AN ALGORITHM FOR DISCRETE TOMOGRAPHY

L. HAjpu AND R. TIJDEMAN

There are many algorithms in the literature for the approximating reconstruction of
a binary matrix from its line sums. In this paper we provide an algorithm which
starts from the line sums of an unknown binary matrix f, and outputs an integer
matrix S with small entries in absolute values such that the line sums of f and S
coincide. We also give the results of some experiments with the algorithm.

1. INTRODUCTION

Binary tomography concerns the recovery of binary images from their projec-
tions. A binary image is a rectangular array of pixels, each of which is given the
value 0 (black) or 1 (white). A projection of a binary image in some direction is
defined as the set of line sums for all lines in that direction going through the cen-
ters of pixels. Hence it counts how many white pixels are intersected by that line.
It is typical for many applications that only a few projections are available (see
e.g. [2], [4], [6]). A standard choice for the directions is to consider only row sums,
column sums, diagonal sums and anti-diagonal sums. The problem of the recovery
of a binary image can be represented by a system of equations which in general is
very underdetermined and leads to a large class of solutions. Several authors have
made additional assumptions on the location of the white pixels in order to restrict
the set of solutions (see e.g. [1], [2], [5], [7] and the references given there.)

The structure of the general solution set has been the subject of a study of the
authors [10]. They showed that the solution set of 0— 1-solutions is precisely the set
of shortest vector solutions in the set of Z-solutions. Here the Z-solutions are the
functions on the rectangular array with the given line sums, where every pixel gets
an integral value, not necessarily 0 or 1. It is shown in [10] that the Z-solutions form
a multidimensional grid on a linear manifold in a linear vector space the dimension
of which is the number of pixels considered. Moreover, there is one basic structure,
the switching element, the translates of which generate the grid. A simple device
is given to derive the switching element from the set of directions.

There are many papers in the literature on algorithms which provide “approxi-
mating” results, i.e. which returns 0 — 1 matrices whose line sums are close, but not
necessarily equal to the original ones (see e.g. [8] and [9] and the references given
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there). The present paper provides an algorithm for discrete tomography which
is based upon the structure analysis. For given line sums it leads to a Z-solution
with the correct line sums and pixel values (entries of a matrix) which are small in
absolute value. Of course, it also yields a 0 — 1-solution with approximately correct
line sums by replacing every positive entry by 1 and every negative entry by 0.

The structure of the paper is as follows. Notation and concepts are introduced
in Section 2. The next section contains a description of the algorithm. We start
from the orthogonal projection of the origin onto the (minimal) linear real manifold
which contains the Z-solutions. We use the procedure “Mills” to select an entry
and to assign a value to the entry which is meant to be fixed further on. If it is
too risky to use the procedure “Mills”, we apply the procedure “Projection” to
decrease the absolute values of entries which are rather large, without changing the
line sums. After having used procedure “Mills” so often that all entries are fixed,
the procedure “Polishing” is applied to check that the constructed solution cannot
be improved by a simple application of a translate of the switching element. The
algorithm is described in Section 4. Some additional remarks are made in Section
5. We illustrate how our algorithm works on a small example in Section 6. In the
final section we report on some numerical experiments with the algorithm.

2. NOTATION AND CONCEPTS

Let m and n be integers with m > 4, n > 4. Throughout the paper let M, xn
denote the set of matrices of type m x n, having real elements. We suppress the
subscripts m,n if their values are obvious.

For A € M the row sums, column sums, diagonal sums and anti-diagonal sums
of A are defined as

ri=» A(i,j) for i=1,...,m,
j=1

m
sp=»_ Ali,j) for j=1,...,n,
=1

t = Z A(i,j) for 1=2,...,m+n,
i+j=l
h; = Z A(i,j) for I=1—mn,...,m—1,
i—j=1
respectively. By a line sum of A we mean one of the above expressions. By the line

sums k; (I =1,...,3(m +n) — 2) we mean the line sums in this order.
If Ay, Ay € M, then the inner product of A; and Ay is defined as (A1, A2) =

> >0 Ai(i,5)Ax(4,7), and the length of A; as |4;1] = /(A1, A1), as usual. For
i=1j=1

1<u<m-—3,2<wv < n—2define the mills (or switching components) m,, , € M
in the following way. Put

Lot (4,5) € {(1,2),(2,4),(3,1), (4,3)},
m172(iaj) = _]-7 if (27]) € {(]—73)7(271)7(374)7(472)}7
0, otherwise,
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andfor 1<u<m-—3,2<v<n-—2set

my o(i,7), if my2(i,5) # 0,
mmAU+i—Lv+j—2):{ 1,2(1, 1) 1,2(6,7) #

0, otherwise.
By this definition we have
0o 1 -1 0 O 0
-1 0 0 1 0 0
1 0 0 -10 0
ma=]0 -1 1 0 0 0
0 0 0 0

S -

o o 0 0 O
and the other mills are just the translations of the patterns of 1’s and —1’s.

If A € M, then the inner product value (4, m, ,) will be called the mill-value
of A at the mill m, ,. Let ¢ € R. We say that we turn the mill m,, , by ¢ in A, if
we add the matrix ¢ - m,, to A. Moreover, we will say that the entry (i,j) is in
the mill m,, ,, or that my,,, contains (i, 5), if my (¢, ) # 0.

Define the matrix F),,«,, € M in the following way. Let F},,« (i, j) be the number
of the mills containing (¢, 7). Then Fj,«x, will be called the frequency-matriz. If m
and n are fixed, then we will abbreviate Fj,x, as F.

We call A1, As € M line-equivalent if the line sums of A; and A, coincide.
Note that two matrices are line-equivalent if one can be obtained from the other
by turning mills. Observe that this relation is an equivalence relation on M. The
equivalence class of the zero matrix will be called the switching class.

Let A € M and let a be an mn-tuple. We say that A and a correspond to each
other, if

A(,j)=a((i—1)n+j) for 1<i<m,1<j<n.

Let A € M and let H be any set of entries of A. We will call z € H an extremal
element of H, if |z —1/2| > |y — 1/2] for every y € H. The element z is median in
H,if |z —1/2| < |y —1/2| for every y € H.

Finally, if x is an element of A, then write

z—1, if 2>1,

ri(z) =< =, if <0,
0, otherwise,
and
1—z, if 1/2<z<1,
ro(z) = ¢ =, if 0<z<1/2,
0, otherwise.

We call r1(z) the excess of .
Our algorithm is based on the following result from [10].

Theorem A. Using the above notation, the mills my, (1 <u<m—3,2<wv <
n —2) form a basis over R for the switching class.
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3. DESCRIPTION OF THE ALGORITHM

Our starting point is some unknown binary matrix f € M, having the known
line sums k; (I = 1,...,3(m + n) — 2). We would like to recover f from the line
sums k;. After a simple filtering procedure, we can get rid of the “margin”, i.e.
the constant rows and columns at the side of f. Indeed, knowing the size and the
line sums of f, we can check whether f has such a row or column. If f has such
a line, with line sum k;, then we delete it from f. We discard k; and modify the
other line sums k; accordingly: we decrease by 1 those which belongs to a line
intersecting the deleted row or column of f. By the help of the ordered list peel
we keep track of what has been changed. We also decrease the value of m or n
according to we deleted a row or a column of f. Now we take the new f, and start
again the procedure. We repeat this process until the side rows and columns of
f are non-constants. In the rest of this chapter f will denote the reduced matrix
obtained from f after executing this “peeling” procedure, and m x n its size.

We determine a real matrix S which is line-equivalent to f, then we make an
integer matrix from it by turning mills, hence not leaving the equivalence class of
f. By Theorem A we know that

m—3n—2

f =S+ Z Zru,vmu,v

u=1 v=2

holds with some real coefficients r,, ,. In our algorithm we will “fix” the mills m,, ,
one by one. Namely, at a step we choose an appropriate coefficient r,, , for a mill
My, and then we consider m,, , to be fixed: we do not use that mill to modify S
any more. After fixing all the mills, the output matrix will be our final solution.

The input of the algorithm consists of the values of m and n, the vector b
representing the line sums k; of f, and four parameter values: p;, ps, ps and
p4. The output is a matrix in M which is line-equivalent to f, and has integer
coefficients.

In our algorithm we use several sets and matrices. We start with the following
settings. Let fizedmills = (), and put fizedentries = {(1,1),(1,n), (m,1),(m,n)}.
We compute the original frequency-matrix F'. We put the entries (i,7) for which
F(i,j) = 1 holds into the set border. We calculate the equivalence class of f: it
is the (linear) manifold L of real solutions of the linear equation B -z = b, and
determine the shortest vector P € L, which is just the orthogonal projection of
the origin onto this manifold. (Note that the solution set of a linear equation is
always a linear manifold.) It is well-known that the number of operations needed
to compute P is at most cubic in the size of B (see e.g. [11]), i.e. it is bounded
by c(mn)3 with some numerical positive constant ¢. As we work with relatively
small size, we do not need high precision. Hence the number ¢(mn)® can also be
considered as the (approximate) computational complexity of the determination of
P.

We take S € M, x, as the matrix corresponding to P. From now on S will be
the matrix we are working with.

Our algorithm has two main parts, “Mills” and “Projection”. We outline the
“Mills” first.
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Mills.

Starting this part of the algorithm, we choose an extremal element z = S(i,j) of
the set border, and an extremal element y of S\ fizedentries. We take the unique
mill m,, which does not belong to the set fizedmills and contains the element
(7,7). Let zo be a median element of m,, , N border. If |ri(y)| + 2rz(xzo) > p; and
we have fixed a mill since switching to “Projection” for the last time, then we go
immediately to “Projection”.

Otherwise we turn the mill m, , such that the value of S(i,j) becomes 1 or 0,
according to > 1/2 or not. Then we move m,, to the set fizedmills, modify
the frequency-matrix F' by decreasing the value of F(i,j') by 1 for each (', ;')
belonging to m,,, and refresh the set border: if the new value of F(i',j') has
become 1, then we put (i', ;') into this set, and if F'(i’, ') has become 0, then we
move (i',j") from the set border to the set fizedentries. In this way we always
have

border = {(i,j) : F(i,j) =1}
and
fizedentries = {(i,j) : F(i,j) = 0}.

Now we want to smoothen the new matrix S near the place where the values of S
changed by the mill turn. By smoothening we mean pushing the elements towards
the interval [0, 1]. We choose an extremal value in the matrix, = S(i, j), say. Let
z be the half of the excess of z, i.e. z=(z —1)/2,ifx >1and z = —z/2if x < 0.
(If 0 < z < 1, then no “local smoothening” is needed, and we simply skip this part
of the process.) We distribute the value z among the mills which contain (3, j),
in the following way. First we calculate the mill-values of S at the mills involved,
and we turn each mill by —1/8 times its mill-value. Of course, the value of S at
(i,) has changed; put y = ¢’ — x, where ' is the new value at (¢, 7). If the mills
mi,...,m; are involved, then we turn m, by —m,(i,j)(z + y)/l for r = 1,...,1L.
We repeat this “local smoothening” p, times. Then we start again with “Mills”.
Of course, if all the mills are fixed, then we are done.

Projection.

The “Projection” part of the algorithm is used to smoothen the actual matrix
S “globally”. We proceed as follows. Let locallyfixed be the union of the set
fizedentries and the set of all the entries (i, j) for which |S(i,j) — 1/2| > p3. We
calculate the set of the solutions of the linear equation B -z = b which have the al-
ready fixed values at the places corresponding to the entries in the set fizedentries,
and have the values 1 or 0 at the places belonging to the other entries of the set
locally fized, according to S(i,j) > 1/2, or not. If there are no such solutions, then
we just switch back to “Mills”. Otherwise for the pairs (i,j) € locally fived with
(i,§) & fizedentries put

s6.9) = {

Having calculated the set of solutions (which is a sub-manifold of the original one),
it is easy to calculate the orthogonal projection P’ of the origin onto it. The matrix
corresponding to this projection will be the new S. More precisely, the entries
(i,7) € locallyfized will remain unchanged, and the other entries of S will be
the corresponding entries of P’. If the extremal element z = S(i,7) of S satisfies
|z —1/2| > p4, we repeat “Projection”.

1, if S(i,5) >1/2,

0, otherwise.
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Polishing.

After all the mills have been fixed, the matrix S has become an integral matrix
with small elements, but not necessarily only 0’s and 1’s. We use “Polishing” to
try to obtain an even better approximation of f. To do this, observe that in case
of a binary matrix, every mill-value can be at most 4 in absolute value. Therefore
we search for a mill, whose mill-value v (at S) is larger than 4 in absolute value,
and turn it by + [MTH] in such a way that its new mill-value becomes at most 4
in absolute value. We repeat this procedure as long as we can. After finishing the
“Polishing” part, we insert into S the constant rows and columns deleted in the
beginning. We output the matrix obtained as the approximation of the original
solution f.

4. THE ALGORITHM

We provide an algorithm, described in the previous section, to construct a solu-
tion with small integer entries and exact line sums, if the sums along rows, columns
and both diagonals of an unknown 0 — 1 solution are given. The algorithm can be
downloaded from the internet page www.math.leidenuniv.nl/~tengely. We note
that it is easy to adjust the algorithm to the case of any finite set of directions.
Below we use the notation from Section 2 without any further reference.

Input

m™*,n*: the size of the matrix we work with.
The parameter values p1, p2, p3, P4-
The vector b giving the line sums of f.

Peeling

P.1 Put peel := () and m :=m*, n :=n*.

P.2 Find the line sums b;,, b;,, b;, and b;, corresponding to the first row, last row,
first column and last column of f, respectively.

P.3 Put max(1) = max(2) = n and max(3) = max(4) = m.

P.4 Choose one of the above b;,-s which is minimal or maximal, i.e. for which either
bi; = 0 or b;; = max(j) holds. If there is no such b;;, then go to L.1.

P.5 Delete the chosen b;; from b, and append the pair (j, b;;) to peel.

P.6 Also delete those two entries of b, which belong to the diagonal and antidi-
agonal (one-summand) sums of the corners of f being on the row or column of f
corresponding to b;;.

P.7 If b;; = max(j), then decrease by 1 the values of all the other entries of b which
belong to a line intersecting the row or column corresponding to b;;.

P.8 Put m :=m —1if j € 1,2, otherwise set n:=n — 1.
P.9 Go to P.2.
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Initialisation

I.1 Construct the set M = {my, : 1 <u <m—3,2 <v <n-—2} of the mills and
the matrix B of the system of linear equations corresponding to the line sums.

1.2 Put fizedmills := ) and fizedentries := {(1,1),(1,n), (m,1),(m,n)}.

1.3 Construct the frequency-matrix F' by F (i, j) := [{(u,v) : my(i,5) # 0}
1.4 Set border := {(i,j) : F(i,j) =1}.

I.5 Calculate the manifold L := {& : B-x = b}.

1.6 Compute the orthogonal projection P of the origin onto L.

L7 Let S :=(5(i,5));=, ... be the m by n matrix corresponding to P.

j=1,...,n

Mills
1.1 If | fizedmills| = (m — 3)(n — 3) then go to 3.1.
1.2 Find an extremal border element z = S(i,;j') and find the unique mill m
containing (i', j').
1.3 Find an extremal value y of S\ fizedentries.
1.4 Choose a median element xg of m N border.

1.5 If |r1(y)| + 2ra(zo) > p1 and we have fixed a mill since the last “Projection”,
then go to 2.1.

16 Let t :=1—x if x > 1/2, and t := —x otherwise.
L7 Put S := S+ (tm(i',j")) - m.
1.8 Put the mill /7 into the set fizedmills.
1.9 Modify the frequency-matrix: for every (i,7) with m(i, j) # 0 decrease F(i, )
by 1.
1.10 For every entry (i, 7), if F(i,7) has become 0 then move (i, ) from border to
fizedentries, and if F(i,7) has become 1 then put (4, 7) into border.
1.11 Set counter := 0.
1.12 Find an extremal value z = S(i',j') of S\ fizedentries.
1.13If 0 <z <1, then go to 1.1.
1.14 Put z :=ry(z)/2.
1.15 Determine the set {my,...,m;} of the mills which are not in fizedmills and
contain (i, j').
1.16 For r = 1,...,l compute the mill-value v, := Y. S(i,j)m.(4,j).
(i,j)€A

1.17 Set y := —% > vemg (i, §').

r=1

l
L18 Set S :=S —§ 3 vpm, — 1(z +y) X m.(i',5') - my.
r=1

r=1

1.19 Increase the value of counter by 1.

1.20 If counter = po, then go to 1.1, otherwise go to 1.12.



8 L. HAJDU AND R. TIJDEMAN

Projection

2.1 Set locally fized := fixedentries.

2.2 Put B’ := B and b’ :=b.

2.3 Put all the entries with |S(i',j') — 1/2| > ps into locally fized.

2.4 Delete all the columns of B’ corresponding to the entries in locally fized.

2.5 For every (i,j) € locallyfized with S(i,j) > 1/2, decrease the value of the
corresponding four entries of b’ by one.

2.6 Calculate the manifold L' := {2’ : B' -2’ =b'}.

2.7 If L' is empty, then go to 1.1.

2.8 Let P’ be the projection of the origin onto L'.

2.9 For every (i,7), if (i, ) € locally fized\ fizedentries put

1, if S(i,5) > 1/2,
0, otherwise,

(.= {

else, if (i, j) & fivedentries then let S(i,j) be the corresponding entry of P'.

2.10 Calculate an extremal element z of S among the elements of S which do not
belong to locally fized.

211 If |z — 1/2| < ps then go to 1.1, otherwise go to 2.3.
Polishing

3.1 Search for a mill m whose mill-value vy of S is larger than 4 in absolute value.

3.2 If there are no such 7, then go to 4.1.
3.3 Put S := S — sign(vs) [W] - 1.
3.4 Go to 3.1.

Output

4.1 By the help of the ordered list peel, successively append to the sides of S the
appropriate constant rows and columns.

4.2 Output the matrix obtained.

5. SOME REMARKS

We give a few remarks on the technical details of the above algorithm.

By the help of the “Peeling” part of the algorithm we can get rid of the constant
side lines of the original matrix f. The motivation of it is that this “margin” of f
can be rather large if the matrix f corresponds to a binary image. In this way our
algorithm becomes independent of this “margin”.

About the mill-fixing part of the algorithm we would like to note that, as one
could see, we restricted ourselves to the “border” of S. The reason is that if more
mills are involved it is hard to guess what is the right distribution of mill turns.
We also mention that the inequality

Ir1(y)| + 2ra(w0) > p1
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which is used at point 1.5 of the algorithm to determine whether it is necessary to
switch to “Projection” or not, can be considered as a “parameter” as well. We chose
this inequality because of its simplicity. The coefficients reflect our impression that
the coefficient corresponding to the border element better be larger than the one
corresponding with y.

By the local smoothening the extremal values S(i,7) become less extreme at
the cost of neighbouring values. Sometimes the more time-consuming Projection
part can so be delayed. If many mills are fixed, the local smoothening looses its
effectiveness.

About the projecting part we just mention that as we know that the original
equation has a 0 — l-solution, it is not surprising that after a few steps (if we
were careful enough with the choice of our parameters) we can expect to obtain a
“smooth” solution, and we can return to the “Mills” part of the process.

It is important to note that the whole procedure is finite. Indeed, “Mills” is used
exactly (m — 3)(n — 3) times: if all the mills are fixed, then we start “Polishing”.
(Here m,n are the numbers obtained from m*, n* after executing the “Peeling”
part.) In fact steps 1.1-1.10 are repeated (m —3)(n — 3) times, while steps 1.11-1.20
are executed p2 (m—3)(n—3) times altogether. At every execution, “Projection” also
terminates, as the dimensions of the solution manifolds calculated here are strictly
decreasing, provided that ps < ps. (So it is worth to choose these parameters
to satisfy this inequality.) More precisely, steps 2.1 and 2.2 are repeated at most
(m — 3)(n — 3) times. As the maximal number of columns of the matrix B’ in
2.2 is mn, steps 2.3-2.10 are executed at most (m — 3)(n — 3)mn times during
the whole process. Finally, it is easy to see that “Polishing” also provides a finite
sub-procedure. Following the proof of Theorem 2 of [10] it is possible to derive
a polynomial upper bound for the absolute values of the entries of the matrix S
calculated at step L.7 of the algorithm. Hence one could give an explicit polynomial
upper bound in terms of m and n (and of the parameter values p;,ps,ps,ps) for
the number of executions of the steps of “Polishing”, too. However, as this sub-
procedure is the less important part of the algorithm, we do not work out the
details. Summarizing, the whole procedure stops after finitely many steps, and one
can derive an upper bound depending only on m, n and the parameters p;, p2, p3, P4
for the number of these steps. The computational complexity of each step is also
polynomial (see the fourth paragraph of Section 3 for the most cruical part). Thus
one could derive an effective upper bound for the computational complexity of the
whole algorithm, in terms of m, n and the parameter values p1, p2, p3, D4.

6. ILLUSTRATION OF THE METHOD

To illustrate how our algorithm works, we present a simple example of size 8 x 7.
Let the input be (p1,p2,p3,p4) = (0.6,1,0.5,0.5) and the 43-tuple b consisting of
the 8 row sums, 7 column sums, 14 diagonal sums and 14 antidiagonal sums of the

matrix
0000000
1100000
1110100
1010101
A= 1001111
1001000
1111000
0000000
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We get

bT:(0244524063333120122222333100000012234222210),

where b”" is the transpose of b. During the “Peeling” process, we successively get
rid of the first row sum, the last row sum and the first column sum of A. Meanwhile
we also delete the diagonal and antidiagonal sums corresponding to the top left and
bottom left corners, the antidiagonal sum corresponding to the top right corner,
and the diagonal sum corresponding to the bottom right corner of A. Practically,
we delete the first and last rows and the first column of the unknown matrix A.
We are left with the 34 tuple b given by

bT:(1334133333121111133310000122331111)7

which belongs to the 6 row sums, 6 column sums, 11 diagonal sums and 11 antidi-

agonal sums of the matrix
100000
110100
010101
001111
001000
111000

After executing the “Initialisation” part of the algorithm, we obtain

1111110000000000000000000000000O0O0O0O0OO
0000001111110000000000000000000000O00O0
o0oooooo0oo00000111111000000000000000000O
o0ooooooooo000000000111111000000000000
00000OO0OOOOOOOOOOOOOOOOOO11I1111000000O0
o0oooooooooo0o00000000000O0OOD0OOOOOO1I11111
100000100000100000100000100000100000
01000001000001000001000O0010000O00O01000O00O
001000001000001000001000001000001000O
0001000001000001000001000001000001O00O
0000100000100000100000O1000001000O0O01O
000001000001000001000001000001000001
1000000000000OO0O0OO0OOOOOOOOOODOOOOOOOOOO
010000100000000000O00O0O0OO0OOOOOOOOOOOOOO
0010000100001000000000O0O0O0O0O0O0OOOOOOOOOO
000100001000010000100000000000O00O0O0O0OOO
B = 000010000100001000010000100000000000O0
000001000010000100001000010000O010000O00O ’
0000000000010000100001000O0100O0O0O100O00O
o0ooooooo0000000O0O0O01000O0O10000100001000O
000000O0O00OO0OOOOOOOOOOOOOO1OOOO1O00O00OO1IOO
00000O0O0O0OOOOOOOOOOOOOOOOOOOOOO1O00OOOT1O
0000O0OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO1
00000100000000O0OOOOOOOOOOOOOOOOOOOOOO
000010000001 00000O0O0O0O0O0OOOOOOOOOOOOOOOO
000100000010000001000O0O0O00OO0OOOOOOOOOOO
0010000001000000100000010000000O0OO0OOOO
0100000010000001000000O10000001000O0OO
100000010000001000000100000010000001
0o0000010000O0O010000O00100O0O0O00O0O0100O00OO0OOO1O
0000000000001 000O0O00O0O10O0O0O0O0O1O00O0O0OOO1IOO
o0ooooo00000O0OO0OOOOOO1000O0O0O0O01O0O0O0OO0OO1O0OO00O
000000O0O0OO0OOOOOOOOOOOOOOO1O0O0OO0OO1IOO0OO

000000O0O0OOOOOOOOOOOOOOOOOOOOOOO1LIOOOOO
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012210 1.00 0.33 0.25 —0.08 —0.50 0.00
123321 0.67 0.65 0.40 0.52 0.27 0.50

F = 234432 S = 0.10 0.54 0.48 0.60 0.46 0.81
234432 ’ 0.15 0.42 0.98 0.94 0.75 0.77 ?
123321 0.08 0.15 0.19 0.73 —0.06 —0.08
012210 1.00 0.92 0.71 0.29 0.08 0.00

where the entries of S are calculated with two digit accuracy. At this stage we
clearly have
fizedentries = {(1,1), (1,6),(6,1), (6,6)}

and
border = {(1,2),(1,5),(2,1),(2,6),(5,1),(5,6), (6,2), (6,5)}.

Starting the “Mills” part of the algorithm, we find that = := S(1,5) = —0.50 is
an extremal border element, and m := my 4 is the unique mill containing (1,5). In
steps 1.3 and 1.4 of the algorithm we obtain

y:=—0.50 and z(:=0.50,

whence
|r1(y)| + 2r2(zo) = 0.50 4+ 2 - 0.50 = 1.50 > 0.60 = p;.

Since we have not applied 1.8 yet, we nevertheless continue “Mills” and turn the
mill m by the coefficient —0.50. We get

1.00 0.33 0.25 —0.58 0.00 0.00
0.67 0.65 0.90 0.52 0.27 0.00
—a_ .~ _ | 010054 —0.02 0.60 0.46 1.31
5:=95-0.50-m = 0.150.42 0.98 1.44 0.25 0.77 ’
0.08 0.15 0.19 0.73 —0.06 —0.08
1.00 0.92 0.71 0.29 0.08 0.00

fizedmills := {(1,4)}, fizedentries := {(1,1),(1,5),(1,6),(2,6),(6,1),(6,6)}

and
border := {(1,2),(1,4),(2,1),(3,6),(5,1), (5,6), (6,2), (6,5)}.

For the extremal value x defined in step 1.12 we get « := S(1,4) = —0.58, whence
z := —0.29. The only non-fixed mill containing (1,4) is my := my 3. The mill value
of my is

vy :==0.254+0.58 4 0.27 — 0.46 + 1.44 — 0.98 4+ 0.54 — 0.65 = 0.99,

which yields y := 0.12. Hence in step 1.18 we get

1.00 0.33 —0.04 —0.29 0.00 0.00

0.67 0.94 0.90 0.52 -—-0.02 0.00

__ _ . _ . _ 0.10 0.25 —0.02 0.60 0.75 1.31
§:=5-0.12 m 0.17 mi = 0.15 0.42 1.27 1.15 0.25 0.77
0.08 0.15 0.19 0.73 —0.06 —0.08

1.00 0.92 0.71 0.29 0.08 0.00

and we return to step 1.1. Now we find that z := S(5,3) = 1.31 is an extremal
border element, and 7 := m2 4 is the unique mill containing (5,3). After a similar
calculation as above, we obtain

1.00 0.33 —0.04 —0.29 0.00 0.00

0.67 0.94 0.90 0.21 0.29 0.00

o _ o — 0.10 0.25 0.29 0.60 0.75 1.00
§:=5-031-m= 0.150.42 0.96 1.15 0.25 1.08 ’

0.08 0.15 0.19 1.04 —0.37 —0.08

1.00 0.92 0.71 0.29 0.08 0.00
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fizedmills := {(1,4),(2,4)},
fizedentries := {(1,1),(1,5),(1,6), (2,6), (3,6), (6,1),(6,6)}

and

border .= {(1,2),(1,4),(2,1),(2,5),(4,6),(5,1),(5,5),(5,6),(6,2),(6,5)}.
For the extremal value z in step 1.12 we now get = := S(5,5) = —0.37, whence
z := —0.19. Executing a smoothening step as above, we get

1.00 0.33 —0.04 —0.29 0.00 0.00
0.67 0.94 0.90 0.21 0.29 0.00

— . _ | 0.10 0.25 0.10 0.79 0.75 1.00
§:=5+0.05-my —0.24m; = 0.15 0.61 0.96 1.15 0.06 1.08

0.08 —0.04 0.19 1.04 -0.18 —0.08
1.00 0.92 0.90 0.10 0.08 0.00

and we go to step 1.1. Now we find that z := S(1,4) = —0.29 is an extremal border
element, and m := my 3 is the unique mill containing (1,4). In steps 1.3 and 1.4 of
the algorithm we find

y:=—0.29 and zo:=0.29,

whence

We switch to “Projection”. As ps = 0.5, we replace the negative elements of S by
0 and the elements exceeding 1 by 1. We obtain

1 =z O 0 0 0
T2 w3 T4 ¥z xs O
T7 @8 T9 Ti0 T11 1
z12 ¢13 T1a 1 @151
T16 0 17 1 00
1 z18 @19 @20 21 0

where the symbols z; (1 < i < 21) stand for the elements of S which are inside
(0,1). Let B’ be the matrix of type 34 x 21 obtained from B by deleting the
15 columns of B corresponding to the 0-s and 1-s in the previous matrix. The
corresponding vector b’ is given by

T
b =(0322121332100111122200000012131110),

where b'7 is the transpose of b’. It turns out that equation B’ -z’ = b’ has a unique
solution. Replacing the corresponding entries of this solution to the previous matrix

we obtain
100000
111000
000111
011101
000100
111000

Choosing this matrix as S, and going back to “Mills”, we just fix all the non-fixed
mills one by one, without changing the values of the previous matrix. (The mill
which is being fixed, is turned with the coefficient 0.) Finally, we have to “put
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back” those rows and columns into this S, which were deleted in the beginning. So
in the present example the output will be

0000000
1100000
1111000
1000111
1011101
1000100
1111000
0000000

Note that even in this simple case rounding of the entries of the initial matrix S
does not yield A.

7. THE RESULTS OF SOME EXPERIMENTS

To test our algorithm, we used various types and sizes of matrices. We start
with random examples, and finish with “tumor-type” examples, i.e. with matrices
consisting of a few connected “blocks” of ones, while the other elements are zeros.

For each example, we provide the following data. We give our test matrix f;,
then the output matrix S; of our algorithm. We only used the line sums of f; to
obtain S;. If S; # f;, we also indicate a third “difference” matrix D;, having the
symbols - and * as entries. Here - means that the original matrix f; and the output
matrix S; have the same entries at this point, while * means that these values are
different. Finally, tables containing the data are given. For the parameter values
we chose p; = 0.6, p» = max(m,n), p3 = 0.5, ps = 0.5 in each case. By the number
of differences in the tables we mean the number of *’s.

In all examples we have tested we found a 0 — 1-solution, but of course there
is no guarantee that this will happen. All presented solutions have the right line
sums by construction. By the precious help of Szabolcs Tengely, our algorithm was
implemented in the linear algebraic program package MATLAB (see [12]). The
program was run on a Celeron 566 MHz PC.

Random examples.
In this section we provide some random examples. We also include a “quasi-
crystal” example, the third one, which was generated by the rule

i) { 1, {ivI+ V3 > 172,
,L7 = .
31 0, otherwise.

It is interesting to note that the behaviour of this matrix is comparable with a
random matrix. Probably because of the larger set of 0 — 1-solutions the running
time is shorter and the number of differences larger.
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01011001
00100111
11000001
10111110
11111010
00010100
01111100
10101001
01101000
10001001
10010110
10100001
10000010
10101010
10101101
* - ok .ok
k o-oo- e - *
* 0ok .ok
* ok ok
* ok *
* ok *
* * ok
* -k *
* - ok
EE S
k o-oo- e - *
* ok *
* ok - o- - - .
* sk

10
10
00
00

—
[=}

O R R HF R ORRRR

1 010010101001101

1 100100100010111

1 010011011001000

0 101010011011010

1 111011101101101

0 001100111000100

0 010001101111111

0 S1=]101010110000000

1 100110010010101

1 010010011100011

1 001101000011111

0 111010001001101

1 101010100100100

1 110110100110101

0 010101101100110

D1 D2 D3 P4

Parameters: 0.6 15 0.5 0.5
Size of fi: 15x 15
Number of differences: 82
Running time: 558.53 sec

Example 1.
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10110010111
10111000111
11010100111
01111101111
00111101001
11010011000
11111101011

fo=] 11000011000
10110000010
01000010111
10001110001
01111111111
01001001011
11100011011
01001110110

* * *
* ok - ok ok *
* ok - ok ok ok *
Mo %
Bk e e
* * .ok ok ok *
* * ok - PR
* * * ok ok *
----- k o+ ok o« ok ok ok o+ ok
* - ok ok ok
* * * ok * k% *
k ok ok ok - - - s . ... * ok
KR e
k o-ok - - - os - * *
* - - .- . * ok - ok

mFR EFPRORHHOORROROOHR

10
01
10
11
11
01
11
11
01
00
11
10
00
101
000

O OO0 O0OO0OO0OKr OO0OOo

(==}
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110100111101100
011000101111010
101110101010100
111111010111111
011101010010110
100110101101000
111011100101111
Sy=]010100001010110
101101010010000
010010010111000
110110000101110
100011111111111
001010010111000
111101110110100
010001101110010
P1 D2 Ps3 D4
Parameters: 0.6 15 0.5 0.5
Size of f: 15 x 15
Number of differences: 72
Running time: 665.31 sec

Example 2.
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011001110010010
100101010011001
110001010100011
001110101101010
111010010110100
000001101101101
110110100100001

S3=]011100001011110
011111101000100
000101110011101
101000011100101
100010110101010
011110000101011
101001111010100
110011001011010

D1 D2 D3 P4

Parameters: 0.6 15 0.5 0.5

Size of f3: 15x 15

Number of differences: 94

Running time: 365.47 sec

Example 3.
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1010110110000010111
0001100000010111001
1111111101001110101
0001100101011101010
1011001010011000110
1011101000111111000
0010011101000111100
0100011110000011001
1000110011001111101
0001110111101001000
1001000000100100011
1110001000010111010
1001110000000001001
1111011000111000101
0000001001001111110
0011110010101111001
1101011111101011111
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0011010000111111110
1111101111001101100
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R L SRR * ..ok
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* B * ok *
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¥ oo e . * * ¥ oo e .
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0 10011001100010111010
0 01010101000011000010
0 10111110101010111011
0 00101010011011100100
1 11110001010111001000
0 10011101001101010011
0 00100110100001111010
1 10010010101100110100
0 10011101100111010010
1 G, — [ 00100011011000111101
0 4= |1 00111001000100000010
1 01010100010010101111
1 10100100000110100001
0 10011100110001110110
1 01110010000011110100
1 10001110101001111011
0 11011010011011111111
0 01100110101000011100
0 11100101010011011100
0 10111010110111111000
b1 D2 ps3 D4
Parameters: 0.6 20 0.5 0.5
Size of f4: 20 x 20
Number of differences: 154
Running time: 2744.5 sec

Example 4.
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1 1001100100110110110000111
1 0010110010101011000110101
0 1110010000010101100110010
0 0010100010101010010101100
0 1011000000110000000111010
0 1101100110011100010000100
0 0111010001101001010111010
1 0001011110011010010110001
1 1111101011101110101001111
0 1010101100101001111010111
0 1100000101101011000101010
0 0011110100011011100011000
1 Ss=]1110010011110010011110111
1 0011111100100111111110010
0 1111000101111100110011100
1 0100110101001110101100001
1 100101101011000101000100°1
0 1100010010011101010010110
1 0010110111000111111000110
1 1100101101011100101011011
0 1011001010011010101010101
0 0001110000110100001011100
0 0101010001111010001011010
0 0011000011011000011010100
0 0010110100111010100111110
b1 D2 p3 P4
- ox Parameters: 0.6 25 0.5 0.5
"
o Size of f5: 25 x 25
Number of differences: 224
* Running time: 9961.8 sec

Example 5.
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Tumor-type examples.
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In this subsection we give instances where the original matrices consist of blocks
of ones. Examples 9,10 and 11 are taken from pages 291, 292 and 293 of [3],
respectively. Similarly to [3], our algorithm found the original matrix in Examples
9 and 10, and it provided a different 0 — 1 matrix with correct line sums in Example
11. The method used in [3] is completely different from ours.

We note that the average running time is much less than in case of random
examples. It is not surprising, because such matrices are orthogonal to “almost”
all mills. Hence they are relatively close to the shortest real solution of the original
equation system determined by the line sums.

010000001
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011100000
011100000
000000111
000000111

fe=| 111000111
111000000
111000000
111111001
111111001
000111001
000111001
000000001

..... %
* * *
K ooe e e * ok ok ok
* oo oe - *
* ok ok * * *
* * ok

* * ok ok ok *

Dg = o .

* ok *
........ %
* ok *

K

* ok * *
* - *
....... K

=R QOO EHOOORR
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0000
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1000
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0 010001001111100

0 011000111001011

0 001100000110010

0 011000000100000

0 000000100100100

0 010000001110001

1 100111011010000

1 S¢e=]111100111010011

1 110100001000001

1 111000001000000

1 111100001110011

1 011111001111111

1 011110000111101

0 000011011110000

0 000000011100000

P1 D2 Ps3 D4

Parameters: 0.6 15 0.5 0.5
Size of fg: 15 x 15
Number of differences: 56
Running time: 648.17 sec

Example 6.
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Running time:

16.2 sec

Example 7.
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Sy = fo
D1 P2 D3 P4
Parameters: 0.6 34 0.5 0.5

Size of fy: 29 x 46

Number of differences: 0

Running time: 462.8 sec

Example 9.
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b1 b2 b3 P4
Parameters: 0.6 30 0.5 0.5

Size of flO: 26 x 41

Number of differences: 0

Running time: 267.27 sec

Example 10.
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The algorithm finds

S11(5,7) = S11(9,22) = 511(20,3) = 511(24,18) =1,
511(5, 18) = 511(9, 3) = 511(20, 22) = 511(24, 7) =0.
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which differs from f;; only at

D1 P2 D3 P4
Parameters: 0.6 35 0.5 0.5
Size of fll: 36 x 42
Number of differences: 8
Running time: 2901.1 sec

Example

11.
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