + F

2
j+2 + 1 = 0,

which is valid for all j = 2m − 1 with m ≥ 2. This identity was proven
in 2018 by Hoare G. [115]. Therefore, we get the solution (x, y, z) =
(F2, Fj , Fk) = (1, F2m−1, F2m+1).

− If k = j + 3, then in a similar way of the technique described in (169)
we can show that the equation F 2

j −3FjFj+3+F
2
j+3+1 > 0 for all j ≥ 2.

That is

F 2
j − 3FjFj+3 + F

2
j+3 + 1 = FjFj+1 + 2Fj−1Fj

+ 3Fj−1Fj+1 + F
2
j−1 + 1

> 0 for all j ≥ 2.
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− Similarly, if k = j + 4 or j + 5, then we conclude the unsolvability of
equation (168) by having that

F 2
j − 3FjFj+4 + F

2
j+4 + 1 = 2Fj−1Fj+2 + Fj−1Fj+3

+ F 2
j + F

2
j+1 + F

2
j+3 + 1

> 0 for all j ≥ 2,

or

F 2
j − 3FjFj+5 + F

2
j+5 + 1 = F 2

j + F
2
j+3 + F

2
j+4 + 3FjFj+2

+ 4Fj−1Fj+4 + 1

> 0 for all j ≥ 2,

respectively.
− If k = j+6, we have the equation, call it,Gj = F 2

j −3FjFj+6+F
2
j+6+1 =

0. Here, we may use a congruence argument to show the given equation
does not hold for all j ≥ 2 by finding a prime number p in which Gj ≢ 0
(mod p). Let p = 17, then for all j ≥ 2 we have that

Gj (mod 17) ≡ 6,5,7,16,5,16,7,5,6,13,14,12,

3,14,3,12,14,13,6,5,7, . . . ,

which clearly has period = 18. This contradicts that Gj≥2 = 0. Hence,
equation (163) has no solutions of the form (x, y, z) = (Fi, Fj , Fk),
where i = 2, j ≥ 2 and k = j + 6.

− Similarly, if k = j + 7 and p = 13, then we get that

Hj (mod 13) ≡ 3,9,6,12,12,1,12,12,6,9,3,3

1,3,3,9,6,12,12, . . . ,

whereHj = F
2
j −3FjFj+7+F

2
j+7+1 for all j ≥ 2.Again, we get a contra-

diction. For the remaining values of k, one can show that equation (163)
has no more solutions using either of the arguments described in (ii) or
(iii). Finally, we deal with i = 4 that leads to F 2

j − 9FjFk +F
2
k + 13 = 0.

Using the argument described in (i), we get that Fk = 1 or 2, which is
impossible for all k ∈ {j, j + 1, j + 2, . . . , j + 15} with j ≥ 4.

Finally, we combine the solutions of equations (161),(162) and (163) and
then permute their components in which they satisfy equation (140). There-
fore, equation (140) has the following set of solutions:

(X,Y,Z) = (FI , FJ , FK) ∈ {(1,1,1), (1,2,1), (1,2,3),

(2,1,1), (2,1,3), (F2m−1, F2m+1,1), (F2m+1, F2m−1,1)},

for all m ≥ 2.
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◻ Case 2. If (A,B,C,D) = (2,1,2,2). Again, by permuting the coefficients
of equation (141) we obtain the distinct equations

2x2
+ y2

+ 2z2
= 2xyz + 1, (170)

x2
+ 2y2

+ 2z2
= 2xyz + 1, (171)

2x2
+ 2y2

+ z2
= 2xyz + 1. (172)

To study the solutions of these equations for which x = Fi, y = Fj and
z = Fk with 2 ≤ i ≤ j ≤ k, we compute the upper bounds for i and k − j
using the inequalities (155) and (156), respectively. It follows that the upper
bounds for i in equations (170), (171) and (172) are presented by i ≤ 9, i ≤ 9
and i ≤ 10, respectively. Therefore, we get that k − j ≤ 17 in equations
(170) and (171) and k − j ≤ 18 in equation (172). Moreover, we have that
the equations 2F 2

i + y
2 + 2z2 − 2Fiyz − 1 = 0 with 2 ≤ i ≤ 9 and 2F 2

i +

2y2 + z2 − 2Fiyz − 1 = 0 with 2 ≤ i ≤ 10 are solvable only for i = 3 or
6. On the other hand, the equation F 2

i + 2y2 + 2z2 − 2Fiyz − 1 = 0 with
2 ≤ i ≤ 9 is solvable for i ∈ {2,4,5,7}. As a result of using the argument
described in (i), we obtain that the solutions of equation (170) and equation
(172) are given by (x, y, z) = (2,5,8) and (x, y, z) ∈ {(2,2,3), (2,2,5)},
respectively. On the other hand, we have no solution to equation (171). From
these solutions, we conclude that the solutions of equation (141) are given
by (X,Y,Z) = (2,3,2), (2,5,2), (2,5,8) and (8,5,2).

◻ Case 3. If (A,B,C,D) = (7,2,14,14). In a similar way, from equation
(142) we get the equations

7x2
+ 2y2

+ 14z2
= 14xyz + 1, (173)

2x2
+ 7y2

+ 14z2
= 14xyz + 1, (174)

7x2
+ 14y2

+ 2z2
= 14xyz + 1, (175)

14x2
+ 7y2

+ 2z2
= 14xyz + 1, (176)

14x2
+ 2y2

+ 7z2
= 14xyz + 1, (177)

2x2
+ 14y2

+ 7z2
= 14xyz + 1. (178)

Assuming that x = Fi, y = Fj and z = Fk with 2 ≤ i ≤ j ≤ k, we get that i ≤ 8
and i ≤ 9 in which the equations (173)–(176) and equations (177)–(178) can
be held, respectively. Hence, the upper bounds for k − j in equations (173)–
(176) and (177)–(178) are given by k − j ≤ 16 and k − j ≤ 17, respectively.
Eliminating some of the values of i in the given ranges, we get that i ∈
{2,4}, i ∈ {3,5}, and i ∈ {2,5} in which equations; (173) and (175), (174)
and (178), and (176) and (177) for which x = Fi are solvable, respectively.
As before, we use the argument described in (i) to get the solution (x, y, z) =
(2,3,5) to equation (174) and the solutions (x, y, z) = (1,1,2) and (1,1,5)
to equations (175) and (176). Moreover, the equation (177) has no more
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solution other than (x, y, z) = (1,2,3). The remaining equations have no
such solutions. These solutions yield the solutions of (142), which are given
by (X,Y,Z) ∈ {(1,2,1), (1,5,1), (3,2,1), (3,2,5)}.

◻ Case 4. If (A,B,C,D) = (3,1,6,6). By permuting the coefficients of
equation (143), we have the following distinct equations

3x2
+ y2

+ 6z2
= 6xyz + 1, (179)

x2
+ 3y2

+ 6z2
= 6xyz + 1, (180)

x2
+ 6y2

+ 3z2
= 6xyz + 1, (181)

6x2
+ y2

+ 3z2
= 6xyz + 1, (182)

6x2
+ 3y2

+ z2
= 6xyz + 1, (183)

3x2
+ 6y2

+ z2
= 6xyz + 1. (184)

Suppose that x = Fi, y = Fj and z = Fk with 2 ≤ i ≤ j ≤ k. As before,
we obtain that i ≤ 8, i ≤ 9, and i ≤ 12 for which equations (179)–(180),
(181)–(182), and (183)–(184) can be valid, respectively. The upper bounds
of k − j can be easily followed using inequality (156). Furthermore, we get
that i ∈ {2,4}, i ∈ {2,3}, i ∈ {2,4,5}, and i ∈ {2,4,5,11} in which the
equations; (179) and (184), (180) and (181), (182), and (183) are solvable
in y and z for all x = Fi, respectively. It remains to study the solutions of
these equations using any of the arguments described in (i), (ii) or (iii), we
obtain that the only solution for equation (180) is (x, y, z) = (2,3,5) and
for equation (182) is (x, y, z) = (1,2,3). Moreover, equations (183) and
(184) have no more solutions other than (x, y, z) = (1,1,2). Finally, the
remaining equations are unsolvable. Therefore, the solutions of the main
equation (143) are given by (X,Y,Z) = (1,2,1), (3,2,1) and (3,2,5).

◻ Case 5. If (A,B,C,D) = (6,10,15,30). Permuting the coefficients of
equation (144) gives the equations

6x2
+ 10y2

+ 15z2
= 30xyz + 1, (185)

10x2
+ 6y2

+ 15z2
= 30xyz + 1, (186)

6x2
+ 15y2

+ 10z2
= 30xyz + 1, (187)

15x2
+ 6y2

+ 10z2
= 30xyz + 1, (188)

10x2
+ 15y2

+ 6z2
= 30xyz + 1, (189)

15x2
+ 10y2

+ 6z2
= 30xyz + 1. (190)

Let x = Fi, y = Fj and z = Fk with 2 ≤ i ≤ j ≤ k. Here, we get that i ≤ 8
and i ≤ 7 for which equations (185)–(186) and (187)–(190) can be solvable,
respectively. Therefore, k ≤ j+16 in equations (185)–(186) and k ≤ j+15 in
the equations (187)–(190). Eliminating some of these values of i, we obtain



3.2. SOLUTIONS OF GENERALIZATIONS OF MARKOFF EQUATION 75

that i ∈ {2}, i ∈ {2,3}, and i ∈ {2,4} for which equations; (185) and (187),
(186) and (189), and (188) and (190) are satisfied for all x = Fi. Using
any of the mentioned arguments mainly the one described in (i), we get that
(x, y, z) = (1,1,1) and (1,2,3) are the solutions for equation (185) and
(x, y, z) = (1,1,1) is the only solution for equations (186), (189) and (190).
The solutions of equations (187) and (188) are given by (x, y, z) = (1,1,1)
and (1,1,2). Combining these solutions back to equation (144), we get that
(X,Y,Z) ∈ {(1,1,1), (1,2,1), (1,2,3)}.

◻ Case 6. If (A,B,C,D) = (5,1,5,5). In a similar way, we investigate the
solutions of the equations

5x2
+ y2

+ 5z2
= 5xyz + 1, (191)

x2
+ 5y2

+ 5z2
= 5xyz + 1, (192)

5x2
+ 5y2

+ z2
= 5xyz + 1, (193)

where x = Fi, y = Fj and z = Fk with 2 ≤ i ≤ j ≤ k. The upper bounds for
i in which the given equations can be held are given by i ≤ 8 and i ≤ 9 in
equations (191)–(192) and (193), respectively. These imply that k − j ≤ 16
and k−j ≤ 17 in equations (191)–(192) and (193), respectively. Furthermore,
we get that i ∈ {2,3} and i ∈ {2} for which equations; (191) and (193), and
(192) with x = Fi are solvable in y and z, respectively. Using any of the
arguments described in (i), (ii) or (iii) leads to the unsolvability of equations
(191)–(193) for which (x, y, z) = (Fi, Fj , Fk). Therefore, equation (145)
has no solution of the form (X,Y,Z) = (FI , FJ , FK) in positive integers.

Hence, Theorem 3.8 is completely proved. �

3.2.2. Solutions of the Markoff-Rosenberger equation in generalized Lucas
numbers.

Here, we generalize the strategy presented in Subsection 3.2.1 by considering
the generalized Lucas number solutions of the Markoff-Rosenberger equation (138).
Indeed, we adopt the general investigative procedure presented in 3.2.1.1 in a more
extended way to provide general results for the solutions (x, y, z) = (Ri,Rj ,Rk) of
the Markoff-Rosenberger equation, where Ri denotes the ith generalized Lucas num-
ber of first/second kind, i.e. Ri = Ui or Vi. Then we apply the strategy of achieving
these results to completely resolve concrete equations, e.g. we determine solutions
containing only balancing numbers and Jacobsthal numbers, respectively.

Next, we mention some auxiliary results, which we need later to present and proof
our main results.
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3.2.2.1. Auxiliary results.

From (19) and (20), we respectively recall the Lucas sequences {Un}n≥0,{Vn}n≥0

as follows

U0(P,Q) = 0, U1(P,Q) = 1, Un(P,Q) = PUn−1(P,Q) −QUn−2(P,Q),

V0(P,Q) = 2, V1(P,Q) = P, Vn(P,Q) = PVn−1(P,Q) −QVn−2(P,Q),

where neither P nor Q is zero.

REMARK 3.9. Assume that P ⋆ = −P and define

U⋆
0 = 0, U⋆

1 = 1 U⋆
n = P ⋆U⋆

n−1 −QU
⋆
n−2,

V ⋆
0 = 2, V ⋆

1 = P ⋆, V ⋆
n = P ⋆V ⋆

n−1 −QV
⋆
n−2.

Then we have
U⋆
n = (−1)n+1Un, V ⋆

n = (−1)nVn.

Based on the above identities, here we only deal with sequences satisfying P > 0.

Furthermore, we assume that 0 < D = P 2 − 4Q,P ≥ 2 and −P − 1 ≤ Q ≤ P − 1.
We exclude the cases with P = 1 to make the presentation simpler. However, if
P = 1, then −2 ≤ Q ≤ 0. Therefore, there are only two sequences to be considered.
Namely, the Fibonacci sequence with (P,Q) = (1,−1) and the Jacobsthal sequence
with (P,Q) = (1,−2). The former one was completely solved in [244], and the latter
one will be handled separately as an application presented in 3.2.2.3.2. The charac-
teristic polynomial associated to the above sequences is given by x2 − Px +Q. The
roots of the characteristic polynomial can be written in the form

α =
P +

√
D

2
, β =

P −
√
D

2

and we have α − β =
√
D,α + β = P and αβ = Q. We note that the conditions

P ≥ 2,D > 0 and −P − 1 ≤ Q ≤ P − 1 imply that α ≥ 2 and ∣β∣ ≤ 1. First, we justify
the second statement, and then the first one. Since P ≥ 2 and −P − 1 ≤ Q ≤ P − 1, we
have

(P − 2)2
≤ P 2

− 4Q ≤ (P + 2)2.

Therefore, P − 2 ≤
√
D ≤ P + 2. We have that β = P−

√
D

2 . Hence,

−1 ≤ β ≤ 1.

This implies that α ≥ 2. Indeed, if P ≥ 3, then α = P − β ≥ P − 1 ≥ 2. On the other
hand, if P = 2, then Q ∈ {−3,−2,−1,1}. The case Q = 1 is not convenient since it
leads to the characteristic equation x2 − 2x + 1 = (x − 1)2 which has a double root so
D = 0. Thus, Q ≤ −1, so

α = (2 +
√

4 − 4Q)/2 ≥ (2 +
√

8)/2 = 1 +
√

2 > 2.
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Also, α > ∣β∣. All this has relevance later. By Binet’s formulas given by (22), we have
that

Un =
αn − βn

α − β
, Vn = α

n
+ βn.

We assume that

αk−2
≤ Uk ≤ 2αk, (194)

2αk−1
≤ Vk ≤ 2αk for k ≥ 1, (195)

and these will be fulfilled in case of D > 0, P ≥ 2 and −P −1 ≤ Q ≤ P −1, Q ≠ 0. The
bounds on inequalities (194) and (195) are obtained as follows. The upper bounds are
clear since α − β =

√
D ≥ 1, so

Uk =
αk − βk

α − β
≤ αk − βk ≤ 2αk for k ≥ 1.

Similarly, we get that Vk = αk + βk ≤ 2αk. For the lower bounds, first we note that if
β > 0, or β < 0 and k is even, then

Vk = α
k
+ βk > αk ≥ 2αk−1.

If β < 0 and k is odd, then

Vk = α
k
− ∣β∣k = (α − ∣β∣)(αk−1

+ . . . + ∣β∣k−1
) ≥ 2αk−1,

since α − ∣β∣ = α + β = P ≥ 2. For Uk, we use a similar argument. If β > 0, then

Uk =
αk − βk

α − β
= αk−1

+ αk−2β + . . . + βk−1
> αk−1

> αk−2.

If β < 0, then

Uk ≥
αk − ∣β∣k

α + ∣β∣
>
α − ∣β∣

2α
(αk−1

+ . . . + ∣β∣k−1
) ≥ αk−2,

where we used again the fact that α − ∣β∣ = α + β = P ≥ 2. In general, we assume that
if {Rn}n≥0 is a nondegenerate Lucas sequence of the first or second kind, then there
exist constants s1, s2, i1, i2 such that

s1α
n−i1 ≤ Rn ≤ s2α

n+i2 for n ≥ 1,

and this will be fulfilled in the cases that we investigate later.

REMARK 3.10. Let {Rn}n≥0 be a binary linear recurrence sequence represented
by {Un}n≥0 or {Vn}n≥0. In order to determine all triples (Ri,Rj ,Rk) satisfying
equation (138) at a given tuple (a, b, c, d) ∈ T , where

T = {(1,1,1,1), (1,1,1,3), (1,1,2,2), (1,1,2,4), (1,1,5,5), (1,2,3,6)}.

We first compute an upper bound for i (such that 1 ≤ i ≤ j ≤ k), denote it
by ubRn(a, b, c, d). Hence, to resolve the equation completely with e.g. (a, b, c,
d) = (1,2,3,6) one needs to handle the cases with i ≤ ubRn(1,2,3,6), i ≤

ubRn(1,3,2,6), i ≤ ubRn(2,1,3,6), i ≤ ubRn(2,3,1,6), i ≤ ubRn(3,1,2,6) and
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i ≤ ubRn(3,2,1,6). Then after obtaining the solutions of (138) with these cases,
we permute the components of these solutions in which they satisfy equation (138) at
the tuple (a, b, c, d) = (1,2,3,6) to determine the complete list of its solutions. Al-
though, Theorem 3.11 gives the least upper bound for all such cases of the tuples of
T . For that, we let T be the set of all distinct tuples (a, b, c, d) derived from permuting
the first three components of elements in T .

3.2.2.2. New results.

Here, we present our main results regarding the generalized Lucas number solu-
tions of the Markoff-Rosenberger equation (138). These results will appear in [110].

THEOREM 3.11. Let (a, b, c, d) ∈ T, P ≥ 2,−P − 1 ≤ Q ≤ P − 1 such that Q ≠ 0,
D > 0 and

B0 = min
I∈Z

∣αI −
d

c
√
D

∣ , B1 = min
I∈Z

∣αI −
d

c
∣ .

IfB0 ≠ 0, thenB0 ≥ α
−4 and ifB1 ≠ 0, thenB1 ≥ 0.17. Furthermore, if x = Ui, y = Uj

and z = Uk with 1 ≤ i ≤ j ≤ k is a solution of (138) and B0 ≠ 0, then i ≤ 12. If
x = Vi, y = Vj and z = Vk with 1 ≤ i ≤ j ≤ k is a solution of (138) and B1 ≠ 0, then
i ≤ 7.

PROOF. Let us start proving the first part of the theorem in which we show that
B0 ≥ α−4 and B1 ≥ 0.26 as B0 ≠ 0 and B1 ≠ 0, respectively. We start with the case
of B1. From T, we have the rational number d/c is in the set {1,2,3,4,5,6}. If I = 0
and B1 ≠ 0, then d/c ∈ {2,3,4,5,6}. So B1 ≥ 1. However, if d/c = 1, then B1 = 0 is
achieved at I = 0 independently on P and Q. If I < 0, then αI ≤ α−1 ≤ 1/2, which
implies that B1 ≥ 1/2. Next, assume that I = 1. If d/c = 1, then B1 ≥ 1 since α ≥ 2.
But, B1 = 0 in case of α = d/c ∈ {2,3,4,5,6}. Now, we indicate the values of P and
Q in each of these cases giving that B1 = 0. Since α and P are positive integers such
that α ∈ {2,3,4,5,6} and P ≥ 2. Then β = P −α must be an integer. Thus, we obtain
that β ∈ {−1,1} since −1 ≤ β ≤ 1. Furthermore, we get that D = (α−β)2 ≥ 1 as α ≥ 2
and β = ±1. Therefore, the appropriate values of P and Q can be determined by

P = α + β, Q = αβ,

where α ∈ {2,3,4,5,6} and β ∈ {−1,1}. In the following table, we summarize the
details of computations for the values of P and Q (such that P ≥ 2 and −P − 1 ≤ Q ≤

P − 1,Q ≠ 0) in which we have B1 = 0.

α (P,Q)

2 (3,2)

3 (4,3), (2,−3)

4 (5,4), (3,−4)

5 (6,5), (4,−5)

6 (7,6), (5,−6)
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Assuming that I ≥ 2. If P ≥ 4, then αI ≥ α2 ≥ (P − 1)2 ≥ 9. So B1 ≥ 3. Thus,
it remains to deal with the cases P ∈ {2,3} and −P − 1 ≤ Q ≤ P − 1 such that Q ≠ 0.
We start with P = 2 and −3 ≤ Q ≤ 1. As mentioned earlier the case with Q = 1
is not convenient since D = 0. So Q ∈ {−3,−2,−1}. If P = 2 and Q = −3, then
α = (P +

√
P 2 − 4Q)/2 = (2 +

√
16)/2 = 3. This gives us αI ≥ 9. Thus, B1 ≥ 3.

Next, if P = 2 and Q = −2, then α = 1 +
√

3 and αI ≥ 2(2 +
√

3), which give
B1 > 1.46. Similarly, in case of P = 2 and Q = −1 we get αI ≥ 3 + 2

√
2. Therefore,

B1 ≥ 3 − 2
√

2 ≃ 0.17. In the following table, we provide details of computations for
the remaining cases in which we have B1 is nonzero for all I ≥ 2.

(P,Q) α lower bound on B1

(3,−4) 4 B1 ≥ 10

(3,−3) (3 +
√

21)/2 B1 > 8.37

(3,−2) (3 +
√

17)/2 B1 > 6.68

(3,−1) (3 +
√

13)/2 B1 > 4.90

(3,1) (3 +
√

5)/2 B1 > 0.85

Indeed, the only special case in which we have B1 = 0 is with (P,Q) = (3,2).
Here, B1 = 0 is achieved at I = 2 and d/c = 4 since α = 2. However, if I ≥ 3, then
αI ≥ 9. So B1 ≥ 3. The computations above show that B1 ≥ 0.17.

We now turn to B0. We have that
√
D = α − β ∈ [α − 1, α + 1]. If I ≤ −2, then

B0 ≥
(d/c)
√
D

−
1

α2
≥

1

α + 1
−

1

α2
=
α2 − α − 1

α2(α + 1)
>

1

α4
,

since α ≥ 2, so α2 − α − 1 ≥ 1. If I = −1, then either d/c ≥ 2, so

B0 ≥
2

α − β
−

1

α
≥

2

α + 1
−

1

α
=

α − 1

α(α + 1)
≥

1

α3
>

1

α4
,

or d/c = 1 so

B0 = ∣
1

α
−

1

α − β
∣ =

∣β∣

α(α − β)
≥

1

α2(α + 1)
≥

1

α4
,

where we used the fact that ∣β∣ = ∣Q∣ /α ≥ 1/α. In particular, the expression under
the minimum to compute B0 is not zero when I is negative. Assume next that I ≥ 0.
If β ∈ {−1,1}, then

√
D = α − β is an integer. Thus, in this case when B0 ≠ 0,

the number B0 is a positive rational number of denominator c(α − β) ≤ 5(α + 1).
Therefore,

B0 ≥
1

5(α + 1)
≥

1

α4
,

where the last inequality holds since α ≥ 2. Finally, if β ∈ (−1,1), then ∣c
√
DαI − d∣

is a quadratic real algebraic integer multiple of c. Its conjugate is

∣−c
√
DβI − d∣ = ∣c(α − β)βI + d∣ ≤ cα + (c + d).
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Hence, since the norm of a quadratic nonzero algebraic integer that is divisible by c is
greater than or equal to c2, we get that

B0 =
∣c
√
DαI − d∣

c
√
D

≥
1

c
√
D

(
c2

(cα + c + d)
)

=
1

(α − β)(α + 1 + d/c)
≥

1

(α + 1)(α + 7)
≥

1

α4
.

We finish the proof by justifying the last inequality. If P = 2, then α ≥ 1+
√

2 and the
last inequality holds. If P ≥ 4, then α = P − β > 3, so the last inequality holds. It also
holds if P = 3 and Q < 0, since then again α > 3. Finally, if P = 3 and Q > 0, then
Q = 1,2. The case Q = 2 gives β = 1, a case already treated, and if Q = 1, then α is
the square of the golden section so it is greater than 1+

√
2 and the desired inequality

holds anyway.

Now, we prove the second part of the theorem. In fact, we look for solutions
satisfying x = Ui, y = Uj and z = Uk with 1 ≤ i ≤ j ≤ k. We have that

cαk
√
D
−
d

D
αi+j = −

aU2
i + bU

2
j

Uk
+
cβk
√
D
−
d

D
(αiβj + αjβi − βi+j).

We apply (194) to get an upper bound for
aU2

i +bU
2
j

Uk
such that aU2

i + bU
2
j ≤ (a + b)U2

j

holds since the Lucas sequence {Un}n≥0 is monotone increasing. We obtain that

aU2
i + bU

2
j

Uk
≤

(a + b)U2
j

Uk
≤ 4(a + b)α2αj .

Since ∣β∣ ≤ 1, we get that

∣
cβk
√
D

∣ ≤ ∣
c

√
D

∣ ≤ ∣
cαj
√
D

∣ .

The last expression to bound is d
D(αiβj + αjβi − βi+j). In this case, we obtain that

∣
d

D
(αiβj + αjβi − βi+j)∣ ≤

d

D
(2αj + 1).

Hence, we have that

∣
d

D
(αiβj + αjβi − βi+j)∣ ≤

3d

D
αj .

From the above inequalities, we get that

∣
cαk
√
D
−
d

D
αi+j∣ ≤ (4(a + b)α2

+
c

√
D
+

3d

D
)αj .

It follows that

∣αk−i−j −
d

c
√
D

∣ ≤ (4(a + b)α2

√
D

c
+

3d

c
√
D
+ 1)α−i. (196)
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Let

B0 = min
I∈Z

∣αI −
d

c
√
D

∣ .

If B0 ≠ 0 (then B0 ≥ α
−4), then we get an upper bound for i from the inequality

αi ≤
1

B0
(4(a + b)α2

√
D

c
+

3d

c
√
D
+ 1) . (197)

Since B0 ≥ α
−4, a + b ≤ 6,1 ≤

√
D ≤ α + 1, c ≥ 1 and d/c ≤ 6, then (197) becomes

αi ≤ α4
(4 ⋅ 6 ⋅ α2

(α + 1) + 19) < α13,

where the last inequality holds since α ≥ 2. Thus, i ≤ 12. In a similar way, one can
prove the second part of the statement. Hence, we note that we get the inequalities
(assuming that B1 ≠ 0, then B1 ≥ 0.17)

∣αk−i−j −
d

c
∣ ≤ (2(a + b)α

1

c
+

3d

c
+ 1)α−i. (198)

αi ≤
1

B1
(2(a + b)α

1

c
+

3d

c
+ 1) . (199)

Again, since B1 ≥ 0.17, a + b ≤ 6, c ≥ 1 and d/c ≤ 6, so (199) is

αi ≤ (0.17)−1
(2 ⋅ 6 ⋅ α + 19) < α8,

where the last inequality holds since α ≥ 2. So i ≤ 7. Hence, Theorem 3.11 is
completely proved. �

It is important to remark that these lower bounds on B0 or B1 (namely, B0 ≥ α
−4

or B1 ≥ 0.17) are the greatest lower bounds in case of any Lucas sequence of the
first or second kind with all the tuples (a, b, c, d) ∈ T, respectively. Indeed, they may
be greater due to particular sequences with certain tuples (a, b, c, d) ∈ T. A similar
idea goes for the upper bounds on i′s (i.e. i ≤ 12 or i ≤ 7), they are only least
upper bounds in case of any Lucas sequence of the first or second kind with all the
tuples (a, b, c, d) ∈ T, respectively. Indeed, they could be smaller due to particular
sequences and tuples. Moreover, note that in the proof of Theorem 3.11, the cases
where we have B1 = 0 were completely studied. Thus, it remains to classify the cases
satisfying B0 = 0, the result is as follows.

PROPOSITION 3.12. If P ≥ 2, −P − 1 ≤ Q ≤ P − 1, Q ≠ 0 and D > 0, then B0 ≠ 0
fulfills unless

● e = 1, P = 3,Q = 2, α = 2,
√
D = 1, I = 0,

● e = 2, P = 3,Q = 2, α = 2,
√
D = 1, I = 1,

● e = 2, P = 4,Q = 3, α = 3,
√
D = 2, I = 0,

● e = 3, P = 5,Q = 4, α = 4,
√
D = 3, I = 0,

● e = 4, P = 3,Q = 2, α = 2,
√
D = 1, I = 2,

● e = 4, P = 6,Q = 5, α = 5,
√
D = 4, I = 0,

● e = 4, P = 2,Q = −3, α = 3,
√
D = 4, I = 0,
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● e = 5, P = 7,Q = 6, α = 6,
√
D = 5, I = 0,

● e = 5, P = 3,Q = −4, α = 4,
√
D = 5, I = 0,

● e = 6, P = 4,Q = 3, α = 3,
√
D = 2, I = 1,

● e = 6, P = 8,Q = 7, α = 7,
√
D = 6, I = 0,

● e = 6, P = 4,Q = −5, α = 5,
√
D = 6, I = 0,

where e = d/c such that (a, b, c, d) ∈ T.

PROOF. From the proof of Theorem 3.11 (particularly, if B0 = 0, then B0 ≥ α
−4),

it follows that B0 cannot be zero if I is negative. Therefore, I ≥ 0. If β ∈ (−1,1),
then B0 cannot be zero if I = 0 (since

√
D is not rational). So I ≠ 0 and αI = e/

√
D,

where e = d/c. Conjugating and taking ratios, we get (α/β)I = −1, which is false.
Thus, β = ±1 and

√
D = α − β = P − 2β = P ± 2. Since I ≥ 0, then P ± 2 divides

e ∈ {1,2,3,4,5,6}. So P ≤ 8 (indeed, 2 ≤ P ≤ 8). Since
√
D = P − 2β > 0, then

3 ≤ P ≤ 8 in case of β = 1. Hence, it remains to study the cases in which we have

B0 = min
I≥0

∣αI −
e

√
D

∣ = min
I≥0

∣(P − β)I −
e

(P − 2β)
∣ = 0.

Since (P − β)I is a positive integer as β ∈ {−1,1}, I ≥ 0 and 2 ≤ P ≤ 8 (avoiding that
P = 2 in case of β = 1), so e/(P − 2β) must be also a positive integer. In fact, the
latter condition (i.e. e/(P − 2β) ∈ Z+) is achieved only at the following cases:

◻ e = 1, and P − 2β = 1, i.e. (P,β) = (3,1).
◻ e = 2, and P − 2β = 1,2, i.e. (P,β) = (3,1), (4,1), respectively.
◻ e = 3, and P − 2β = 1,3, i.e. (P,β) = (3,1), (5,1), respectively.
◻ e = 4, and P − 2β = 1,2,4, i.e. (P,β) = (3,1), (4,1), (6,1) or (2,−1),

respectively.
◻ e = 5, and P − 2β = 1,5, i.e. (P,β) = (3,1), (7,1) or (3,−1), respectively.
◻ e = 6, and P − 2β = 1,2,3,6, i.e. (P,β) = (3,1), (4,1), (5,1), (8,1) or

(4,−1), respectively.

Finally, by examining which of the above cases leads to B0 = 0, we get the results as
follows. From the first case, we get that B0 = 0 at P = 3, β = 1, I = 0, e = 1, and
these give that

√
D = P − 2β = 1, α = P − β = 2 and Q = αβ = 2. Hence, the first

statement of the proposition is achieved. Similarly, from the second case we obtain
that B0 = 0 at (P,β, I, e) = (3,1,1,2) and (4,1,0,2). The former tuple implies that√
D = 1, α = 2 and Q = 2. So the second statement of the proposition is also fulfilled.

However, the third statement is accomplished similarly by the latter tuple. We also
get B0 = 0 only in case of P = 5, β = 1, I = 0, e = 3, that give

√
D = 3, α = 4 and

Q = 4. Hence, the fourth statement of the proposition is obtained. In a very similar
way, the remaining statements of the proposition will be fulfilled from the last three
cases above. This completes the proof of Proposition 3.12. �
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3.2.2.3. Applications.

Let (a, b, c, d) ∈ T and {Rn}n≥0 be either {Un}n≥0 or {Vn}n≥0. In order to apply
the procedure described in Theorem 3.11 to resolve equation (138) in x = Ri, y =

Rj , z = Rk, we firstly do the following steps (since in Theorem 3.11, 1 ≤ i ≤ j ≤ k is
assumed). The first step is permuting the first three components in (a, b, c, d). Then
for each of the resulting tuples, we provide an upper bound for i as explained in
Theorem 3.11. In fact, Theorem 3.11 gives the least upper bound for all such cases of
the tuples of T . After that, we adopt the arguments described the general investigative
procedure presented in 3.2.1.1 (in case of the Fibonacci number solutions of equation
(139)) to determine the list of solutions. Finally, when the solutions of (138) with these
cases are obtained we permute the components of these solutions in which they satisfy
equation (138) at the tuple (a, b, c, d) ∈ T in order to determine all of its solutions
(x, y, z) = (Ri,Rj ,Rk). If we fix (a, b, c, d), i and m = k − j, then we need to study
the equation

aR2
i + bR

2
j + cR

2
j+m − dRiRjRj+m = 0,

where Rn = Un or Vn. We note that the equation above only depends on j. Now, we
adopt the arguments given the general investigative procedure.

(I) We eliminate as many values of i as possible by checking the solvability of
quadratic equations

aR2
i + by

2
+ cz2

− dRiyz = 0.

(II) For fixed m, we eliminate equations aR2
i + bR

2
j + cR

2
j+m − dRiRjRj+m = 0

modulo p, where p is a prime.
(III) We can also eliminate equations aR2

i +bR
2
j +cR

2
j+m−dRiRjRj+m = 0 using

related identities of second order linear recurrence sequences.
(IV) We consider the equation aR2

i + bR
2
j + cR

2
j+m = dRiRjRj+m as a quadratic

in Rj . Its discriminant d2R2
iR

2
j+m − 4b(aR2

i + cR
2
j+m) must be a square. As

given in (21), the terms of the sequences {Un}n≥0 and {Vn}n≥0 satisfy the
fundamental identity

V 2
n −DU

2
n = 4Qn.

Therefore, in case of Q = ±1 we have the systems of equations

Y 2
1 = DX2

± 4,

Y 2
2 = d2R2

iX
2
− 4b(aR2

i + cX
2
),

where X = Rj+m = Uj+m, Y1 = Vj+m, Y2 = 2bRj − dRiUj+m; and

Y 2
1 = DX2

∓ 4D,

Y 2
2 = d2R2

iX
2
− 4b(aR2

i + cX
2
),

where X = Rj+m = Vj+m, Y1 = DUj+m, Y2 = 2bRj − dRiVj+m.
Multiplying these equations together, in general, yields quartic genus 1
curves. One may determine the integral points on these curves using
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the Magma [33] function (based on results obtained by Tzanakis [249])
SIntegralLjunggrenPoints. Indeed, it may happen that we get
genus 0 curves.

Let us apply the procedure described in Theorem 3.11 with these arguments to de-
termine the solutions of equation (138) in some second order linear recurrence se-
quences. The results of the following applications will appear in [110].

3.2.2.3.1. Balancing numbers and Markoff-Rosenberger equations.

The first definition of balancing numbers is essentially due to Finkelstein [83],
although he called them numerical centers. In 1999, Behera and Panda [17] defined
balancing numbers as follows. A positive integer n is called a balancing number if

1 + 2 + . . . + (n − 1) = (n + 1) + (n + 2) + . . . + (n + k)

for some k ∈ N. The sequence of balancing numbers is denoted by {Bn}n≥0. This
sequence can be defined in a recursive way as well, we have that B0 = 0,B1 = 1 and

Bn = 6Bn−1 −Bn−2, n ≥ 2.

As we see this is the sequence {Un(6,1)}n≥0. So P = 6,Q = 1 and D = 32. We also
have that

α = 3 + 2
√

2, β = 3 − 2
√

2.

We have the bounds
αn−1

≤ Bn ≤ α
n for n ≥ 1, (200)

which are specific to the sequence of balancing numbers. Since Q = 1, the numbers
X = Bn satisfy the Pellian equation Y 2 = 8X2 + 1. We prove the following result:

THEOREM 3.13. If (x, y, z) = (Bi,Bj ,Bk) is a solution of the equation

ax2
+ by2

+ cz2
= dxyz

and (a, b, c, d) ∈ {(1,1,1,1), (1,1,1,3), (1,1,2,2), (1,1,2,4), (1,1,5,5), (1,2,3,
6)}, then there is at most one solution given by x = y = z = B1 = 1.

PROOF. Note that here we can directly use the results given in Theorem 3.11 (i.e.
B0 ≥ α

−4 and i ≤ 12), argument (I) and any of the arguments described in (II), (III) or
(IV) to prove the theorem completely. But in practice, having a smaller upper bound
on i and eliminating as many i′s as possible are very useful for determining the com-
plete set of solutions, and as pointed earlier the upper bound "12" on i is only the
least upper bound that could be even smaller due to particular sequences. Therefore,
we follow the general strategy given in Theorem 3.11 to compute the best possible
values for the lower bounds on B′

0s (i.e. greater values) and the upper bounds on i′s
(i.e. smaller values) specific to the sequence of balancing numbers with the use of
the inequalities given in (200). It turns out that in all the cases we have that i ≤ 5.
Moreover, by applying argument (I), many values of i′s can be eliminated by check-
ing integral solutions of binary quadratic forms. Therefore, we skip the congruence



3.2. SOLUTIONS OF GENERALIZATIONS OF MARKOFF EQUATION 85

arguments given by (II) and (III). We directly consider the genus 1 curves obtained
from the system of equations

Y 2
1 = 8X2

+ 1,

Y 2
2 = d2B2

iX
2
− 4b(aB2

i + cX
2
).

In the following table, we provide details of the computations.

[a, b, c, d] B0 C0 [i] [i,A′X4 +B′X2 +C ′, [X,Y ]]

[1,1,1,1] 0.0052038 5 [2] [2,256X4 − 1120X2 − 144, []]

[1,1,1,3] 0.3587572 2 [1] [1,40X4 − 27X2 − 4, [[1,−3] , [−1,−3]]]

[1,1,2,2] 0.0052038 4 [2] [2,1088X4 − 1016X2 − 144, []]

[1,2,1,2] 0.1819805 3 [2] [2,1088X4 − 2168X2 − 288, []]

[2,1,1,2] 0.1819805 3 [] []

[1,1,2,4] 0.1819805 2 [1] [1,64X4 − 24X2 − 4, [[1,6] , [−1,6]]]

[1,2,1,4] 0.2928932 3 [1] [1,64X4 − 56X2 − 8, [[1,0] , [−1,0]]]

[2,1,1,4] 0.2928932 3 [1] [1,96X4 − 52X2 − 8, [[1,−6] , [−1,−6]]]

[1,1,5,5] 0.0052038 4 [1] [1,40X4 − 27X2 − 4, [[1,−3] , [−1,−3]]]

[1,5,1,5] 0.1161165 4 [1] [1,40X4 − 155X2 − 20, [[2,0] , [−2,0]]]

[5,1,1,5] 0.1161165 4 [1] [1,168X4 − 139X2 − 20, [[1,−3] , [−1,−3]]]

[1,2,3,6] 0.1819805 2 [1] [1,96X4 − 52X2 − 8, [[1,−6] , [−1,−6]]]

[1,3,2,6] 0.3587572 2 [1] [1,96X4 − 84X2 − 12, [[1,0] , [−1,0]]]

[2,1,3,6] 0.1819805 2 [1] [1,192X4 − 40X2 − 8, [[1,12] , [−1,12]]]

[2,3,1,6] 0.0606601 4 [1] [1,192X4 − 168X2 − 24, [[1,0] , [−1,0]]]

[3,1,2,6] 0.3587572 2 [1] [1,224X4 − 68X2 − 12, [[1,−12] , [−1,−12]]]

[3,2,1,6] 0.0606601 4 [1] [1,224X4 − 164X2 − 24, [[1,6] , [−1,6]]]

The first column gives the tuples (a, b, c, d) ∈ T, the second column represents
approximated lower bounds on B′

0s, the third column has upper bounds on i′s repre-
sented by C0, in the fourth column we provide lists containing the remaining values
of i′s not eliminated by argument (I), and in the last column we have lists containing
i, the right hand side of the quartic polynomial Y 2 = A′X4 + B′X2 + C ′ defining
genus 1 curve and the integral solutions (the second coordinate is only up to sign, for
us, only the first coordinate is interesting since that givesBj+m). For example, in case
of (a, b, c, d) = (1,2,3,6) we have that B0 ≈ 0.1819805 and C0 = 2. That is i ≤ 2.
Applying argument (I), we can eliminate i = 2. Hence, it remains to study the case
with i = 1. Here, we get that the only integral solutions are the ones with X = ±1.
Since X = Bj+m, the only possibility is Bj+m = 1. The last step is the solution of the
quadratic equation

12
+ 2 ⋅B2

j + 3 ⋅ 12
= 6 ⋅ 1 ⋅Bj ⋅ 1.
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It follows that Bj is either 1 or 2, but 2 is not a balancing number. Therefore, the only
solution in this case is

(Bi,Bj ,Bk) = (B1,B1,B1) = (1,1,1).

�

3.2.2.3.2. Jacobsthal numbers and Markoff-Rosenberger equations.

If (P,Q) = (1,−2), then we deal with a special sequence in which we have that
P < 2; that is the sequence of Jacobsthal numbers {Jn}n≥0 = {Un(1,−2)}n≥0. Here,
we have J0 = 0, J1 = 1 and

Jn = Jn−1 + 2Jn−2 if n ≥ 2.

It is also known that the next Jacobsthal number is also given by the recursion formula

Jn+1 = 2Jn + (−1)n.

We obtain that
D = 9, α = 2, β = −1.

Therefore, the closed-form of Jn is given by

2n − (−1)n

3
.

Based on the above closed-form equation, we may provide bounds for Jn, these are
as follows

2n−1

3
≤ Jn ≤ 2n−1, n ≥ 1. (201)

Similarly, these bounds are only specific to the general term Jn. Here, we prove the
following statement:

THEOREM 3.14. If (x, y, z) = (Ji, Jj , Jk) is a solution of the equation

aJ2
i + bJ

2
j + cJ

2
k = dJiJjJk (202)

and (a, b, c, d) ∈ {(1,1,1,1), (1,1,1,3), (1,1,2,2), (1,1,2,4), (1,1,5,5), (1,2,3,
6)}, then the complete list of solutions is given by

(a, b, c, d) solutions

(1,1,1,1) {(3,3,3)}

(1,1,1,3) {(1,1,1)}

(1,1,2,2) {}

(1,1,2,4) {(1,1,1), (1,3,1), (1,3,5), (3,1,1), (3,1,5), (3,11,1), (11,3,1)}

(1,1,5,5) {(1,3,1), (3,1,1)}

(1,2,3,6) {(1,1,1), (5,1,1)}
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PROOF. Since P < 2, we cannot directly use the results given in Theorem 3.11.
But, since β = −1, α = 2 and

√
D = 3, we may follow the steps of the proof of

Theorem 3.11 with the use of the inequalities given in (201). Hence, we obtain that

B0 = min
I∈Z

∣2I −
d

3c
∣

and

∣2k−i−j −
d

3c
∣ ≤ (

9(a + b)

2c
+
d

c
+ 1)2−i. (203)

In fact, in some cases we obtain that B0 = 0.
The case (a, b, c, d) = (1,1,1,1). Here, we obtain that B0 ≈ 0.0833333 and the

bound for i is 7. Applying the argument given by (I), it turns out that all values can be
eliminated except i = 3. If i = 3, then we compute the possible values of k − j from
inequality (203). We have that k − j ∈ {0,1,2,3}. If k − j ∈ {1,2}, then applying
(II) with p = 3 works and in case of k − j = 3 we use p = 11 to show that there is no
solution. The remaining case is related to k − j = 0. We obtain the equation

32
+ J2

j + J
2
j = 3JjJj .

It follows that Jj = Jk = 3, so the solution is given by (Ji, Jj , Jk) = (3,3,3).

The case (a, b, c, d) = (1,1,1,3). In this case in (203), we have ∣2k−i−j − 1∣ and
this expression is 0 if k − i − j = 0. Therefore, we need to study the equation

(2i − (−1)i)2
+ (2j − (−1)j)2

+ (2i+j − (−1)i+j)2
=

(2i − (−1)i) ⋅ (2j − (−1)j) ⋅ (2i+j − (−1)i+j).

By symmetry we may assume that i ≤ j. The small solutions with 0 ≤ i ≤ j ≤ 2 can
be enumerated easily. Since we consider solutions with i, j > 0, we omit (i, j) =

(0,0). The other solution is given by (i, j) = (1,1). Hence, we get that (Ji, Jj , Jk) =
(1,1,1). If i = 2, then it follows that with modulo 7 there is no solution. If i > 2, then
we work modulo 8 to show that no solution exists. If k − i − j ≠ 0, then we obtain
that B0 = 1. As a consequence, we have that i ∈ {1,2}. We may exclude the cases
i = 1,2 and k − j = 2 modulo 5. In a similar way, working modulo 7 we eliminate
the cases i = 1, k − j = 3 and i = 2, k − j = 3,4. The remaining cases are given by
i ∈ {1,2}, k − j ∈ {0,1}. If i = 1,2, k − j = 0, then it easily follows that (1,1,1) is the
only solution. If i = 1,2, k − j = 1, then the equation is

1 + J2
j + J

2
j+1 = 3JjJj+1.

Since Jj+1 = 2Jj + (−1)j , the above equation can be written as

J2
j − (−1)jJj − 2 = 0.

Thus, the only possibilities are given by Jj ∈ {±1,±2}. Again, the only solution we
get is (1,1,1).
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The case (a, b, c, d) = (1,1,2,2). Here, we compute the bounds for i in the
cases (a, b, c, d) = (1,1,2,2), (1,2,1,2), (2,1,1,2). Simply argument (I) is enough
to show that there exists no solution.

The case (a, b, c, d) = (1,1,2,4). The bound for i is 4, and by (I) we can eliminate
the case i = 4 when the order of the coefficients is (1,1,2,4). Congruence arguments
(modulo 3 or 7) work if (i, k−j) ∈ {(1,2), (1,3), (2,2), (2,3)}. The remaining cases
are

(i, k − j) ∈ {(1,0), (1,1), (2,0), (2,1), (3,0), (3,1), (3,2), (3,3)}.

From (i, k − j) = (1,0), (2,0), (3,0), we obtain the solutions (by solving quadratic
equations) (1,1,1) and (3,1,1). If (i, k − j) = (1,1), (2,1), then we get

J2
j + 4(−1)jJj + 3 = 0.

Hence, Jj = 1 or 3. So we obtain the solutions (1,1,1), (1,3,1) and (1,3,5). In case
of (i, k − j) = (3,1), we obtain

15J2
j + 4(−1)jJj − 11 = 0.

Thus, we have the solution (3,1,1). By applying the rule Jn+1 = 2Jn + (−1)n two
or three times, we can reduce the problems (i, k − j) = (3,2), (3,3) to quadratic
equations. The formulas are getting more involved, for example if (i, k − j) = (3,2)
we have

9 + J2
j + 2(4Jj + 2(−1)j + (−1)j+1

)
2
= 12Jj(4Jj + 2(−1)j + (−1)j+1

).

In this case, we get that Jj = 1. In a very similar way, we handle the cases with the
tuples (1,2,1,4) and (2,1,1,4).

The case (a, b, c, d) = (1,1,5,5). Here, we need to deal with the tuples (1,1,5,
5), (1,5,1,5) and (5,1,1,5). The bounds for i are given by 3, 6 and 6, respectively.
Since the steps are similar as we have applied in the previous cases, we omit the
details.

The case (a, b, c, d) = (1,2,3,6). We only provide some data related to the com-
putation. Let us start with the bounds:

tuple bound for i special case

(1,2,3,6) 4 -
(1,3,2,6) 2 k − i − j = 0

(2,1,3,6) 4 -
(2,3,1,6) 2 k − i − j = 1

(3,1,2,6) 2 k − i − j = 0

(3,2,1,6) 2 k − i − j = 1

As before, we apply the arguments given by (I) and (II) and the identity Jn+1 =

2Jn+(−1)n to resolve all the possible cases. The only new case that has not appeared
yet is k − i − j = 1. If we take the tuple (2,3,1,6), then we obtain

2J2
i + 3J2

j + J
2
i+j+1 − 6JiJjJi+j+1 = 0, (204)
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or

2(2i − (−1)i)2
+ 3(2j − (−1)j)2

+ (2i+j+1
− (−1)i+j+1

)
2
=

2(2i − (−1)i) ⋅ (2j − (−1)j) ⋅ (2i+j+1
− (−1)i+j+1

). (205)

With respect to the values of i and j, we consider the following cases (assuming that
1 ≤ i ≤ j ≤ k):

● If i and j are both even, i.e. i = 2t and j = 2r for all positive integers t, r ≥ 1,
then equation (205) becomes

E1 = 2(4t − 1)2
+ 3(4r − 1)2

+ (2 ⋅ 4t+r + 1)2

− 2(4t − 1) ⋅ (4r − 1) ⋅ (2 ⋅ 4t+r + 1) = 0.

But, E1 (mod 8) ≡ 4 for all t, r ≥ 1, which leads to a contradiction. More-
over, since i and j are both even with i ≥ 2 and j ≥ 2, then all the even values
of i and j are excluded.

● If i and j are both odd, i.e. i = 2t + 1 and j = 2r + 1 for all positive integers
t, r ≥ 1, then equation (205) implies that

E2 = 2(2 ⋅ 4t + 1)2
+ 3(2 ⋅ 4r + 1)2

+ (2 ⋅ 4t+r+1
+ 1)2

− 2(2 ⋅ 4t + 1) ⋅ (2 ⋅ 4r + 1) ⋅ (2 ⋅ 4t+r+1
+ 1) = 0.

Similarly, E2 (mod 8) ≡ 4 for all t, r ≥ 1, and again we get a contradiction.
Indeed, all the odd values of i ≥ 3 and j ≥ 3 are excluded, and it remains
only to check whether equation (204) has solutions or not at the following
cases: i = 1, j = 1; i = 1, j ≥ 3; j = 1, i ≥ 3. In fact, since we assumed that
1 ≤ i ≤ j ≤ k, then the latter case can be covered by checking the solvability
of equation (204) at i = j = 1.

● If i is even and j is odd, i.e. i = 2t and j = 2r + 1 for all positive integers
t, r ≥ 1, then equation (205) leads to

E3 = 2(4t − 1)2
+ 3(2 ⋅ 4r + 1)2

+ (4t+r+1
− 1)2

− 2(4t − 1) ⋅ (2 ⋅ 4r + 1) ⋅ (4t+r+1
− 1) = 0.

Again, we get a contradiction since E3 (mod 8) ≡ 4 for all t, r ≥ 1. Here,
we excluded all the even values of i ≥ 2 and odd values of j ≥ 3, and it
remains to check whether equation (204) has solutions or not only at j =

1, i ≥ 2. Similarly, this can be covered by studying the solutions of equation
(204) only at i = j = 1.

● Finally, if i is odd and j is even, i.e. i = 2t + 1 and j = 2r for all positive
integers t, r ≥ 1, then similarly we have

E4 = 2(2 ⋅ 4t + 1)2
+ 3(4r − 1)2

+ (4t+r+1
− 1)2

− 2(2 ⋅ 4t + 1) ⋅ (4r − 1) ⋅ (4t+r+1
− 1) = 0,
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and E4 (mod 8) ≡ 4 for all t, r ≥ 1, which gives a contradiction. It is
clear that all the odd values of i ≥ 3 and even values of j ≥ 2 are excluded,
and we need to check whether equation (204) has solutions or not only at
i = 1, j ≥ 2.

From these cases, we conclude that it only remains to study the solutions of equation
(204) at i = 1 and all the integers of j with j ≥ 1. This can be done by direct substitu-
tion and using argument (III) as follows. It is clear that we have k = i + j + 1 = j + 2
and

2 + 3J2
j + J

2
j+2 − 6JjJj+2 = 0 for j ≥ 1. (206)

● If j = 1, then we have that −4 = 2+3J2
1+J

2
3−6J1J3 = 0, which is impossible.

● If j = 2, then we get the solution (i, j, k) = (1,2,4). Hence, equation (204)
has the solution (Ji, Jj , Ji+j+1) = (Ji, Jj , Jk) = (J1, J2, J4) = (1,1,5).

● If j ≥ 3, we can show that equation (204) has no more solutions by showing
that

2 + 3J2
j + J

2
j+2 − 6JjJj+2 < 0 for j ≥ 3.

Indeed, after substituting the Jacobsthal numbers formula Jj = Jj−1 + 2Jj−2

in the left hand side of equation (206) a few times we get that

2 + 3J2
j + J

2
j+2 − 6JjJj+2 = 2 − 2J2

j−1 − 24Jj−1Jj−2 − 24J2
j−2 < 0,

for j ≥ 3, and this contradicts equation (206).
Therefore, by permuting the components of the solution (1,1,5) to be a solution of
equation (202) at the tuple (1,2,3,6) we get the solution (5,1,1). �



Summary

This dissertation deals with some types of Diophantine equations related to linear
recurrence sequences. In fact, it consists of three chapters. In Section 1.1, we intro-
duce a historical survey of Diophantine equations (particularly, Fermat’s equation). In
Section 1.2, we recall some types of Diophantine equations with some related results,
that appear briefly or in details with our main results in the other chapters. In Section
1.3, we recall some important notations, definitions and properties related to the sub-
ject of linear recurrence sequences, that will be used throughout the dissertation. Then
we recite some recent results related to the solutions of some Diophantine equations
involving linear recurrence sequences. In the final section of Chapter 1, we give an
outline for our main results and the plan of the dissertation within the other chapters.

The new results are mainly described in Chapter 2 and Chapter 3 in which each
has two main sections. Indeed, each section begins with a preface in which we re-
cite some relevant related results of the Diophantine problem(s), that we investigate
its (their) solutions in connection with terms of some linear recurrence sequences.
These results have been published in the papers [104, 105, 106, 107] and accepted for
publication in the papers [108, Mathematica Bohemica journal] and [110, Periodica
Mathematica Hungarica journal].

For the sake of simplicity in presenting these results, we start by recalling some
standard notations, definitions and properties concerning linear recurrence sequences
(see e.g. Subsection 1.3.1 of Chapter 1). A sequence {Gn} is called a linear recur-
rence relation of order k if the recurrence

Gn+k = a1Gn+k−1 + a2Gn+k−2 + . . . + akGn + f(n)

holds for all n ≥ 0 with the coefficients a1, a2, . . . , (ak ≠ 0) ∈ C and f(n) a function
depending on n only. If f(n) = 0 such a recurrence relation is called homogeneous,
otherwise it is called nonhomogeneous.

For the homogeneous recurrence relation, the polynomial

F (X) =Xk
− a1X

k−1
− . . . − ak =

s

∏
i=1

(X − αi)
ri ∈ C[X],

where α1, α2, . . . , αs and r1, r2, ..., rs are respectively the distinct roots of F (X) and
their corresponding multiplicities, is called the characteristic polynomial of {Gn}.
Thus, if F (X) ∈ Z[X] has k distinct roots, then there exist constants c1, c2, . . . , ck ∈

91
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Q(α1, α2, . . . , αk) such that

Gn =
k

∑
i=1

ciα
n
i

holds for all the nonnegative values of n. If k = 3, then the sequence is called a
ternary linear recurrence sequence. Most of the well known ternary linear recurrence
sequences are the Tribonacci sequence and Berstel’s sequence, which are defined by

T0 = T1 = 0, T2 = 1, Tn+3 = Tn+2 + Tn+1 + Tn for n ≥ 0,

B0 = B1 = 0,B2 = 1, Bn+3 = 2Bn+2 − 4Bn+1 + 4Bn for n ≥ 0,

respectively. On the other hand, if k = 2, then {Gn} represents a binary recurrence
sequence. In the following we recall some types of binary linear recurrence sequences
with their properties. Let P and Q be nonzero relatively prime integers and Un =

Un(P,Q) and Vn = Vn(P,Q) be defined by the following recurrence relations with
their initials:

U0 = 0, U1 = 1, Un = PUn−1 −QUn−2 for n ≥ 2,

V0 = 2, V1 = P, Vn = PVn−1 −QVn−2 for n ≥ 2.

The characteristic polynomial of the recurrences is given by

X2
− PX +Q,

which has the roots

α =
P +

√
D

2
and β =

P −
√
D

2
,

with α ≠ β,α+β = P,α ⋅β = Q and (α−β)2 =D, where D is called the discriminant
such that D = P 2 − 4Q. The sequences {Un} and {Vn} are called the (first and
second kind) Lucas sequences with the parameters (P,Q), respectively, and the terms
of these sequences are the generalized Lucas numbers. The terms of Lucas sequences
of the first and second kind satisfy the identity

V 2
n =DU2

n + 4Qn. (1)

Moreover, the Lucas sequences of the first and second kind can be respectively written
by the following formulas, that are known as Binet’s formulas.

Un =
αn − βn

α − β
and Vn = α

n
+ βn for n ≥ 0.

If the ratio ζ = α
β is a root of unity, then the sequences {Un} and {Vn} are said

to be degenerate, and non-degenerate otherwise. Indeed, we mainly deal with non-
degenerate linear recurrence sequences. Furthermore, the Lucas sequences for some
values of P and Q have specific names such as the sequences of Fibonacci numbers,
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Pell numbers, Lucas numbers, Jacobsthal numbers and balancing numbers, which are
given by

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2,

P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2 for n ≥ 2,

L0 = 2, L1 = 1, Ln = Ln−1 +Ln−2 for n ≥ 2,

J0 = 0, J1 = 1, Jn = Jn−1 + 2Jn−2 for n ≥ 2,

B0 = 0,B1 = 1, Bn = 6Bn−1 −Bn−2 for n ≥ 2,

respectively.

The goal of Section 2.1 is to extend the result of Tengely [243] in which he deter-
mined all the integer solutions (n,x) with x ≥ 2 of the equation

1

Un(P,Q)
=

∞

∑
k=1

Uk−1(P,Q)

xk
.

We first determine the integral solutions (n,x) of the equation

1

Un(P2,Q2)
=

∞

∑
k=1

Uk−1(P1,Q1)

xk
, (2)

for certain given pairs (P1,Q1) ≠ (P2,Q2). Here, we consider sequences with 1 ≤

P ≤ 3 and Q = ±1. We also obtain the integral solutions (x, y) of the equation
∞

∑
k=1

Uk−1(P,Q)

xk
=

∞

∑
k=1

Rk−1

yk
, (3)

where the parameters of the Lucas sequence of the first kind represented by 1 ≤ P ≤ 3
and Q = ±1, and the sequence {Rn} is a ternary linear recurrence sequence repre-
sented by the Tribonacci sequence {Tn} or Berstel’s sequence {Bn}. Furthermore,
we provide general results related to the integral solutions (x, y) of the equations

∞

∑
k=1

Uk−1(P1,Q1)

xk
=

∞

∑
k=1

Uk−1(P2,Q2)

yk
, (4)

with arbitrary pairs (P1,Q1) ≠ (P2,Q2), and
∞

∑
k=1

Tk−1(a2, a1, a0)

xk
=

∞

∑
k=1

Tk−1(b2, b1, b0)

yk
, (5)

where the triples (a2, a1, a0) ≠ (b2, b1, b0) and Tn denotes the general term of the
generalized Tribonacci sequence that is given by

T0(p, q, r) = T1(p, q, r) = 0, T2(p, q, r) = 1 and

Tn(p, q, r) = pTn−1(p, q, r) + qTn−2(p, q, r) + rTn−3(p, q, r),

for n ≥ 3. Then we apply these results to completely resolve some concrete equations.
Here, our main results also extend many former results obtained by e.g. Stancliff
[230], Winans [259], Hudson and Winans [120], Long [149] and De Weger [70]. In
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order to introduce our new results of this section, we first recall the following. Let the
set S be defined as follows

S = {u1(n) = Un(1,−1), u2(n) = Un(2,−1), u3(n) = Un(3,−1),

u4(n) = Un(3,1)}.

Moreover, in general we assume that the positive integers x, y in the investigated
equations (2)–(5) satisfy the conditions of the following lemmas due to the results of
Köhler [135]:

LEMMA. Let A,B, a0, a1 be arbitrary complex numbers. Define the sequence
{an} by the recursion an+1 = Aan +Ban−1. Then the formula

∞

∑
k=1

ak−1

xk
=
a0x −Aa0 + a1

x2 −Ax −B

holds for all complex x such that ∣x∣ is larger than the absolute values of the zeros of
x2 −Ax −B.

LEMMA. Let arbitrary complex numbers A0,A1, . . . ,Am,a0, a1, . . . , am be
given. Define the sequence {an} by the recursion

an+1 = A0an +A1an−1 +⋯ +Aman−m.

Then for all complex z such that ∣z∣ is larger than the absolute values of all zeros of
q(z) = zm+1 −A0z

m −A1z
m−1 −⋯ −Am, the formula

∞

∑
k=1

ak−1

zk
=
p(z)

q(z)

holds with p(z) = a0z
m + b1z

m−1 + ⋯ + bm, where bk = ak − ∑
k−1
i=0 Aiak−1−i for

1 ≤ k ≤m.

Then we prove the following results, that appear in the papers [105, 106].

THEOREM. The equation

1

uj(n)
=

∞

∑
k=1

ui(k − 1)

xk
,

has the following solutions with 1 ≤ i, j ≤ 4, i ≠ j

(i, j, n, x) ∈ {(1,2,1,2), (1,2,3,3), (1,2,5,6), (1,3,1,2), (1,3,5,11),

(1,3,7,35), (1,4,1,2), (1,4,5,8), (2,1,3,3), (2,1,9,7), (3,1,4,4), (3,

1,14,21), (3,4,2,4), (3,4,7,21), (4,1,{1,2},3), (4,1,5,4), (4,1,10,9),

(4,1,11,11), (4,2,1,3), (4,2,3,4), (4,2,5,7), (4,3,1,3), (4,3,5,12),

(4,3,7,36)}.



SUMMARY 95

THEOREM. The complete list of solutions of the equation
∞

∑
k=1

uj(k − 1)

xk
=

∞

∑
k=1

Rk−1

yk
,

with un ∈ S,Rn ∈ {Bn, Tn} and positive integers x, y is as follows

un Rn (x, y) un Rn (x, y)

u1 Bn {(25,9)} u1 Tn {(2,2)}

u2 Bn {} u2 Tn {(t(t2 − 2) + 1, t2 − 1) ∶ t ≥ 2, t ∈ N}

u3 Bn {(6,3), (18,7)} u3 Tn {}

u4 Bn {(26,9)} u4 Tn {(3,2)}

THEOREM. Let P1,Q1, P2,Q2 be non-zero integers such that (P1,Q1) ≠ (P2,
Q2). If (P 2

2 − P
2
1 ) + 4(Q1 −Q2) = d1d2 ≠ 0 and d1 − d2 ≡ −2P1 (mod 4), d1 + d2 ≡

−2P2 (mod 4), then the positive integral solutions x, y of
∞

∑
k=1

Uk−1(P1,Q1)

xk
=

∞

∑
k=1

Uk−1(P2,Q2)

yk

satisfy

x =
d1 − d2 + 2P1

4
>m(x2

− P1x +Q1), y =
d1 + d2 + 2P2

4
>m(x2

− P2x +Q2).

If (P 2
2 − P 2

1 ) + 4(Q1 − Q2) = 0 and P1 ≡ P2 (mod 2), then the positive integral
solutions x, y of

∞

∑
k=1

Uk−1(P1,Q1)

xk
=

∞

∑
k=1

Uk−1(P2,Q2)

yk

satisfy

x >m(x2
− P1x +Q1), y = ±x +

P2 ∓ P1

2
>m(x2

− P2x +Q2),

where Q2 = Q1 +
P 2
2 −P

2
1

4 , and m(f) = max{∣x∣ ∶ f(x) = 0, where f(x) is a given
polynomial over integers}.

THEOREM. If (x, y) is an integral solution of the equation
∞

∑
k=1

Tk−1(a2, a1, a0)

xk
=

∞

∑
k=1

Tk−1(b2, b1, b0)

yk
,

for given (a2, a1, a0) ≠ (b2, b1, b0), then either

9 (a2
2 − b

2
2 + 3a1 − 3 b1)y + 2a3

2 − 3a2
2b2 + b

3
2 + 9a1a2 − 9a1b2 + 27a0 − 27 b0 = 0

or in case of ∣y∣ > B we have

∣3x − 3y − a2 + b2∣ < C,

where B,C are constants depending only on ai, bi, i = 0,1,2.
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As applications to the latter two theorems, we provide the following examples,
that are described in [106].

EXAMPLE. Let (P1,Q1) = (1,−1) and (P2,Q2) = (18,1), then the solutions
are as follows

∞

∑
k=1

Uk−1(1,−1)

2k
=

∞

∑
k=1

Uk−1(18,1)

18k
= 1,

∞

∑
k=1

Uk−1(1,−1)

7k
=

∞

∑
k=1

Uk−1(18,1)

20k
=

1

41
,

∞

∑
k=1

Uk−1(1,−1)

10k
=

∞

∑
k=1

Uk−1(18,1)

22k
=

1

89
,

∞

∑
k=1

Uk−1(1,−1)

15k
=

∞

∑
k=1

Uk−1(18,1)

26k
=

1

209
,

∞

∑
k=1

Uk−1(1,−1)

26k
=

∞

∑
k=1

Uk−1(18,1)

36k
=

1

649
,

∞

∑
k=1

Uk−1(1,−1)

79k
=

∞

∑
k=1

Uk−1(18,1)

88k
=

1

6161
.

EXAMPLE. In case of (P1,Q1) = (1,−1) and (P2,Q2) = (2t + 1, t2 + t − 1) for
some t ∈ Z, we get that

∞

∑
k=1

Uk−1(1,−1)

xk
=

∞

∑
k=1

Uk−1(2t + 1, t2 + t − 1)

(x + t)k
=

1

x2 − x − 1

for x ≥ 2.

EXAMPLE. Consider the positive integral solutions x, y of the equation
∞

∑
k=1

Tk−1(−1,7,3)

xk
=

∞

∑
k=1

Tk−1(5,−5,−3)

yk
.

We obtain that the only integral solutions are given by

(x, y) ∈ {(−1,1), (−3,3), (−2,4)}.

Thus, we do not get positive integral solutions.

EXAMPLE. Let us consider the equation
∞

∑
k=1

Tk−1(−4,−5,−6)

xk
=

∞

∑
k=1

Tk−1(1,8,18)

yk
.

Here, we get that the only positive solution is given by (x, y) = (9,11), that is we
have

∞

∑
k=1

Tk−1(−4,−5,−6)

9k
=

∞

∑
k=1

Tk−1(1,8,18)

11k
=

1

1104
.
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EXAMPLE. Finally, we provide an example in which we obtain infinitely many
solutions. Let (a2, a1, a0) = (1,6,5) and (b2, b1, b0) = (4,1,1). Indeed, the integral
solutions are given by (x, y) = (x,x + 1) for all x ≥ 4, that is we have

∞

∑
k=1

Tk−1(1,6,5)

xk
=

∞

∑
k=1

Tk−1(4,1,1)

(x + 1)k
=

1

x3 − x2 − 6x − 5
, x ≥ 4.

In Section 2.2, we firstly use a direct approach to obtain a general finiteness result
for the Diophantine equation

Gn = B ⋅ (
glm − 1

gl − 1
), (6)

where n,m, g, l and B are positive integers such that m > 1, g > 1, l is even, 1 ≤

B ≤ gl − 1, and Gn denotes the general term of an integer linear recurrence sequence
represented by Un(P,Q) and Vn(P,Q), with Q ∈ {−1,1}. Indeed, the first finiteness
result for equation (6), in case of (Gn)n≥1 is an integer linear recurrence sequence
and l is a positive integer, was given by Marques and Togbé [163] in which they used
heavy computations followed by a result due to Matveev [166] on the lower bound on
linear forms of logarithms of algebraic numbers to obtain bounds for n and m. As
these bounds could be very high, they used a result due to Dujella and Pethő [76] on
the Baker-Davenport reduction to reduce these bounds. Then they applied this result
to determine all the solutions of the Diophantine equations

Fn = B ⋅ (
10lm − 1

10l − 1
) and Ln = B ⋅ (

10lm − 1

10l − 1
) (7)

in positive integers m,n and l, with m > 1,1 ≤ l ≤ 10 and 1 ≤ B ≤ 10l − 1, which
are (m,n, l) = (2,10,1) and (m,n, l) = (2,5,1) in the Fibonacci and Lucas cases,
respectively. It is clear that these equations have solutions only with l = 1. Here, one
may ask the following natural questions:

● Is there another approach that is easier to apply to such concrete equations?
● Do the equations in (7) have solutions in any base g other than 10, say g ≥ 2,

in the case of l = 1?

In fact, here we answer the above questions positively. More precisely, our approach
of obtaining a general finiteness result for equation (6) is mainly based on producing
biquadratic elliptic curves of the following form (from combining equation (6) with
identity (1)),

y2
= ax4

+ bx2
+ c,

with integer coefficients a, b, c and discriminant ∆ = 16ac(b2 − 4ac)2 ≠ 0. First of
all, the finiteness of the number of the integral points on the latter curve is guaranteed
by Baker’s result [11] presented by the following theorem and its best improvement
concerning the solutions of elliptic equations over Q, that is due to Hajdu and Herendi
[103].
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THEOREM. If the polynomial on the right of the Diophantine equation

y2
= a0x

n
+ a1x

n−1
+ . . . + an,

where n ≥ 3 and a0 ≠ 0, a1, . . . , an ∈ Z, possesses at least three simple zeros, then all
of its solutions in integers x, y satisfy

max(∣x∣ , ∣y∣) < exp exp exp{(n10nH)
n2

},

where H = max0≤i≤n ∣ai∣.

Also, the integral points of such curves can be determined using an algorithm im-
plemented in Magma [33] as SIntegralLjunggrenPoints() (based on results
obtained by Tzanakis [249]) or an algorithm described by Alekseyev and Tengely [4]
in which they gave an algorithmic reduction of the search for integral points on such
a curve by solving a finite number of Thue equations. As applications of our result,
we apply our method on the sequences of Fibonacci numbers and Pell numbers that
satisfy equation (6). Furthermore, with the first application we also generalize the re-
sult of Marques and Togbé in [163] in the case of Fibonacci numbers by determining
all the solutions (n,m, g,B, l) of the equation

Fn = B ⋅ (
glm − 1

gl − 1
)

in case of 2 ≤ g ≤ 9 and l = 1. Note that the case of Lucas numbers can be generalized
similarly, therefore we omit the details of this case. More precisely, we use our ap-
proach in case where we have l is even, otherwise we follow the technique of Marques
and Togbé in [163] of using the result of Matveev on linear forms in three logarithms
and the result of Dujella and Pethő on the method of Baker-Davenport reduction. In
fact, our main results here also extend other related results obtained by e.g. Luca
[151] and Faye and Luca [82]. Before presenting our new results, it is important to
mention the following remark:

REMARK. Since a finiteness result for equation (6) in case of Gn = Un or Gn =
Vn can be obtained in a similar way, we only present and prove this result in detail in
the case of Gn = Un and omit the proof of the remaining case.

Here, we prove the following theorems, that are obtained in [108].

THEOREM. Let P and Q be nonzero relatively prime integers with Q ∈ {−1,1}
and t be a positive integer. If Gn = Un(P,Q) is non-degenerate and l = 2t, then
the Diophantine equation (6) has finitely many solutions of the form (n,m, g,B, l),
which can be effectively determined.

THEOREM. If Gn = Fn, then the Diophantine equation (6) has the following
solutions with 2 ≤ g ≤ 9, l ∈ {1,2,4} and 1 ≤ B ≤ min{10, gl − 1}.

(n,m, g,B, l) ∈ {(4,2,2,1,1), (5,2,4,1,1), (6,2,3,2,1), (6,2,7,1,1),

(7,3,3,1,1), (8,2,6,3,1), (8,3,4,1,1), (5,2,2,1,2), (8,3,2,1,2),

(9,2,4,2,2), (9,2,2,2,4)}.
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Furthermore, suppose that 2 ≤ g ≤ 9, l = 2,1 ≤ B ≤ min{5, gl − 1} and Gn = Pn, then
equation (6) has no more solutions other than (n,m, g,B, l) = (3,2,2,1,2).

In Section 3.1, we present a technique with which we can investigate the nontrivial
integer solutions (X,Y,Z) of any equation (that has infinitely many integer solutions
according to Mordell [176, page 111]) of the form

AX2
+ Y r

= C ′Z2,

for certain nonzero integers A,C ′ and r with r > 1 being odd and (X,Y ) = (Ln,
Fn)(or (X,Y ) = (Fn, Ln)), where Fn and Ln denote the general terms of the se-
quences of Fibonacci numbers and Lucas numbers, respectively. We also remark that
this technique can be applied on such equations for which they satisfy some condi-
tions derived from a result due to Kedlaya [128] on solving constrained Pell equations.
More precisely, we present the use of this technique for determining the solutions
(X,Y,Z) of the Diophantine equation

7X2
+ Y 7

= Z2, (8)

where (X,Y ) = (Ln, Fn)(or (X,Y ) = (Fn, Ln)) and Z is a nonzero integer. From
identity (1) (in case of Un(1,−1) = Fn and Vn(1,−1) = Ln), this technique shows
that the solutions of equation (8) are equivalent to the solutions of the systems

x2
− 5y2

= ±4, 7x2
+ y7

= z2,

x2
− 5y2

= ±4, x7
+ 7y2

= z2,

where x = Ln, y = Fn and z = Z is a nonzero integer. More generally, a few tech-
niques for investigating the integer solutions of certain systems of Diophantine equa-
tions of the form

x2
− ay2

= b, P (x, y) = z2, (9)

where a is a positive integer that is not a perfect square, b is a nonzero integer and
P (x, y) is a polynomial with integer coefficients, have been used by several authors
such as Cohn [57] who considered the case where P is a linear polynomial. Cohn’s
method uses congruence arguments to eliminate some cases and a clever invocation
of quadratic reciprocity to handle the remaining cases. The congruence arguments
are very sufficient if there exists no solution in such a system, however they fail in
the presence of a solution. This method was adapted by Mohanty and Ramasamy
[171], Muriefah and Al Rashed [1], Peker and Cenberci [182] to study the solutions of
particular systems. On the other hand, Kedlaya [128] gave a general procedure, based
on the methods of Cohn and the theory of Pell equations, that solves many systems
of the form (9). In fact, he applied this approach on several examples in which P is
univariate with degree at most two. Moreover, in some cases this procedure fails to
solve a system completely. Therefore, our technique mainly uses Kedlaya’s procedure
and similar techniques adapted by the methods of Mohanty and Ramasamy, Muriefah
and Rashed, and Peker and Cenberci to prove the following theorems, that appear in
[104].



100 SUMMARY

THEOREM. Suppose that X = Ln and Y = Fn, then the Diophantine equation
(8) has no more solutions other than (X,Y,Z) = (3,1,±8).

THEOREM. The Diophantine equation (8) has no solutions in integers X,Y and
Z if X = Fn and Y = Ln.

Finally, in Section 3.2 we present a technique for studying the solutions of some
generalizations of Markoff equation in the numbers of certain binary linear recurrence
sequences. In fact, Markoff equation is the Diophantine equation

x2
+ y2

+ z2
= 3xyz

in positive integers x ≤ y ≤ z, which was deeply studied by Markoff [160, 161] in
which he obtained many interesting results related to the solutions of this equation
such as he showed that this equation has infinitely many integer solutions. The idea of
investigating the solutions of the Markoff equation from some binary linear recurrence
sequences was initiated by Luca and Srinivasan [155] in which they proved that the
only solution of Markoff equation with x ≤ y ≤ z such that (x, y, z) = (Fi, Fj , Fk) is
given by the well-known identity related to the Fibonacci numbers

1 + F 2
2n−1 + F

2
2n+1 = 3F2n−1F2n+1.

Therefore, in this section we present our new results in two subsections in which we
extend the result of Luca and Srinivasan by simplifying their strategy with having up-
per bounds for the minimum of the indices to provide a direct approach for investigat-
ing such special solutions of the Jin-Schmidt equation and the Markoff-Rosenberger
equation, that are respectively defined by

AX2
+BY 2

+CZ2
=DXY Z + 1, (10)

where (A,B,C,D) ∈ S, with

S = {(2,2,3,6), (2,1,2,2), (7,2,14,14), (3,1,6,6), (6,10,15,30), (5,1,5,5)},

and
ax2

+ by2
+ cz2

= dxyz, (11)
where (a, b, c, d) ∈ T such that

T = {(1,1,1,1), (1,1,1,3), (1,1,2,2), (1,1,2,4), (1,1,5,5), (1,2,3,6)}.

Equations (10) and (11) are clearly generalizations of the Markoff equation, that are
due to the results of Jin and Schmidt in [123] and Rosenberger in [198], respectively.
More precisely, in Subsection 3.2.1 we determine the solutions (X,Y,Z) = (FI ,
FJ , FK) in positive integers of the Jin-Schmidt equation (10), where FI denotes the
Ith Fibonacci number. In other words, we study the solutions of the following Dio-
phantine equations in the sequence of Fibonacci numbers:

2X2
+ 2Y 2

+ 3Z2
= 6XY Z + 1, (12)

2X2
+ Y 2

+ 2Z2
= 2XY Z + 1, (13)

7X2
+ 2Y 2

+ 14Z2
= 14XY Z + 1, (14)
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3X2
+ Y 2

+ 6Z2
= 6XY Z + 1, (15)

6X2
+ 10Y 2

+ 15Z2
= 30XY Z + 1, (16)

5X2
+ Y 2

+ 5Z2
= 5XY Z + 1, (17)

where X = FI , Y = FJ and Z = FK . Here, we prove the following theorem, that is
obtained in [107].

THEOREM. Let m be a positive integer greater than 1. If (X,Y,Z) = (FI ,
FJ , FK) is a solution of equation (10) with (A,B,C,D) ∈ S, then the complete list
of solutions is given by

Eq. (A,B,C,D) {(X,Y,Z)}

(12) (2,2,3,6) {(1,1,1), (1,2,1), (1,2,3), (2,1,1), (2,1,3),

(F2m−1, F2m+1,1), (F2m+1, F2m−1,1)}

(13) (2,1,2,2) {(2,3,2), (2,5,2), (2,5,8), (8,5,2)}

(14) (7,2,14,14) {(1,2,1), (1,5,1), (3,2,1), (3,2,5)}

(15) (3,1,6,6) {(1,2,1), (3,2,1), (3,2,5)}

(16) (6,10,15,30) {(1,1,1), (1,2,1), (1,2,3)}

(17) (5,1,5,5) {}

In Subsection 3.2.2, we provide general results for the solutions (x, y, z) = (Ri,
Rj ,Rk) of the Markoff-Rosenberger equation (11), where Ri denotes the ith general-
ized Lucas number of first/second kind, i.e. Ri = Ui or Vi. Then we apply the strategy
of achieving these results to completely resolve concrete equations, e.g. we determine
solutions containing only balancing numbers Bn and Jacobsthal numbers Jn, respec-
tively. In other words, if T is the set of all distinct tuples (a, b, c, d) derived from
permuting the first three components of elements in T , then we prove the following
results, that will appear in [110].

THEOREM. Let (a, b, c, d) ∈ T, P ≥ 2,−P −1 ≤ Q ≤ P −1 such that Q ≠ 0, D > 0
and

B0 = min
I∈Z

∣αI −
d

c
√
D

∣ , B1 = min
I∈Z

∣αI −
d

c
∣ .

IfB0 ≠ 0, thenB0 ≥ α
−4 and ifB1 ≠ 0, thenB1 ≥ 0.17. Furthermore, if x = Ui, y = Uj

and z = Uk with 1 ≤ i ≤ j ≤ k is a solution of (11) and B0 ≠ 0, then i ≤ 12. If
x = Vi, y = Vj and z = Vk with 1 ≤ i ≤ j ≤ k is a solution of (11) and B1 ≠ 0, then
i ≤ 7.

Note that the cases where we haveB1 = 0 were completely studied in the proof of
the above theorem. Thus, it remains to classify the cases satisfying B0 = 0, the result
is as follows.

PROPOSITION. If P ≥ 2, −P − 1 ≤ Q ≤ P − 1, Q ≠ 0 and D > 0, then B0 ≠ 0
fulfills unless



102 SUMMARY

● e = 1, P = 3,Q = 2, α = 2,
√
D = 1, I = 0,

● e = 2, P = 3,Q = 2, α = 2,
√
D = 1, I = 1,

● e = 2, P = 4,Q = 3, α = 3,
√
D = 2, I = 0,

● e = 3, P = 5,Q = 4, α = 4,
√
D = 3, I = 0,

● e = 4, P = 3,Q = 2, α = 2,
√
D = 1, I = 2,

● e = 4, P = 6,Q = 5, α = 5,
√
D = 4, I = 0,

● e = 4, P = 2,Q = −3, α = 3,
√
D = 4, I = 0,

● e = 5, P = 7,Q = 6, α = 6,
√
D = 5, I = 0,

● e = 5, P = 3,Q = −4, α = 4,
√
D = 5, I = 0,

● e = 6, P = 4,Q = 3, α = 3,
√
D = 2, I = 1,

● e = 6, P = 8,Q = 7, α = 7,
√
D = 6, I = 0,

● e = 6, P = 4,Q = −5, α = 5,
√
D = 6, I = 0,

where e = d/c such that (a, b, c, d) ∈ T.

Indeed, our results here also extend other related results obtained by e.g. Kafle,
Srinivasan and Togbé [125] and Altassan and Luca [5]. As applications to the latter
theorem, we prove the following results, that will also appear in [110].

THEOREM. If (x, y, z) = (Bi,Bj ,Bk) is a solution of the equation

ax2
+ by2

+ cz2
= dxyz

and (a, b, c, d) ∈ {(1,1,1,1), (1,1,1,3), (1,1,2,2), (1,1,2,4), (1,1,5,5), (1,2,3,
6)}, then there is at most one solution given by x = y = z = B1 = 1.

THEOREM. If (x, y, z) = (Ji, Jj , Jk) is a solution of the equation

ax2
+ by2

+ cz2
= dxyz

and (a, b, c, d) ∈ {(1,1,1,1), (1,1,1,3), (1,1,2,2), (1,1,2,4), (1,1,5,5), (1,2,3,
6)}, then the complete list of solutions is given by

(a, b, c, d) solutions

(1,1,1,1) {(3,3,3)}

(1,1,1,3) {(1,1,1)}

(1,1,2,2) {}

(1,1,2,4) {(1,1,1), (1,3,1), (1,3,5), (3,1,1), (3,1,5), (3,11,1), (11,3,1)}

(1,1,5,5) {(1,3,1), (3,1,1)}

(1,2,3,6) {(1,1,1), (5,1,1)}
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