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Dedicated to Professor Robert Tijdeman on the occasion of his 60th birthday

1. Introduction

The title equation is a special case of

Axp + Byq = Czr.

Darmon and Granville [20] wrote down a parametrization for each case when
1/p + 1/q + 1/r > 1 and A = B = C = 1. Beukers [9] showed that for any
nonzero integers A, B, C, p, q, r for which 1/p + 1/q + 1/r > 1 all solutions of
Axp+Byq = Czr can be obtained from a finite number of parametrized solutions.
The theory of binary quadratic forms (see e.g. [31], Chapter 14) applies to the
case {p, q, r} = {2, 2, k} and a set of parametrizations can be found easily. We
will make use of the fact, that in case of the title equation the parametrization
is reducible.

It follows from Schinzel and Tijdeman [38] that for given non-zero integers
A, B, C the equation Ax2 +B = Cyn has only a finite number of integer solutions
x, y, n > 2, which can be effectively determined. For special values of A, B and
C this equation was investigated by several authors see e.g. [8], [16], [19], [22],
[23], [25], [26],[34], [40] and the references given there. The equation

x2 + 7 = yn

is still unsolved. The known solutions are obtained for x = ±1,±3,±5,±11,±181.
We note that using tools from arithmetic algebraic geometry recently Siksek and
Cremona [39] have proved that if (x, y, n) is any unknown solution of this equation
then 108 < n < 6.6 × 1015.

There are many results concerning the more general Diophantine equation

Ax2 + pz1

1 · · · pzs

s = Cyn,

where pi is prime for all i and zi is an unknown non-negative integer, see e.g.
[1], [2], [3], [4], [5], [6], [7], [13], [15], [18], [27], [28], [29], [32], [33], [37]. Here
the elegant result of Bilu, Hanrot and Voutier [12] on the existence of primitive
divisors of Lucas and Lehmer numbers has turned out to be a very powerful tool.
In [37] Pink considered the equation x2 +(pz1

1 · · · pzs
s )2 = 2yn, and gave an explicit

upper bound for n depending only on max pi and s.
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In [24] Ljunggren proved that if p is a given prime such that p2 − 1 is exactly
divisible by an odd power of 2, then the equation x2 + p2 = yn has only a finite
number of solutions in x, y and n with n > 1. He provided a method to find all
the solutions in this case.

The equation x2 + 1 = 2yn was solved by Cohn [17]. Pink and Tengely [36]
considered the title equation and they gave an upper bound for the exponent n
depending only on a, and they completely resolved the equation with 1 ≤ a ≤
1000 and 3 ≤ n ≤ 80. The theorems in the present paper provide a method to
resolve the equation x2 + a2 = 2yn in integers n > 2, x, y for any fixed a. In
particular we compute all solutions for odd a with 3 ≤ a ≤ 501.

2. Results

Consider the Diophantine equation

(1) x2 + a2 = 2yp,

where a is a given positive integer and x, y ∈ N such that gcd(x, y) = 1 and p ≥ 3
a prime. Put

(2) δ =

{

1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4).

After having read the paper [36], Bugeaud suggested to use linear forms in only
two logarithms in order to improve the bound for the exponent. Following this
approach we get a far better bound than Pink and Tengely did in [36], that is,
than p < 291527a10.

Theorem 1. If (x, y, p) is a solution of x2 + a2 = 2yp with y > 50000 then

p ≤ max

{

4 log a

log 50000
, 9511

}

.

Since Z[i] is a unique factorization domain, (1) implies the existence of integers
u, v with y = u2 + v2 such that

x = ℜ((1 + i)(u + iv)p) =: Fp(u, v),

a = ℑ((1 + i)(u + iv)p) =: Gp(u, v).

Here Fp and Gp are homogeneous polynomials in Z[X, Y ].
In the proof we will use the following result of Mignotte [4,Theorem A.1.3]. Let

α be an algebraic number, whose minimal polynomial over Z is A
∏d

i=1(X−α(i)).
The absolute logarithmic height of α is defined by

h(α) =
1

d

(

log |A| +
d
∑

i=1

log max(1, |α(i)|)
)

.
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Lemma 1. Let α be a complex algebraic number with |α| = 1, but not a root

of unity, and log α the principal value of the logarithm. Put D = [Q(α) : Q]/2.
Consider the linear form

Λ = b1iπ − b2 log α,

where b1, b2 are positive integers. Let λ be a real number satisfying 1.8 ≤ λ < 4,
and put

ρ = eλ, K = 0.5ρπ + Dh(α), B = max(13, b1, b2),

t =
1

6πρ
− 1

48πρ(1 + 2πρ/3λ)
, k =

(

1/3 +
√

1/9 + 2λt

λ

)2

,

H = max
{

3λ, D

(

log B + log

(

1

πρ
+

1

2K

)

− log
√

k + 0.886

)

+

+
3λ

2
+

1

k

(

1

6ρπ
+

1

3K

)

+ 0.023
}

.

Then

log |Λ| > −(8πkρλ−1H2 + 0.23)K − 2H − 2 log H + 0.5λ + 2 log λ− (D + 2) log 2.

We shall use the following statement in the proof of Theorem 1. The result
can be found as Corollary 3.12 at p. 41 of [35].

Lemma 2. If Θ = 2πr for some rational number r, then the only rational values

of the tangent and the cotangent functions at Θ can be 0,±1.

Proof of Theorem 1. Without loss of generality we assume that p > 2000, y >
50000, and yp > a4. Then, by (1), we have x2 > yp and x > a2. We compute an
upper bound for |x+ai

x−ai
− 1| :

(3)

∣

∣

∣

∣

x + ai

x − ai
− 1

∣

∣

∣

∣

=
2a√

x2 + a2
=

2
√

x2

a2 + 1
<

2√
x + 1

<
2

yp/4
.

We have
x + ai

x − ai
=

(1 + i)(u + iv)p

(1 − i)(u − iv)p
= i

(u + iv)p

(u − iv)p
.

If
∣

∣

∣
i (u+iv)p

(u−iv)p − 1
∣

∣

∣
> 1

3
then p ≤ 4 log 6

log 50000
< 2000, a contradiction. Thus

∣

∣

∣
i (u+iv)p

(u−iv)p − 1
∣

∣

∣
≤

1
3
. Since | log z| ≤ 2|z − 1| for |z − 1| ≤ 1

3
, we obtain

∣

∣

∣

∣

i
(u + iv)p

(u − iv)p
− 1

∣

∣

∣

∣

≥ 1

2

∣

∣

∣

∣

log i
(u + iv)p

(u − iv)p

∣

∣

∣

∣

.

Consider the corresponding linear form in two logarithms (πi = log(−1))

Λ = 2kσπi − p log

(

δ

(

u − iv

−v + iu

)σ)

,
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where logarithms have their principal values, |2k| ≤ p and σ = sign(k). We apply
Lemma 1 with α = δ( u−iv

−v+iu
)σ, b1 = 2kσ and b2 = p.

Suppose α is a root of unity. Then
(

u − iv

−v + iu

)σ

=
−2uv

u2 + v2
+

σ(−u2 + v2)

u2 + v2
i = exp

(

2πij

n

)

,

for some integers j, n with 0 ≤ j ≤ n − 1. Therefore

tan

(

2πj

n

)

=
σ(−u2 + v2)

−2uv
∈ Q.

Hence, by Lemma 2, (u2−v2)
2uv

∈ {0, 1,−1}. This implies that uv = 0 or |u| = |v|,
but this is excluded by the requirement that the solutions x, y of (1) are relatively
prime and that y > 50000. Therefore α is not a root of unity.

Note that α is irrational, |α| = 1, and it is root of the polynomial (u2+v2)X2+
4δuvX + (u2 + v2). Therefore h(α) = 1

2
log y. Set λ = 1.8. We have D = 1 and

B = p and K ≤ 9.503 + 1
2
log y. We also have

(4) H ≤ log p + log

(

0.53 +
1

19 + log y

)

+
4.28

19 + log y
+ 4.6.

By applying Lemma 1 we obtain

log 4 − p

4
log y ≥ log |Λ| ≥ −(13.16H2 + 0.23)K − 2H − 2 log H − 0.003.

From the above inequalities we conclude that p ≤ 9511. Thus we obtain the

bound p ≤ max
{

4 log a
log 50000

, 9511
}

. �

Remark. We also have in place of (3) that
∣

∣

∣

∣

x + ai

x − ai
− 1

∣

∣

∣

∣

≤
√

2a

yp/2
.

Hence

(5) log 2
√

2a− p

2
log y ≥ log |Λ| ≥ −(13.16H2 + 0.23)K − 2H − 2 log H − 0.003.

This yields by (4) an upper bound C(a, y) for p depending only on a and y.

Theorem 2 gives us a tool to resolve Diophantine equations of type (1) for
given a completely.

Theorem 2. Let

A(C) =
⋃

p≤C

{

tan
(4k + 3)π

4p
: 0 ≤ k ≤ p − 1

}

,

T =

{

lcm(ordu(v), ordv(u)) if min{|u|, |v|} ≥ 2,

max{|u|, |v|} otherwise,
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and δ is defined by (2). If (x, y, p) is a solution of x2 + a2 = 2yp such that

gcd(x, y) = 1, then there exist integers u, v satisfying (u, v, p) ∈ S1 ∪ S2 ∪ S3 ∪
S4 ∪ S5 where

S1 = {(u, v, p) : u + δv = a0, a0 6= a, a0|a, p|a − a0, Gp(−δv + a0, v) = a} ,

S2 = {(u, v, p) : u + δv = a, p ∈ {3, 5, 7}, Gp(−δv + a, v) = a} ,

S3 =
{

(u, v, p) : u + δv = a, u2 + v2 ≤ 50000, 11 ≤ p ≤ C(a, u2 + v2), p ≡ ±1 mod T
}

,

S4 =
{

(u, v, p) : u + δv = a, |u| > 223, |v| = 1, 11 ≤ p ≤ C(a, 50000), p ≡ ±1 mod T
}

,

S5 =
{

(u, v, p) : u + δv = a, u2 + v2 > 50000, |v| ≥ 2, 11 ≤ p ≤ C(a, 50000),

a

v
is a convergent of β + δ for some β ∈ A(C(a, 50000))

}

.

To prove Theorem 2 we need the following lemmas.

Lemma 3. If l is an odd positive integer, then

(u − δv) | Fl(u, v),

(u + δv) | Gl(u, v).

Proof. If l ≡ 1 (mod 4) then

Fl(u, u) =
ul

2
((1 + i)l+1 + (1 − i)l+1) = 0,

and also

Gl(u,−u) =
ul

2i
((1 − i)l−1 − (1 + i)l−1) = 0.

The proof of the other case is similar. �

Lemma 4. We have

Gp(X, 1) =

p−1
∏

k=0

(

X − tan
(4k + 3)π

4p

)

.

Proof. By definition Gp(X, 1) = ℑ((1 + i)(X + i)p). We have

2i

(

cos
(4k + 3)π

4p

)p

Gp(tan
(4k + 3)π

4p
, 1) =

= ip(1 + i)(−1)k

(

exp

(−3iπ

4

)

− i exp

(

3iπ

4

))

= 0.

Hence Gp(tan (4k+3)π
4p

, 1) = 0 for 0 ≤ k ≤ p − 1. Since Gp(X, 1) has degree p and

Gp is monic, the lemma follows. �



6 SZ. TENGELY

Proof of Theorem 2. We have seen that a = ℑ((1+i)(u+iv)p) =: Gp(u, v). Hence
Lemma 3 implies that u + δv|a, that is, there exists an integer a0 such that a0|a
and u + δv = a0. Define a function s : N → {±1} as follows:

s(k) =

{

1 if k ≡ 0, 1 (mod 4),

−1 if k ≡ 2, 3 (mod 4).

It follows that

a = Gp(−δv + a0, v) =

p
∑

k=0

s(k)

(

p

k

)

(−δv + a0)
p−kvk,

hence
a ≡ (−δv + a0)

p + δvp ≡ a0 (mod p).

If a0 6= a then it remains to solve the polynomial equations

(6) Gp(−δv + a0, v) = a, for a0|a, a0 6= a and p|a − a0.

That is the first instance mentioned in Theorem 2.
From now on we assume that a0 = a = u + δv. We claim p ≡ ±1 mod T. We

note that

1 ≡ Gp(u, v)

u + δv
≡ up−1 + (p − δ)up−2v mod v2,

1 ≡ Gp(u, v)

u + δv
≡ vp−1 + (p − δ)vp−2u mod u2.

Suppose that |u| = 1. Then either v = 0 or (p − δ)v ≡ 0 mod v2, that is p ≡
δ mod v and the claim is proved. The case |v| = 1 is similar. Now assume that
min{|u|, |v|} ≥ 2. In this case we obtain that

up−1 ≡ 1 mod v,

vp−1 ≡ 1 mod u,

and therefore ordv(u)|p − 1 and ordu(v)|p − 1. Hence

T = lcm(ordu(v), ordv(u))|p − 1.

If y ≤ 50000 then we have |u| ≤ 224, |v| ≤ 224, therefore a belongs to the finite
set {u + δv : |u| ≤ 224, |v| ≤ 224, u2 + v2 ≤ 50000}. For all possible pairs (u, v)
we have p ≤ C(a, u2 + v2) and p ≡ ±1 mod T. Thus (u, v, p) ∈ S3.

Consider the case y > 50000. Let βi, i = 1, . . . , p be the roots of the polynomial
Gp(X, 1), such that β1 < β2 < . . . < βp. Let γi = u − βiv, and γi1 = mini |γi|.
From Lemma 3 it follows that there is an index i0 such that |βi0 | = 1. From
Gp(u, v) = a we obtain

(7)

p
∏

i=1
i6=i0

(u − βiv) = 1.
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Using the mean-value theorem one can easily prove that

∣

∣

∣

∣

tan
(4k1 + 3)π

4p
− tan

(4k2 + 3)π

4p

∣

∣

∣

∣

≥ |k1 − k2|
π

p
.

Hence, by Lemma 4

|γi − γj| = |(βi − βj)v| ≥
|i − j|π

p
|v|.

If γi1 and γi1+k have the same sign then we obtain that

|γi1+k| ≥
|k|π
p

|v|,

otherwise

|γi1+k| ≥
(2|k| − 1)π

2p
|v|.

Hence, from (7) we get

1 =

p
∏

i=1
i6=i0

|u − βiv| =

p
∏

i=1
i6=i0

|γi| ≥ (p − 2)!|γi1|
(

π|v|
2p

)p−2

.

If |γi1| < 1
2|v|

, then |a
v
− (βi1 + δ)| < 1

2v2 , hence a
v

is a convergent of βi1 + δ. If

|γi1| ≥ 1
2|v|

, then

(8) 1 ≥ 1

2|v|(p − 2)!

(

π|v|
2p

)p−2

>

√
2π

2|v|

(

π(p − 2)|v|
2ep

)p−2

,

where we used the inequality (p − 2)! >
√

2π(p−2
e

)p−2. From (8) it follows that

|v| ≤
(√

2√
π

(

2e

π
+

4e

π(p − 2)

)

)
1

p−3 (

2e

π
+

4e

π(p − 2)

)

,

it is easy to see that the right-hand side is a strictly decreasing function of p and
that |v| < 2 for p ≥ 19. We get the same conclusion for p ∈ {11, 13, 17} from
(8). Now, if p ∈ {3, 5, 7}, then it remains to solve Gp(−δv + a, v) = a. If |v| < 2,
then we have to check only the cases v = ±1, because in case of v = 0 we do
not obtain any relatively prime solution. Hence (u, v, p) ∈ S4. If |v| > 2, then
|γi1| < 1

2|v|
, that is a

v
is a convergent of βi1 + δ. We conclude that (u, v, p) ∈ S5,

and the theorem is proved. �
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2.1. The Diophantine equation x2+a2 = yp. We recall that Ljunggren proved
that if a is a given prime such that a2 − 1 is exactly divisible by an odd power
of 2, then the equation x2 + a2 = yn has only a finite number of solutions in x, y
and n with n > 1. He provided a method to find all the solutions in this case. We
shall only require that a 6= 0. In this case we get the following parametrization

x = ℜ((u + iv)p) =: fp(u, v),

a = ℑ((u + iv)p) =: gp(u, v).

Here fp and gp are homogeneous polynomials in Z[X, Y ].

Theorem 3. If (x, y, p) is a solution of x2 + a2 = yp with y > 50000 then

p ≤ max

{

4 log a

log 50000
, 9511

}

.

Proof. The proof goes in the same way as that of Theorem 1, so we indicate a
few steps only. Without loss of generality we assume that p > 2000, y > 50000,
and yp > a4. The inequality yp > a4 implies that x2 > yp − yp/2 ≥ (yp/2 − 1)2,
thus x + 1 > yp/2. Hence we have

(9)

∣

∣

∣

∣

x + ai

x − ai
− 1

∣

∣

∣

∣

=
2a√

x2 + a2
<

2

yp/4
.

Consider the corresponding linear form in two logarithms

Λ = 2kσπi − p log

((

u − iv

u + iv

)σ)

,

where logarithms have their principal values, |2k| ≤ p and σ = sign(k). We
apply Lemma 1 with α = δ(u−iv

u+iv
)σ, b1 = 2kσ and b2 = p. As in the proof of

Theorem 1 we find that α is not a root of unity. It is a root of the polynomial
(u2 + v2)X2 − 2(u2 − v2)X + (u2 + v2). Therefore h(α) = 1

2
log y. Set λ = 1.8.

We have D = 1 and B = p and K ≤ 9.503 + 1
2
log y. By applying Lemma 1 we

obtain

log 4 − p

4
log y ≥ log |Λ| ≥ −(13.16H2 + 0.23)K − 2H − 2 log H − 0.003.

From the above inequalities we conclude that p ≤ 9511. Thus we obtain the

bound p ≤ max
{

4 log a
log 50000

, 9511
}

. �

Remark. We also have in place of (9) that
∣

∣

∣

∣

x + ai

x − ai
− 1

∣

∣

∣

∣

≤ 2a

yp/2
.

Hence

(10) log 4a − p

2
log y ≥ log |Λ| ≥ −(13.16H2 + 0.23)K − 2H − 2 log H − 0.003.

We have the bound (4) for H, this yields an upper bound C1(a, y) for p depending
only on a and y, which is decreasing with respect to y.



ON THE DIOPHANTINE EQUATION x
2 + a

2 = 2y
p 9

Theorem 4. If (x, y, p) is a solution of x2 +a2 = yp such that gcd(x, y) = 1, a 6=
0, then there exist integers u, v satisfying (u, v, p) ∈ S1 ∪ S2 ∪ S3 where

S1 = {(u, v, p) : v = a0, a0 6= δa, a0|a, p|a − δa0, gp(u, a0) = a} ,

S2 =
{

(u, v, p) : v = δa, u2 + a2 ≤ 50000, 3 ≤ p ≤ C(a, u2 + a2), ap−1 ≡ 1 mod u2
}

,

S3 =

{

(u, v, p) : v = δa, |u| ≤ cot

(

π

p

)

a + 1 and 3 ≤ p ≤ C1(a, 50000)

}

.

We have similar lemmas as we applied to prove Theorem 2.

Lemma 5. If l is an odd positive integer, then

u | fl(u, v),

v | gl(u, v).

Proof. By definition gl(u, v) = ℑ((u+iv)l) = (u+iv)l−(u−iv)l

2i
, therefore gl(u, 0) = 0.

Similarly for fp. �

Lemma 6. We have

gp(X, 1) = p

p−1
∏

k=1

(

X − cot
kπ

p

)

.

Proof. We have

2i

(

sin
kπ

p

)p

gp(cot
kπ

p
, 1) = exp (ikπ) − exp (−ikπ) = 0.

Hence gp(cot kπ
p

, 1) = 0 for 1 ≤ k ≤ p − 1. �

In the proof of Theorem 1 it is clear from (7) that there exists an index j such
that |u − βjv| ≤ 1. Since u + δv = a it follows that

|v| ≤ a + 1

|βj + δ| .

The denominator can be quite small, therefore we do not get a useful bound for
|v|. In the present case we are lucky, we can use the equation

(11) p

p−1
∏

k=1

(

u − δa cot
kπ

p

)

= 1

to get a bound for |u| and resolve x2 + a2 = yp completely.

Proof of Theorem 4. From Lemma 5 we obtain that v | a, therefore there exists
an integer a0 such that a0 | a and a0 = v. Thus

gp(u, a0) = a,

which implies that p | a − δa0. If a0 6= δa then we get (u, v, p) ∈ S1. Consider
the case a0 = δa. If y ≤ 50000 then we have u2 + a2 ≤ 50000 and (10) provides
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a bound C1(a, u2 + a2) for p. Now we prove the congruence condition on p using
the equation gp(u, δa) = a. Hence, by δ2 = 1,

1 = a−1gp(u, δa) =

p+1

2
∑

k=1

s(2k − 1)

(

p

2k − 1

)

up−2k+1δa2k−2.

This implies that
s(p)δap−1 ≡ 1 mod u2.

Thus (u, v, p) ∈ S2. If y > 50000 then from (10) we obtain that p < C1(a, 50000).
By (11) there is an integer 1 ≤ j ≤ p − 1 such that |u − δa cot jπ

p
| < 1. Hence

|u| < a cot
π

p
+ 1,

so (u, v, p) ∈ S3. �

Remark. We note that the method that we apply in this paper works for some
equations of the type

x2 + a2 = cyp

with a 6= 0, c 6= 1, 2 an even integer, as well.

3. Numerical results

3.1. Resolution of (1) with a ∈ {3, 5, . . . , 501}. Applying Theorem 2 we obtain
the following result.

Corollary 1. Let a be an odd integer with 3 ≤ a ≤ 501. If (x, y) ∈ N2 is a

positive solution of x2 + a2 = 2yp such that x ≥ a2, gcd(x, y) = 1 then

(a, x, y, p) ∈
{

(3, 79, 5, 5), (5, 99, 17, 3), (19, 5291, 241, 3), (71, 275561, 3361, 3)

(99, 27607, 725, 3), (265, 14325849, 46817, 3), (369, 1432283, 10085, 3)
}

.

Proof. Finding the elements of the five sets in Theorem 2 provides the solutions
of (1). We describe successively how to find the elements of these sets.

I. For a given a one has to resolve (6), that is several polynomial equations.
One can perform this job either by factoring the polynomial or by testing the
divisors of the constant term of the polynomial. Nowadays the computer algebra
programs contain procedures to find all integral solutions of polynomial equa-
tions. We used Magma to do so. The total CPU time for step I was about
44 minutes. For example when a = 249 then a0 ∈ {−249,−83,−3,−1, 1, 3, 83},
therefore p ∈ {3, 5, 7, 31, 41, 83}. There is only one solution: (x, y, p) = (307, 5, 7).
It took 0.4 sec to solve this case completely. In the list only the last solution is
derived from this part.

II. The cases p = 3, p = 5 and p = 7. If p = 3 then we have only to solve
quadratic equations of the form

6v2 + 6av + a2 − 1 = 0.
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We obtained the following solutions indicated in the list:
(5, 99, 17, 3), (19, 5291, 241, 3), (71, 275561, 3361, 3), (265, 14325849, 46817, 3).
If p = 5 then we get the Thue equation

G5(X, Y )

X + Y
= X4 + 4X3Y − 14X2Y 2 + 4XY 3 + Y 4 = 1

which has only the solutions (±1,±2), (±2,±1), (±1, 0), (0,±1). Therefore the so-
lutions of (1) with p = 5 and u+v = a are given by (a, x, y) ∈ {(1, 1, 1), (3, 79, 5)}.
If p = 7 then the corresponding Thue equation has only trivial solutions, hence
the only solution of (1) with p = 7, u − v = a is (a, x, y) = (1, 1, 1). The total
CPU time for step II was about 1.8 seconds.

III. If (u, v, p) belongs to S3, then |u| ≤ 224 and |v| ≤ 224. Since we are
interested only in relatively prime solutions of (1), we have to check only those
pairs (u, v) for which u+ δv = a, gcd(u, v) = 1, 2 ∤ u−v and u2 +v2 ≤ 50000. For
such a pair (u, v) one can compute T easily, and from (5) one gets C(a, u2 + v2).
So we obtain the set S3. It remains to check which triples yield a solution of
(1). To do so we compute y = u2 + v2 and we examine whether 2yp − a2 is a
square. This last step can be done efficiently, see [14], pp. 39-41. We used the
appropriate procedure of Magma. We did not obtain any solution in this case
with p ≥ 11. The total CPU time for step III was about 24.4 hours.

IV. In case of S4 and S5 we have a common bound for p which can be obtained
from (5). It turns out that this bound is 4079. Since v = ±1 we have y =
a2 ± 2a + 2. We check whether 2(a2 ± 2a + 2)p − a2 is a square for all primes
p ≤ 4079, p ≡ ±1 mod T. There is no solution. The total CPU time was about
1.9 minutes.

V. To get S5 we have to compute approximate values of some real numbers of
the form

tan
(4k + 3)π

4p
.

We note that we do not need very high precision, since the numerators of the
convergents are bounded by a, in our case at most 501. We computed all conver-
gents of the real numbers contained in A(C(a, 50000)) with numerator at most
501. From the triples (u, v, p) of S5 we got the solutions of (1) as in the previous
cases. For example, for a = 501 we obtained several convergents, one of them
being

501

45848
≈ 0.010927412319,

which is a convergent of

tan
(4 · 993 + 3)π

4 · 4003
≈ 0.010927412156.

We did not get any solution of (1) from this part. The total CPU time for step
IV was about 3.36 days. �

Applying Theorem 4 we obtain the following result in case yp has coefficient 1.
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Corollary 2. Let a be an odd integer with 3 ≤ a ≤ 501. If (x, y) ∈ N2 is a

positive solution of x2 + a2 = yp such that x ≥ a2, gcd(x, y) = 1 then

(a, x, y, p) ∈ {(7, 524, 65, 3), (97, 1405096, 12545, 3), (135, 140374, 2701, 3)}.
3.2. Remark on the case of fixed p. Let I(N) denote the set of odd integers
less than or equal to N. To resolve (1) completely for a fixed prime p and a ∈ I(N)
an obvious method is to find all integral solution of the polynomial equations

Gp(−δv + a0, v) = a, for a0|a and a0 ≡ a mod p.

We will refer to this method as method I. Method II will mean that we solve
the polynomial equations (6) and determine all integral solutions of the Thue
equation

Gp(X, Y )

X + δY
= 1.

Solving Thue equations of high degree is a difficult task, but in certain cases it is
possible (see [10],[11],[12],[21]). In the following table in the first row we indicate
the running times needed to resolve (1) for p = 5, 7 and 11, and for odd integers
a ∈ {1, . . . , 5001} using method I. The second row contains the running times in
case of method II. We note that in case of p = 3 method II does not apply, since

the degree of the polynomial Gp(X,Y )
X+δY

is 2.

1 ≤ a ≤ 5001 p = 5 p = 7 p = 11
method I. 7.26 sec 52 sec 310 sec
method II. 3.34 sec 8.34 sec 100 sec

The complete lists of solutions in these cases are given by:

• p = 5 :

(a, x, y) ∈ {(3, 79, 5), (79, 3, 5), (475, 719, 13), (475, 11767, 37), (717, 1525, 17),

(2807, 5757, 29), (2879, 3353, 25), (3353, 2879, 25)},
• p = 7 :

(a, x, y) ∈ {(249, 307, 5), (307, 249, 5), (2105, 11003, 13)},
• p = 11 :

(a, x, y) ∈ {(3827, 9111, 5)}.
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Hajdu, Yann Bugeaud and Jan-Hendrik Evertse for their valuable remarks and
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[23] W. Ljunggren, Über die Gleichungen 1 + Dx2 = 2yn und 1 + Dx2 = 4yn, Norske Vid.
Selsk. Forh., Trondhjem, 15 (1942), 115-118.

[24] W. Ljunggren, On the Diophantine equation x2 + p2 = yn, Norske Vid. Selsk. Forh.,
Trondhjem 16 (1943), 27-30.

[25] W. Ljunggren, On the diophantine equation Cx2 + D = yn, Pacific. J. Math., 14 (1964),
585-596.

[26] W. Ljunggren, On the diophantine equation Cx2 + D = 2yn, Math. Scand., 18 (1966),
69-86.

[27] F. Luca, On a diophantine equation, Bull. Austral. Math. Soc., 61 (2000), 241-246.
[28] F. Luca, On the equation x2 + 2a3b = yn, Internat. J. Math. Math. Sci., 29 (2002),

239-244.
[29] M. Mignotte, On the Diophantine equation D1x

2+Dm
2 = 4yn, Portugal. Math. 54 (1997),

457-460.



14 SZ. TENGELY

[30] M. Mignotte, A corollary to a theorem of Laurent-Mignotte-Nesterenko, Acta Arith., 86

(1998), 101-111.
[31] L. J. Mordell, Diophantine equations, Pure and Applied Mathematics, Vol. 30, Academic

Press, London, 1969.
[32] F. S. A. Muriefah, On the Diophantine equation Ax2 + 22m = yn, Internat. J. Math.

Math. Sci., 25 (2001), 373-381.
[33] F. S. A. Muriefah, On the Diophantine equation px2 + 3n = yp, Tamkang J. Math., 31

(2000), 79-84.
[34] T. Nagell, Verallgemeinerung eines Fermatschen Satzes, Arch. Math. (Basel), 5 (1954),

153-159.
[35] I. Niven, Irrational numbers, The Carus Mathematical Monographs, No. 11. Distributed

by John Wiley and Sons, Inc., New York, 1956.
[36] I. Pink, Sz. Tengely, Full powers in arithmetic progressions, Publ. Math. Debrecen, 57

(2000), 535-545.
[37] I. Pink, On the Diophantine equation x2 + (pz1

1 · · · pzs

s )2 = 2yn, to appear.
[38] A. Schinzel, R. Tijdeman, On the equation ym = P (x), Acta Arith. 31 (1976), 199-204.
[39] S. Siksek, J. E. Cremona, On the Diophantine Equation x2 + 7 = ym, Acta Arith., 109

(2003), 143-149.
[40] B. Sury, On the Diophantine equation x2 + 2 = yn, Arch. Math. (Basel), 74 (2000),

350-355.

Mathematical Institute

Leiden University

P.O.Box 9512

2300 RA Leiden

The Netherlands

E-mail address : tengely@math.leidenuniv.nl


