
AN ALGORITHM FOR DISCRETE TOMOGRAPHY

L. Hajdu and R. Tijdeman

There are many algorithms in the literature for the approximating re
onstru
tion of

a binary matrix from its line sums. In this paper we provide an algorithm whi
h

starts from the line sums of an unknown binary matrix f , and outputs an integer

matrix S with small entries in absolute values su
h that the line sums of f and S


oin
ide. We also give the results of some experiments with the algorithm.

1. Introdu
tion

Binary tomography 
on
erns the re
overy of binary images from their proje
-

tions. A binary image is a re
tangular array of pixels, ea
h of whi
h is given the

value 0 (bla
k) or 1 (white). A proje
tion of a binary image in some dire
tion is

de�ned as the set of line sums for all lines in that dire
tion going through the 
en-

ters of pixels. Hen
e it 
ounts how many white pixels are interse
ted by that line.

It is typi
al for many appli
ations that only a few proje
tions are available (see

e.g. [2℄, [4℄, [6℄). A standard 
hoi
e for the dire
tions is to 
onsider only row sums,


olumn sums, diagonal sums and anti-diagonal sums. The problem of the re
overy

of a binary image 
an be represented by a system of equations whi
h in general is

very underdetermined and leads to a large 
lass of solutions. Several authors have

made additional assumptions on the lo
ation of the white pixels in order to restri
t

the set of solutions (see e.g. [1℄, [2℄, [5℄, [7℄ and the referen
es given there.)

The stru
ture of the general solution set has been the subje
t of a study of the

authors [10℄. They showed that the solution set of 0�1-solutions is pre
isely the set

of shortest ve
tor solutions in the set of Z-solutions. Here the Z-solutions are the

fun
tions on the re
tangular array with the given line sums, where every pixel gets

an integral value, not ne
essarily 0 or 1. It is shown in [10℄ that the Z-solutions form

a multidimensional grid on a linear manifold in a linear ve
tor spa
e the dimension

of whi
h is the number of pixels 
onsidered. Moreover, there is one basi
 stru
ture,

the swit
hing element, the translates of whi
h generate the grid. A simple devi
e

is given to derive the swit
hing element from the set of dire
tions.

There are many papers in the literature on algorithms whi
h provide \approxi-

mating" results, i.e. whi
h returns 0�1 matri
es whose line sums are 
lose, but not

ne
essarily equal to the original ones (see e.g. [8℄ and [9℄ and the referen
es given
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there). The present paper provides an algorithm for dis
rete tomography whi
h

is based upon the stru
ture analysis. For given line sums it leads to a Z-solution

with the 
orre
t line sums and pixel values (entries of a matrix) whi
h are small in

absolute value. Of 
ourse, it also yields a 0�1-solution with approximately 
orre
t

line sums by repla
ing every positive entry by 1 and every negative entry by 0.

The stru
ture of the paper is as follows. Notation and 
on
epts are introdu
ed

in Se
tion 2. The next se
tion 
ontains a des
ription of the algorithm. We start

from the orthogonal proje
tion of the origin onto the (minimal) linear real manifold

whi
h 
ontains the Z-solutions. We use the pro
edure \Mills" to sele
t an entry

and to assign a value to the entry whi
h is meant to be �xed further on. If it is

too risky to use the pro
edure \Mills", we apply the pro
edure \Proje
tion" to

de
rease the absolute values of entries whi
h are rather large, without 
hanging the

line sums. After having used pro
edure \Mills" so often that all entries are �xed,

the pro
edure \Polishing" is applied to 
he
k that the 
onstru
ted solution 
annot

be improved by a simple appli
ation of a translate of the swit
hing element. The

algorithm is des
ribed in Se
tion 4. Some additional remarks are made in Se
tion

5. We illustrate how our algorithm works on a small example in Se
tion 6. In the

�nal se
tion we report on some numeri
al experiments with the algorithm.

2. Notation and 
on
epts

Let m and n be integers with m � 4, n � 4. Throughout the paper let M

m�n

denote the set of matri
es of type m � n, having real elements. We suppress the

subs
ripts m;n if their values are obvious.

For A 2 M the row sums, 
olumn sums, diagonal sums and anti-diagonal sums

of A are de�ned as

r

i

=

n

X

j=1

A(i; j) for i = 1; : : : ;m;

s

j

=

m

X

i=1

A(i; j) for j = 1; : : : ; n;

t

l

=

X

i+j=l

A(i; j) for l = 2; : : : ;m+ n;

h

l

=

X

i�j=l

A(i; j) for l = 1� n; : : : ;m� 1;

respe
tively. By a line sum of A we mean one of the above expressions. By the line

sums k

l

(l = 1; : : : ; 3(m+ n)� 2) we mean the line sums in this order.

If A

1

; A

2

2 M, then the inner produ
t of A

1

and A

2

is de�ned as (A

1

; A

2

) =

m

P

i=1

n

P

j=1

A

1

(i; j)A

2

(i; j), and the length of A

1

as jA

1

j =

p

(A

1

; A

1

), as usual. For

1 � u � m�3, 2 � v � n�2 de�ne the mills (or swit
hing 
omponents) m

u;v

2M

in the following way. Put

m

1;2

(i; j) =

8

>

<

>

:

1; if (i; j) 2 f(1; 2); (2; 4); (3; 1); (4; 3)g;

�1; if (i; j) 2 f(1; 3); (2; 1); (3; 4); (4; 2)g;

0; otherwise,
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and for 1 � u � m� 3, 2 � v � n� 2 set

m

u;v

(u+ i� 1; v + j � 2) =

�

m

1;2

(i; j); if m

1;2

(i; j) 6= 0;

0; otherwise.

By this de�nition we have

m

1;2

=

0

B

B

B

B

B

B

B

B

�

0 1 �1 0 0 : : : 0

�1 0 0 1 0 : : : 0

1 0 0 �1 0 : : : 0

0 �1 1 0 0 : : : 0

0 0 0 0 0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 0 0 : : : 0

1

C

C

C

C

C

C

C

C

A

and the other mills are just the translations of the patterns of 1's and �1's.

If A 2 M, then the inner produ
t value (A;m

u;v

) will be 
alled the mill-value

of A at the mill m

u;v

. Let q 2 R. We say that we turn the mill m

u;v

by q in A, if

we add the matrix q �m

u;v

to A. Moreover, we will say that the entry (i; j) is in

the mill m

u;v

, or that m

u;v


ontains (i; j), if m

u;v

(i; j) 6= 0.

De�ne the matrix F

m�n

2M in the following way. Let F

m�n

(i; j) be the number

of the mills 
ontaining (i; j). Then F

m�n

will be 
alled the frequen
y-matrix. If m

and n are �xed, then we will abbreviate F

m�n

as F .

We 
all A

1

; A

2

2 M line-equivalent if the line sums of A

1

and A

2


oin
ide.

Note that two matri
es are line-equivalent if one 
an be obtained from the other

by turning mills. Observe that this relation is an equivalen
e relation on M. The

equivalen
e 
lass of the zero matrix will be 
alled the swit
hing 
lass.

Let A 2M and let a be an mn-tuple. We say that A and a 
orrespond to ea
h

other, if

A(i; j) = a((i� 1)n+ j) for 1 � i � m; 1 � j � n:

Let A 2 M and let H be any set of entries of A. We will 
all x 2 H an extremal

element of H , if jx� 1=2j � jy � 1=2j for every y 2 H . The element x is median in

H , if jx� 1=2j � jy � 1=2j for every y 2 H .

Finally, if x is an element of A, then write

r

1

(x) =

8

>

<

>

:

x� 1; if x > 1;

x; if x < 0;

0; otherwise,

and

r

2

(x) =

8

>

<

>

:

1� x; if 1=2 � x � 1;

x; if 0 � x < 1=2;

0; otherwise.

We 
all r

1

(x) the ex
ess of x.

Our algorithm is based on the following result from [10℄.

Theorem A. Using the above notation, the mills m

u;v

(1 � u � m � 3; 2 � v �

n� 2) form a basis over R for the swit
hing 
lass.
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3. Des
ription of the algorithm

Our starting point is some unknown binary matrix f 2 M, having the known

line sums k

l

(l = 1; : : : ; 3(m + n) � 2). We would like to re
over f from the line

sums k

l

. After a simple �ltering pro
edure, we 
an get rid of the \margin", i.e.

the 
onstant rows and 
olumns at the side of f . Indeed, knowing the size and the

line sums of f , we 
an 
he
k whether f has su
h a row or 
olumn. If f has su
h

a line, with line sum k

i

, then we delete it from f . We dis
ard k

i

and modify the

other line sums k

l

a

ordingly: we de
rease by 1 those whi
h belongs to a line

interse
ting the deleted row or 
olumn of f . By the help of the ordered list peel

we keep tra
k of what has been 
hanged. We also de
rease the value of m or n

a

ording to we deleted a row or a 
olumn of f . Now we take the new f , and start

again the pro
edure. We repeat this pro
ess until the side rows and 
olumns of

f are non-
onstants. In the rest of this 
hapter f will denote the redu
ed matrix

obtained from f after exe
uting this \peeling" pro
edure, and m� n its size.

We determine a real matrix S whi
h is line-equivalent to f , then we make an

integer matrix from it by turning mills, hen
e not leaving the equivalen
e 
lass of

f . By Theorem A we know that

f = S +

m�3

X

u=1

n�2

X

v=2

r

u;v

m

u;v

holds with some real 
oeÆ
ients r

u;v

. In our algorithm we will \�x" the mills m

u;v

one by one. Namely, at a step we 
hoose an appropriate 
oeÆ
ient r

u;v

for a mill

m

u;v

, and then we 
onsider m

u;v

to be �xed: we do not use that mill to modify S

any more. After �xing all the mills, the output matrix will be our �nal solution.

The input of the algorithm 
onsists of the values of m and n, the ve
tor b

representing the line sums k

l

of f , and four parameter values: p

1

, p

2

, p

3

and

p

4

. The output is a matrix in M whi
h is line-equivalent to f , and has integer


oeÆ
ients.

In our algorithm we use several sets and matri
es. We start with the following

settings. Let fixedmills = ;, and put fixedentries = f(1; 1); (1; n); (m; 1); (m;n)g.

We 
ompute the original frequen
y-matrix F . We put the entries (i; j) for whi
h

F (i; j) = 1 holds into the set border. We 
al
ulate the equivalen
e 
lass of f : it

is the (linear) manifold L of real solutions of the linear equation B � x = b, and

determine the shortest ve
tor P 2 L, whi
h is just the orthogonal proje
tion of

the origin onto this manifold. (Note that the solution set of a linear equation is

always a linear manifold.) It is well-known that the number of operations needed

to 
ompute P is at most 
ubi
 in the size of B (see e.g. [11℄), i.e. it is bounded

by 
(mn)

3

with some numeri
al positive 
onstant 
. As we work with relatively

small size, we do not need high pre
ision. Hen
e the number 
(mn)

3


an also be


onsidered as the (approximate) 
omputational 
omplexity of the determination of

P .

We take S 2 M

m�n

as the matrix 
orresponding to P . From now on S will be

the matrix we are working with.

Our algorithm has two main parts, \Mills" and \Proje
tion". We outline the

\Mills" �rst.
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Mills.

Starting this part of the algorithm, we 
hoose an extremal element x = S(i; j) of

the set border, and an extremal element y of S n fixedentries. We take the unique

mill m

u;v

whi
h does not belong to the set fixedmills and 
ontains the element

(i; j). Let x

0

be a median element of m

u;v

\ border. If jr

1

(y)j + 2r

2

(x

0

) > p

1

and

we have �xed a mill sin
e swit
hing to \Proje
tion" for the last time, then we go

immediately to \Proje
tion".

Otherwise we turn the mill m

u;v

su
h that the value of S(i; j) be
omes 1 or 0,

a

ording to x � 1=2 or not. Then we move m

u;v

to the set fixedmills, modify

the frequen
y-matrix F by de
reasing the value of F (i

0

; j

0

) by 1 for ea
h (i

0

; j

0

)

belonging to m

u;v

, and refresh the set border: if the new value of F (i

0

; j

0

) has

be
ome 1, then we put (i

0

; j

0

) into this set, and if F (i

0

; j

0

) has be
ome 0, then we

move (i

0

; j

0

) from the set border to the set fixedentries. In this way we always

have

border = f(i; j) : F (i; j) = 1g

and

fixedentries = f(i; j) : F (i; j) = 0g:

Now we want to smoothen the new matrix S near the pla
e where the values of S


hanged by the mill turn. By smoothening we mean pushing the elements towards

the interval [0; 1℄. We 
hoose an extremal value in the matrix, x = S(i; j), say. Let

z be the half of the ex
ess of x, i.e. z = (x� 1)=2, if x > 1 and z = �x=2 if x < 0.

(If 0 � x � 1, then no \lo
al smoothening" is needed, and we simply skip this part

of the pro
ess.) We distribute the value z among the mills whi
h 
ontain (i; j),

in the following way. First we 
al
ulate the mill-values of S at the mills involved,

and we turn ea
h mill by �1=8 times its mill-value. Of 
ourse, the value of S at

(i; j) has 
hanged; put y = x

0

� x, where x

0

is the new value at (i; j). If the mills

m

1

; : : : ;m

l

are involved, then we turn m

r

by �m

r

(i; j)(z + y)=l for r = 1; : : : ; l.

We repeat this \lo
al smoothening" p

2

times. Then we start again with \Mills".

Of 
ourse, if all the mills are �xed, then we are done.

Proje
tion.

The \Proje
tion" part of the algorithm is used to smoothen the a
tual matrix

S \globally". We pro
eed as follows. Let lo
allyfixed be the union of the set

fixedentries and the set of all the entries (i; j) for whi
h jS(i; j)� 1=2j � p

3

. We


al
ulate the set of the solutions of the linear equation B � x = b whi
h have the al-

ready �xed values at the pla
es 
orresponding to the entries in the set fixedentries,

and have the values 1 or 0 at the pla
es belonging to the other entries of the set

lo
allyfixed, a

ording to S(i; j) � 1=2, or not. If there are no su
h solutions, then

we just swit
h ba
k to \Mills". Otherwise for the pairs (i; j) 2 lo
allyfixed with

(i; j) 62 fixedentries put

S(i; j) =

�

1; if S(i; j) � 1=2;

0; otherwise.

Having 
al
ulated the set of solutions (whi
h is a sub-manifold of the original one),

it is easy to 
al
ulate the orthogonal proje
tion P

0

of the origin onto it. The matrix


orresponding to this proje
tion will be the new S. More pre
isely, the entries

(i; j) 2 lo
allyfixed will remain un
hanged, and the other entries of S will be

the 
orresponding entries of P

0

. If the extremal element z = S(i; j) of S satis�es

jz � 1=2j > p

4

, we repeat \Proje
tion".
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Polishing.

After all the mills have been �xed, the matrix S has be
ome an integral matrix

with small elements, but not ne
essarily only 0's and 1's. We use \Polishing" to

try to obtain an even better approximation of f . To do this, observe that in 
ase

of a binary matrix, every mill-value 
an be at most 4 in absolute value. Therefore

we sear
h for a mill, whose mill-value v (at S) is larger than 4 in absolute value,

and turn it by �

h

jvj+3

8

i

in su
h a way that its new mill-value be
omes at most 4

in absolute value. We repeat this pro
edure as long as we 
an. After �nishing the

\Polishing" part, we insert into S the 
onstant rows and 
olumns deleted in the

beginning. We output the matrix obtained as the approximation of the original

solution f .

4. The algorithm

We provide an algorithm, des
ribed in the previous se
tion, to 
onstru
t a solu-

tion with small integer entries and exa
t line sums, if the sums along rows, 
olumns

and both diagonals of an unknown 0� 1 solution are given. The algorithm 
an be

downloaded from the internet page www:math:leidenuniv:nl=�tengely. We note

that it is easy to adjust the algorithm to the 
ase of any �nite set of dire
tions.

Below we use the notation from Se
tion 2 without any further referen
e.

Input

m

�

; n

�

: the size of the matrix we work with.

The parameter values p

1

, p

2

, p

3

, p

4

.

The ve
tor b giving the line sums of f .

Peeling

P.1 Put peel := () and m := m

�

, n := n

�

.

P.2 Find the line sums b

i

1

; b

i

2

; b

i

3

and b

i

4


orresponding to the �rst row, last row,

�rst 
olumn and last 
olumn of f , respe
tively.

P.3 Put max(1) = max(2) = n and max(3) = max(4) = m.

P.4 Choose one of the above b

i

j

-s whi
h is minimal or maximal, i.e. for whi
h either

b

i

j

= 0 or b

i

j

= max(j) holds. If there is no su
h b

i

j

, then go to I.1.

P.5 Delete the 
hosen b

i

j

from b, and append the pair (j; b

i

j

) to peel.

P.6 Also delete those two entries of b, whi
h belong to the diagonal and antidi-

agonal (one-summand) sums of the 
orners of f being on the row or 
olumn of f


orresponding to b

i

j

.

P.7 If b

i

j

= max(j), then de
rease by 1 the values of all the other entries of b whi
h

belong to a line interse
ting the row or 
olumn 
orresponding to b

i

j

.

P.8 Put m := m� 1 if j 2 1; 2, otherwise set n := n� 1.

P.9 Go to P.2.
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Initialisation

I.1 Constru
t the set M = fm

u;v

: 1 � u � m� 3; 2 � v � n� 2g of the mills and

the matrix B of the system of linear equations 
orresponding to the line sums.

I.2 Put fixedmills := ; and fixedentries := f(1; 1); (1; n); (m; 1); (m;n)g.

I.3 Constru
t the frequen
y-matrix F by F (i; j) := jf(u; v) : m

u;v

(i; j) 6= 0gj.

I.4 Set border := f(i; j) : F (i; j) = 1g.

I.5 Cal
ulate the manifold L := fx : B � x = bg.

I.6 Compute the orthogonal proje
tion P of the origin onto L.

I.7 Let S := (S(i; j))

i=1;:::;m

j=1;:::;n

be the m by n matrix 
orresponding to P .

Mills

1.1 If jfixedmillsj = (m� 3)(n� 3) then go to 3.1.

1.2 Find an extremal border element x = S(i

0

; j

0

) and �nd the unique mill ~m


ontaining (i

0

; j

0

).

1.3 Find an extremal value y of S n fixedentries.

1.4 Choose a median element x

0

of ~m \ border.

1.5 If jr

1

(y)j + 2r

2

(x

0

) > p

1

and we have �xed a mill sin
e the last \Proje
tion",

then go to 2.1.

1.6 Let t := 1� x if x � 1=2, and t := �x otherwise.

1.7 Put S := S + (t ~m(i

0

; j

0

)) � ~m.

1.8 Put the mill ~m into the set fixedmills.

1.9 Modify the frequen
y-matrix: for every (i; j) with ~m(i; j) 6= 0 de
rease F (i; j)

by 1.

1.10 For every entry (i; j), if F (i; j) has be
ome 0 then move (i; j) from border to

fixedentries, and if F (i; j) has be
ome 1 then put (i; j) into border.

1.11 Set 
ounter := 0.

1.12 Find an extremal value x = S(i

0

; j

0

) of S n fixedentries.

1.13 If 0 � x � 1, then go to 1.1.

1.14 Put z := r

1

(x)=2.

1.15 Determine the set fm

1

; : : : ;m

l

g of the mills whi
h are not in fixedmills and


ontain (i

0

; j

0

).

1.16 For r = 1; : : : ; l 
ompute the mill-value v

r

:=

P

(i;j)2A

S(i; j)m

r

(i; j).

1.17 Set y := �

1

8

l

P

r=1

v

r

m

r

(i

0

; j

0

).

1.18 Set S := S �

1

8

l

P

r=1

v

r

m

r

�

1

l

(z + y)

l

P

r=1

m

r

(i

0

; j

0

) �m

r

.

1.19 In
rease the value of 
ounter by 1.

1.20 If 
ounter = p

2

, then go to 1.1, otherwise go to 1.12.
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Proje
tion

2.1 Set lo
allyfixed := fixedentries.

2.2 Put B

0

:= B and b

0

:= b.

2.3 Put all the entries with jS(i

0

; j

0

)� 1=2j � p

3

into lo
allyfixed.

2.4 Delete all the 
olumns of B

0


orresponding to the entries in lo
allyfixed.

2.5 For every (i; j) 2 lo
allyfixed with S(i; j) � 1=2, de
rease the value of the


orresponding four entries of b

0

by one.

2.6 Cal
ulate the manifold L

0

:= fx

0

: B

0

� x

0

= b

0

g.

2.7 If L

0

is empty, then go to 1.1.

2.8 Let P

0

be the proje
tion of the origin onto L

0

.

2.9 For every (i; j), if (i; j) 2 lo
allyfixed n fixedentries put

S(i; j) :=

�

1; if S(i; j) � 1=2;

0; otherwise,

else, if (i; j) 62 fixedentries then let S(i; j) be the 
orresponding entry of P

0

.

2.10 Cal
ulate an extremal element x of S among the elements of S whi
h do not

belong to lo
allyfixed.

2.11 If jx� 1=2j � p

4

then go to 1.1, otherwise go to 2.3.

Polishing

3.1 Sear
h for a mill ~m whose mill-value v

~m

of S is larger than 4 in absolute value.

3.2 If there are no su
h ~m, then go to 4.1.

3.3 Put S := S � sign(v

~m

)

h

jv

~m

j+3

8

i

� ~m.

3.4 Go to 3.1.

Output

4.1 By the help of the ordered list peel, su

essively append to the sides of S the

appropriate 
onstant rows and 
olumns.

4.2 Output the matrix obtained.

5. Some remarks

We give a few remarks on the te
hni
al details of the above algorithm.

By the help of the \Peeling" part of the algorithm we 
an get rid of the 
onstant

side lines of the original matrix f . The motivation of it is that this \margin" of f


an be rather large if the matrix f 
orresponds to a binary image. In this way our

algorithm be
omes independent of this \margin".

About the mill-�xing part of the algorithm we would like to note that, as one


ould see, we restri
ted ourselves to the \border" of S. The reason is that if more

mills are involved it is hard to guess what is the right distribution of mill turns.

We also mention that the inequality

jr

1

(y)j+ 2r

2

(x

0

) > p

1
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whi
h is used at point 1.5 of the algorithm to determine whether it is ne
essary to

swit
h to \Proje
tion" or not, 
an be 
onsidered as a \parameter" as well. We 
hose

this inequality be
ause of its simpli
ity. The 
oeÆ
ients re
e
t our impression that

the 
oeÆ
ient 
orresponding to the border element better be larger than the one


orresponding with y.

By the lo
al smoothening the extremal values S(i; j) be
ome less extreme at

the 
ost of neighbouring values. Sometimes the more time-
onsuming Proje
tion

part 
an so be delayed. If many mills are �xed, the lo
al smoothening looses its

e�e
tiveness.

About the proje
ting part we just mention that as we know that the original

equation has a 0 � 1-solution, it is not surprising that after a few steps (if we

were 
areful enough with the 
hoi
e of our parameters) we 
an expe
t to obtain a

\smooth" solution, and we 
an return to the \Mills" part of the pro
ess.

It is important to note that the whole pro
edure is �nite. Indeed, \Mills" is used

exa
tly (m � 3)(n � 3) times: if all the mills are �xed, then we start \Polishing".

(Here m;n are the numbers obtained from m

�

; n

�

after exe
uting the \Peeling"

part.) In fa
t steps 1.1-1.10 are repeated (m�3)(n�3) times, while steps 1.11-1.20

are exe
uted p

2

(m�3)(n�3) times altogether. At every exe
ution, \Proje
tion" also

terminates, as the dimensions of the solution manifolds 
al
ulated here are stri
tly

de
reasing, provided that p

3

� p

4

. (So it is worth to 
hoose these parameters

to satisfy this inequality.) More pre
isely, steps 2.1 and 2.2 are repeated at most

(m � 3)(n � 3) times. As the maximal number of 
olumns of the matrix B

0

in

2.2 is mn, steps 2.3-2.10 are exe
uted at most (m � 3)(n � 3)mn times during

the whole pro
ess. Finally, it is easy to see that \Polishing" also provides a �nite

sub-pro
edure. Following the proof of Theorem 2 of [10℄ it is possible to derive

a polynomial upper bound for the absolute values of the entries of the matrix S


al
ulated at step I.7 of the algorithm. Hen
e one 
ould give an expli
it polynomial

upper bound in terms of m and n (and of the parameter values p

1

; p

2

; p

3

; p

4

) for

the number of exe
utions of the steps of \Polishing", too. However, as this sub-

pro
edure is the less important part of the algorithm, we do not work out the

details. Summarizing, the whole pro
edure stops after �nitely many steps, and one


an derive an upper bound depending only onm, n and the parameters p

1

; p

2

; p

3

; p

4

for the number of these steps. The 
omputational 
omplexity of ea
h step is also

polynomial (see the fourth paragraph of Se
tion 3 for the most 
rui
al part). Thus

one 
ould derive an e�e
tive upper bound for the 
omputational 
omplexity of the

whole algorithm, in terms of m, n and the parameter values p

1

; p

2

; p

3

; p

4

.

6. Illustration of the method

To illustrate how our algorithm works, we present a simple example of size 8�7.

Let the input be (p

1

; p

2

; p

3

; p

4

) = (0:6; 1; 0:5; 0:5) and the 43-tuple b 
onsisting of

the 8 row sums, 7 
olumn sums, 14 diagonal sums and 14 antidiagonal sums of the

matrix

A =

0

B

B

B

B

B

�

0 0 0 0 0 0 0

1 1 0 0 0 0 0

1 1 1 0 1 0 0

1 0 1 0 1 0 1

1 0 0 1 1 1 1

1 0 0 1 0 0 0

1 1 1 1 0 0 0

0 0 0 0 0 0 0

1

C

C

C

C

C

A

:
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We get

b

T

= (

0 2 4 4 5 2 4 0 6 3 3 3 3 1 2 0 1 2 2 2 2 2 3 3 3 1 0 0 0 0 0 0 1 2 2 3 4 2 2 2 2 1 0

) ;

where b

T

is the transpose of b. During the \Peeling" pro
ess, we su

essively get

rid of the �rst row sum, the last row sum and the �rst 
olumn sum of A. Meanwhile

we also delete the diagonal and antidiagonal sums 
orresponding to the top left and

bottom left 
orners, the antidiagonal sum 
orresponding to the top right 
orner,

and the diagonal sum 
orresponding to the bottom right 
orner of A. Pra
ti
ally,

we delete the �rst and last rows and the �rst 
olumn of the unknown matrix A.

We are left with the 34 tuple b given by

b

T

= (

1 3 3 4 1 3 3 3 3 3 1 2 1 1 1 1 1 3 3 3 1 0 0 0 0 1 2 2 3 3 1 1 1 1

) ;

whi
h belongs to the 6 row sums, 6 
olumn sums, 11 diagonal sums and 11 antidi-

agonal sums of the matrix

0

B

B

�

1 0 0 0 0 0

1 1 0 1 0 0

0 1 0 1 0 1

0 0 1 1 1 1

0 0 1 0 0 0

1 1 1 0 0 0

1

C

C

A

:

After exe
uting the \Initialisation" part of the algorithm, we obtain

B =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

;
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F =

0

B

B

�

0 1 2 2 1 0

1 2 3 3 2 1

2 3 4 4 3 2

2 3 4 4 3 2

1 2 3 3 2 1

0 1 2 2 1 0

1

C

C

A

; S =

0

B

B

�

1:00 0:33 0:25 �0:08 �0:50 0:00

0:67 0:65 0:40 0:52 0:27 0:50

0:10 0:54 0:48 0:60 0:46 0:81

0:15 0:42 0:98 0:94 0:75 0:77

0:08 0:15 0:19 0:73 �0:06 �0:08

1:00 0:92 0:71 0:29 0:08 0:00

1

C

C

A

;

where the entries of S are 
al
ulated with two digit a

ura
y. At this stage we


learly have

fixedentries = f(1; 1); (1; 6); (6; 1); (6; 6)g

and

border = f(1; 2); (1; 5); (2; 1); (2; 6); (5; 1); (5; 6); (6; 2); (6; 5)g:

Starting the \Mills" part of the algorithm, we �nd that x := S(1; 5) = �0:50 is

an extremal border element, and ~m := m

1;4

is the unique mill 
ontaining (1; 5). In

steps 1.3 and 1.4 of the algorithm we obtain

y := �0:50 and x

0

:= 0:50;

when
e

jr

1

(y)j+ 2r

2

(x

0

) = 0:50 + 2 � 0:50 = 1:50 > 0:60 = p

1

:

Sin
e we have not applied 1.8 yet, we nevertheless 
ontinue \Mills" and turn the

mill ~m by the 
oeÆ
ient �0:50. We get

S := S � 0:50 � ~m =

0

B

B

�

1:00 0:33 0:25 �0:58 0:00 0:00

0:67 0:65 0:90 0:52 0:27 0:00

0:10 0:54 �0:02 0:60 0:46 1:31

0:15 0:42 0:98 1:44 0:25 0:77

0:08 0:15 0:19 0:73 �0:06 �0:08

1:00 0:92 0:71 0:29 0:08 0:00

1

C

C

A

;

fixedmills := f(1; 4)g; fixedentries := f(1; 1); (1; 5); (1; 6); (2; 6); (6; 1); (6; 6)g

and

border := f(1; 2); (1; 4); (2; 1); (3; 6); (5; 1); (5; 6); (6; 2); (6; 5)g:

For the extremal value x de�ned in step 1.12 we get x := S(1; 4) = �0:58, when
e

z := �0:29. The only non-�xed mill 
ontaining (1; 4) is m

1

:= m

1;3

. The mill value

of m

1

is

v

1

:= 0:25 + 0:58 + 0:27� 0:46 + 1:44� 0:98 + 0:54� 0:65 = 0:99;

whi
h yields y := 0:12. Hen
e in step 1.18 we get

S := S � 0:12 �m

1

� 0:17 �m

1

=

0

B

B

�

1:00 0:33 �0:04 �0:29 0:00 0:00

0:67 0:94 0:90 0:52 �0:02 0:00

0:10 0:25 �0:02 0:60 0:75 1:31

0:15 0:42 1:27 1:15 0:25 0:77

0:08 0:15 0:19 0:73 �0:06 �0:08

1:00 0:92 0:71 0:29 0:08 0:00

1

C

C

A

and we return to step 1.1. Now we �nd that x := S(5; 3) = 1:31 is an extremal

border element, and ~m := m

2;4

is the unique mill 
ontaining (5; 3). After a similar


al
ulation as above, we obtain

S := S � 0:31 � ~m =

0

B

B

�

1:00 0:33 �0:04 �0:29 0:00 0:00

0:67 0:94 0:90 0:21 0:29 0:00

0:10 0:25 0:29 0:60 0:75 1:00

0:15 0:42 0:96 1:15 0:25 1:08

0:08 0:15 0:19 1:04 �0:37 �0:08

1:00 0:92 0:71 0:29 0:08 0:00

1

C

C

A

;
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fixedmills := f(1; 4); (2; 4)g;

fixedentries := f(1; 1); (1; 5); (1; 6); (2; 6); (3; 6); (6; 1); (6; 6)g

and

border := f(1; 2); (1; 4); (2; 1); (2; 5); (4; 6); (5; 1); (5; 5); (5; 6); (6; 2); (6; 5)g:

For the extremal value x in step 1.12 we now get x := S(5; 5) = �0:37, when
e

z := �0:19. Exe
uting a smoothening step as above, we get

S := S + 0:05 �m

1

� 0:24m

1

=

0

B

B

�

1:00 0:33 �0:04 �0:29 0:00 0:00

0:67 0:94 0:90 0:21 0:29 0:00

0:10 0:25 0:10 0:79 0:75 1:00

0:15 0:61 0:96 1:15 0:06 1:08

0:08 �0:04 0:19 1:04 �0:18 �0:08

1:00 0:92 0:90 0:10 0:08 0:00

1

C

C

A

and we go to step 1.1. Now we �nd that x := S(1; 4) = �0:29 is an extremal border

element, and ~m := m

1;3

is the unique mill 
ontaining (1; 4). In steps 1.3 and 1.4 of

the algorithm we �nd

y := �0:29 and x

0

:= 0:29;

when
e

jr

1

(y)j+ 2r

2

(x

0

) = 0:29 + 2 � 0:29 = 0:87 > 0:60 = p

1

:

We swit
h to \Proje
tion". As p

3

= 0:5, we repla
e the negative elements of S by

0 and the elements ex
eeding 1 by 1. We obtain

0

B

B

�

1 x

1

0 0 0 0

x

2

x

3

x

4

x

5

x

6

0

x

7

x

8

x

9

x

10

x

11

1

x

12

x

13

x

14

1 x

15

1

x

16

0 x

17

1 0 0

1 x

18

x

19

x

20

x

21

0

1

C

C

A

;

where the symbols x

i

(1 � i � 21) stand for the elements of S whi
h are inside

(0; 1). Let B

0

be the matrix of type 34 � 21 obtained from B by deleting the

15 
olumns of B 
orresponding to the 0-s and 1-s in the previous matrix. The


orresponding ve
tor b

0

is given by

b

0

T

= (

0 3 2 2 1 2 1 3 3 2 1 0 0 1 1 1 1 2 2 2 0 0 0 0 0 0 1 2 1 3 1 1 1 0

) ;

where b

0

T

is the transpose of b

0

. It turns out that equation B

0

�x

0

= b

0

has a unique

solution. Repla
ing the 
orresponding entries of this solution to the previous matrix

we obtain

0

B

B

�

1 0 0 0 0 0

1 1 1 0 0 0

0 0 0 1 1 1

0 1 1 1 0 1

0 0 0 1 0 0

1 1 1 0 0 0

1

C

C

A

Choosing this matrix as S, and going ba
k to \Mills", we just �x all the non-�xed

mills one by one, without 
hanging the values of the previous matrix. (The mill

whi
h is being �xed, is turned with the 
oeÆ
ient 0.) Finally, we have to \put
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ba
k" those rows and 
olumns into this S, whi
h were deleted in the beginning. So

in the present example the output will be

0

B

B

B

B

B

�

0 0 0 0 0 0 0

1 1 0 0 0 0 0

1 1 1 1 0 0 0

1 0 0 0 1 1 1

1 0 1 1 1 0 1

1 0 0 0 1 0 0

1 1 1 1 0 0 0

0 0 0 0 0 0 0

1

C

C

C

C

C

A

:

Note that even in this simple 
ase rounding of the entries of the initial matrix S

does not yield A.

7. The results of some experiments

To test our algorithm, we used various types and sizes of matri
es. We start

with random examples, and �nish with \tumor-type" examples, i.e. with matri
es


onsisting of a few 
onne
ted \blo
ks" of ones, while the other elements are zeros.

For ea
h example, we provide the following data. We give our test matrix f

i

,

then the output matrix S

i

of our algorithm. We only used the line sums of f

i

to

obtain S

i

. If S

i

6= f

i

, we also indi
ate a third \di�eren
e" matrix D

i

, having the

symbols � and � as entries. Here � means that the original matrix f

i

and the output

matrix S

i

have the same entries at this point, while � means that these values are

di�erent. Finally, tables 
ontaining the data are given. For the parameter values

we 
hose p

1

= 0:6, p

2

= max(m;n), p

3

= 0:5, p

4

= 0:5 in ea
h 
ase. By the number

of di�eren
es in the tables we mean the number of �'s.

In all examples we have tested we found a 0 � 1-solution, but of 
ourse there

is no guarantee that this will happen. All presented solutions have the right line

sums by 
onstru
tion. By the pre
ious help of Szabol
s Tengely, our algorithm was

implemented in the linear algebrai
 program pa
kage MATLAB (see [12℄). The

program was run on a Celeron 566 MHz PC.

Random examples.

In this se
tion we provide some random examples. We also in
lude a \quasi-


rystal" example, the third one, whi
h was generated by the rule

f

3

(i; j) =

�

1; if fi

p

2 + j

p

3g > 1=2;

0; otherwise.

It is interesting to note that the behaviour of this matrix is 
omparable with a

random matrix. Probably be
ause of the larger set of 0 � 1-solutions the running

time is shorter and the number of di�eren
es larger.
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f

1

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

0 1 0 0 0 1 0 1 1 0 0 1 1 0 1

1 0 0 0 0 0 1 0 0 1 1 1 1 0 1

0 1 1 0 1 1 0 0 0 0 0 1 0 0 1

1 1 0 0 1 0 1 1 1 1 1 0 0 0 0

1 0 1 1 1 1 1 1 1 0 1 0 1 0 1

1 1 0 0 0 0 0 1 0 1 0 0 1 1 0

0 1 1 1 0 1 1 1 1 1 0 0 1 1 0

0 0 0 0 1 0 1 0 1 0 0 1 1 0 0

1 0 0 0 0 1 1 0 1 0 0 0 1 1 1

0 1 1 0 1 0 0 0 1 0 0 1 0 1 1

0 0 0 1 1 0 0 1 0 1 1 0 1 1 1

1 1 1 1 1 0 1 0 0 0 0 1 1 0 0

1 0 0 1 1 0 0 0 0 0 1 0 1 0 1

1 0 1 1 1 0 1 0 1 0 1 0 1 0 1

0 1 1 0 1 0 1 0 1 1 0 1 0 1 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

S

1

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

0 1 0 0 1 0 1 0 1 0 0 1 1 0 1

1 0 0 1 0 0 1 0 0 0 1 0 1 1 1

0 1 0 0 1 1 0 1 1 0 0 1 0 0 0

1 0 1 0 1 0 0 1 1 0 1 1 0 1 0

1 1 1 0 1 1 1 0 1 1 0 1 1 0 1

0 0 1 1 0 0 1 1 1 0 0 0 1 0 0

0 1 0 0 0 1 1 0 1 1 1 1 1 1 1

1 0 1 0 1 0 1 1 0 0 0 0 0 0 0

1 0 0 1 1 0 0 1 0 0 1 0 1 0 1

0 1 0 0 1 0 0 1 1 1 0 0 0 1 1

0 0 1 1 0 1 0 0 0 0 1 1 1 1 1

1 1 1 0 1 0 0 0 1 0 0 1 1 0 1
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Number of di�eren
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Running time: 665.31 se


Example 2.



16 L. HAJDU AND R. TIJDEMAN

f

3

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

0 1 1 0 0 1 1 0 0 1 0 0 1 1 0

1 0 0 1 0 0 1 1 0 0 1 1 0 0 1

1 1 0 0 1 1 0 0 1 1 0 0 1 0 0

0 0 1 1 0 0 1 1 0 1 1 0 0 1 1

1 1 0 1 1 0 0 1 1 0 0 1 1 0 0

0 1 1 0 0 1 1 0 0 1 1 0 0 1 0

1 0 0 1 1 0 0 1 0 0 1 1 0 0 1

0 1 1 0 1 1 0 0 1 1 0 0 1 1 0

0 0 1 1 0 0 1 1 0 0 1 1 0 1 1

1 1 0 0 1 1 0 1 1 0 0 1 1 0 0

0 0 1 0 0 1 1 0 0 1 1 0 0 1 1

1 0 0 1 1 0 0 1 1 0 0 1 0 0 1

0 1 1 0 0 1 1 0 1 1 0 0 1 1 0

1 0 1 1 0 0 1 1 0 0 1 1 0 0 1

1 1 0 0 1 1 0 0 1 1 0 1 1 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

S

3

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

0 1 1 0 0 1 1 1 0 0 1 0 0 1 0

1 0 0 1 0 1 0 1 0 0 1 1 0 0 1

1 1 0 0 0 1 0 1 0 1 0 0 0 1 1

0 0 1 1 1 0 1 0 1 1 0 1 0 1 0

1 1 1 0 1 0 0 1 0 1 1 0 1 0 0

0 0 0 0 0 1 1 0 1 1 0 1 1 0 1

1 1 0 1 1 0 1 0 0 1 0 0 0 0 1

0 1 1 1 0 0 0 0 1 0 1 1 1 1 0

0 1 1 1 1 1 1 0 1 0 0 0 1 0 0

0 0 0 1 0 1 1 1 0 0 1 1 1 0 1

1 0 1 0 0 0 0 1 1 1 0 0 1 0 1

1 0 0 0 1 0 1 1 0 1 0 1 0 1 0

0 1 1 1 1 0 0 0 0 1 0 1 0 1 1

1 0 1 0 0 1 1 1 1 0 1 0 1 0 0

1 1 0 0 1 1 0 0 1 0 1 1 0 1 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

D

3

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

p

1

p

2

p

3

p

4

Parameters: 0:6 15 0:5 0:5

Size of f

3

: 15� 15

Number of di�eren
es: 94

Running time: 365.47 se


Example 3.



AN ALGORITHM FOR DISCRETE TOMOGRAPHY 17

f

4

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

1 0 1 0 1 1 0 1 1 0 0 0 0 0 1 0 1 1 1 0

0 0 0 1 1 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0

1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 0 1 0 1 0

0 0 0 1 1 0 0 1 0 1 0 1 1 1 0 1 0 1 0 0

1 0 1 1 0 0 1 0 1 0 0 1 1 0 0 0 1 1 0 1

1 0 1 1 1 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 1 0 0 1 1 1 0 1 0 0 0 1 1 1 1 0 0 0

0 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 1 1

1 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 0 1 0

0 0 0 1 1 1 0 1 1 1 1 0 1 0 0 1 0 0 0 1

1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0

1 1 1 0 0 0 1 0 0 0 0 1 0 1 1 1 0 1 0 1

1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1

1 1 1 1 0 1 1 0 0 0 1 1 1 0 0 0 1 0 1 0

0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 1 1 0 1

0 0 1 1 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1

1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0

1 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 1 0

0 0 1 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0

1 1 1 1 1 0 1 1 1 1 0 0 1 1 0 1 1 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

S

4

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 1 1 0 1 0

0 1 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 0 1 0

1 0 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1

0 0 1 0 1 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0

1 1 1 1 0 0 0 1 0 1 0 1 1 1 0 0 1 0 0 0

1 0 0 1 1 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1

0 0 1 0 0 1 1 0 1 0 0 0 0 1 1 1 1 0 1 0

1 0 0 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0 0

1 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 0 0 1 0

0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 0 1

0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0

0 1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 1 1 1

1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 1

1 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 1 1 0

0 1 1 1 0 0 1 0 0 0 0 0 1 1 1 1 0 1 0 0

1 0 0 0 1 1 1 0 1 0 1 0 0 1 1 1 1 0 1 1

1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1

0 1 1 0 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 0

1 1 1 0 0 1 0 1 0 1 0 0 1 1 0 1 1 1 0 0

1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

D

4

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

p

1

p

2

p

3

p

4

Parameters: 0:6 20 0:5 0:5

Size of f

4

: 20� 20

Number of di�eren
es: 154

Running time: 2744.5 se


Example 4.



18 L. HAJDU AND R. TIJDEMAN

f

5

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 0 1 0 0 0 0 1 1 1

0 0 1 1 0 1 0 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 0 1

1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0

0 0 1 1 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0 1 0 0

1 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0

1 0 1 1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0

0 1 0 1 1 1 1 0 0 1 1 1 1 0 1 0 0 0 0 1 1 0 0 1 0

0 0 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 1 0 1

1 1 1 1 1 1 0 1 0 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1

0 0 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 1 1 0 1 0 1 1 0

1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 1 1 1 0

1 1 1 0 0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0

1 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1

1 0 1 1 1 0 0 1 1 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1

0 1 1 1 0 1 1 1 0 0 0 0 1 1 0 1 1 1 1 0 1 1 0 1 0

0 1 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 0 1 1 0 0 0 1

1 0 0 0 1 0 0 0 1 0 1 1 1 0 0 1 0 1 0 0 1 0 0 1 1

1 1 0 1 0 1 1 0 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 0 0 1 0 1 1 1

1 1 1 0 0 0 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 0 1

0 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 0

0 1 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0

1 0 1 0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 1 0

0 0 1 0 0 0 0 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 1 0 0

0 0 0 1 1 1 0 1 1 1 1 0 1 0 0 0 1 0 1 0 1 1 1 1 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

S

5

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 0 0 0 1 1 1

0 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 0 1

1 1 1 0 0 1 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 0 0 1 0

0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 1 0 0

1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 1 0

1 1 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 1 0 0

0 1 1 1 0 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 1 1 0 1 0

0 0 0 1 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 0 0 1

1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 0 1 1 1 1

1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1

1 1 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 0 0 1 0 1 0 1 0

0 0 1 1 1 1 0 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 0 0

1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 1 1 1

0 0 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1 0 0 1 0

1 1 1 1 0 0 0 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0

0 1 0 0 1 1 0 1 0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0 1

1 0 0 1 0 1 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1 0 0 1

1 1 0 0 0 1 0 0 1 0 0 1 1 1 0 1 0 1 0 0 1 0 1 1 0

0 0 1 0 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0

1 1 0 0 1 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1

1 0 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 1 0 0

0 1 0 1 0 1 0 0 0 1 1 1 1 0 1 0 0 0 1 0 1 1 0 1 0

0 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 0 1 0 0

0 0 1 0 1 1 0 1 0 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

D

5

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

p

1

p

2

p

3

p

4

Parameters: 0:6 25 0:5 0:5

Size of f

5

: 25� 25

Number of di�eren
es: 224

Running time: 9961.8 se


Example 5.



AN ALGORITHM FOR DISCRETE TOMOGRAPHY 19

Tumor-type examples.

In this subse
tion we give instan
es where the original matri
es 
onsist of blo
ks

of ones. Examples 9,10 and 11 are taken from pages 291, 292 and 293 of [3℄,

respe
tively. Similarly to [3℄, our algorithm found the original matrix in Examples

9 and 10, and it provided a di�erent 0�1 matrix with 
orre
t line sums in Example

11. The method used in [3℄ is 
ompletely di�erent from ours.

We note that the average running time is mu
h less than in 
ase of random

examples. It is not surprising, be
ause su
h matri
es are orthogonal to \almost"

all mills. Hen
e they are relatively 
lose to the shortest real solution of the original

equation system determined by the line sums.
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Parameters: 0:6 15 0:5 0:5
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Number of di�eren
es: 56

Running time: 648.17 se
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Running time: 267.27 se
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0

0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

The algorithm �nds a solution S

11

, whi
h di�ers from f

11

only at

S

11

(5; 7) = S

11

(9; 22) = S

11

(20; 3) = S

11

(24; 18) = 1;

S

11

(5; 18) = S

11

(9; 3) = S

11

(20; 22) = S

11

(24; 7) = 0:

p

1

p

2

p

3

p

4

Parameters: 0:6 35 0:5 0:5

Size of f

11

: 36� 42

Number of di�eren
es: 8

Running time: 2901.1 se


Example 11.
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