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Additive Erdős-Graham problem

M. Ulas and Sz. Tengely: Power values of sums of certain products of

consecutive integers and related results, J. of Number Theory, in press.

Let n be a non-negative integer and put

pn(x) =
n∏

i=0

(x + i).

Consider the Diophantine equation

ym = pn(x) +
k∑

i=1

pai (x),

where m ∈ N≥2 and a1 < a2 < . . . < ak < n. This equation can be

considered as a generalization of the Erdős-Selfridge Diophantine

equation ym = pn(x).
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Additive Erdős-Graham problem

We define the set

An = {(a1, . . . , ak ) ∈ Nk0 : ai < ai+1 for i = 1, 2, . . . k − 1, ak < n and k ∈ {1, . . . , n − 1}}.

For given m ∈ N≥2 and T = (a1, . . . , ak) ∈ An we consider the

Diophantine equation

ym = gT (x), where gT (x) := pn(x) +
k∑

i=1

pai (x).

The cardinality of An is 2n − 1, hence for a given m we deal with 2n − 1

Diophantine equations.
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Additive Erdős-Graham problem

The literature of this type of Diophantine equations is very extensive.

• Erdős and Rigge independently proved that a product of two or more

consecutive integers is never a perfect square.

• Erdős and Selfridge proved that the above equation has no solutions

in integers (x , y ,m, n) satisfying the conditions n ≥ 1,m ≥ 2 and

y 6= 0.

• Euler proved that a product of four terms in arithmetic progression

is never a square.

• Obláth obtained a similar statement in case of five terms.

• Bennett, Bruin, Győry and Hajdu extended this result to the case of

arithmetic progressions having at most 11 terms.

• Győry, Hajdu and Pintér extended these results for at most 34 terms.

• Hirata-Kohno, Laishram, Shorey and Tijdeman completely solved

the Diophantine equations related to the cases of arithmetic

progressions of length 3 ≤ k < 110.

A difficult conjecture states that even a product of consecutive terms of

an arithmetic progression of length at least four and difference at least

one is never a perfect power. Obláth [?] obtained a similar statement in

case of five terms. Bennett, Bruin, Győry and Hajdu [?] extended this

result to the case of arithmetic progressions having at most 11 terms.

Győry, Hajdu and Pintér [?] extended these results for at most 34 terms

Hirata-Kohno, Laishram, Shorey and Tijdeman [?] completely solved the

Diophantine equations related to the cases of arithmetic progressions of

length 3 ≤ k < 110. Finally, Bennett and Siksek in a recent paper [?]

shoved that if k is large enough, the equation in question has only finitely

many solutions.

One can also note that equation (??), in the case

T = (0, 1, . . . , n − 1) ∈ An, was studied in a recent paper of Hajdu,

Laishram and the first author [?]. They proved that for n ≥ 1 and m ≥ 2

(with n 6= 2 in case of m = 2) equation (??) has only finitely many

integer solutions. Moreover, they were also able to solve the equation

explicitly for n ≤ 10.
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Additive Erdős-Graham problem

• Bennett and Siksek in a recent paper shoved that if k is large

enough, the equation in question has only finitely many solutions.

• Note that the additive equation, in the case

T = (0, 1, . . . , n − 1) ∈ An, was studied in a recent paper of Hajdu,

Laishram and Tengely. They proved that for n ≥ 1 and m ≥ 2 (with

n 6= 2 in case of m = 2) the equation has only finitely many integer

solutions. Moreover, they were also able to solve the equation

explicitly for n ≤ 10.
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Additive Erdős-Graham problem

Based on general results by Tijdeman and Brindza we give finiteness

statements.

Theorem
Let n ∈ N≥2,T = (a1, . . . , ak) ∈ An. If a1 ≥ 2 or a1 = 1, a2 = 3, a3 ≥ 5

then for the integer solutions of the Diophantine equation ym = gT (x)

we have:

• if y 6= 0, then m < c1(n),

• if m ≥ 3, then max{m, |x |, |y |} < c2(n),

• if m = 2, then max{|x |, |y |} < c3(n).
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Additive Erdős-Graham problem

Conjecture
Let n ∈ N and T ∈ An be given. The polynomial gT (x) has multiple

roots if and only if:

1. T = (n − 4) for n ≥ 4 with (x2 + (2n − 3)x + n2 − 3n + 1)2|gT (x),

2. T = (n − 3, n − 2) for n ≥ 3 with (x + n − 1)3|gT (x),

3. T = (n − 2, n − 1) for n ≥ 2 with (x + n)2|gT (x).

In each of the above cases the corresponding co-factors have no multiple

roots.
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Additive Erdős-Graham problem

We were able to determine the set of rational points on the curves

y2 = gT (x) with T ∈ An, n ≤ 5, except in the following cases:

T r(T ) CT (Q)

(2) 2 {(−2, 0), (−1, 0), (0, 0), (2/3,±460/3)}
(3) 2 {(−9,±252), (−3, 0), (−2, 0), (−1, 0), (0, 0), (−1, 0), (0, 0), (−18/5,±468/5)}
(0, 4) 4 {(0, 0), (1,±29), (9/4,±5871/4)}
(1, 3) 2 {(−4,±6), (−1, 0), (0, 0)}
(1, 4) 2 {(−1, 0), (0, 0)}
(0, 1, 2) 2 {(−2, 0), (0, 0), (1,±27)}
(0, 2, 3) 2 {(0, 0)}
(1, 2, 3) 2 {(−3, 0), (−1, 0), (0, 0)}
(1, 3, 4) 2 {(−4,±6), (−1, 0), (0, 0), (−25/9,±620/9)}
(0, 1, 2, 3) 3 {(−4, 0), (−2, 0), (−1, 0), (0, 0), (−13/3,±91/3), (−5/3,±55/3)}
(0, 1, 3, 4) 2 {(−3, 0), (−1, 0), (0, 0)}

The most difficult one seems to be the case with T = (0, 4). The genus 2

curve is given by y2 = x(x5 + 16x4 + 95x3 + 260x2 + 324x + 145). The

rank of the Jacobian is 4 and one needs to work over a degree 5 number

field.

7



Additive Erdős-Graham problem

We resolved the Diophantine equations y2 = gT (x) for

T ∈ A5,A7,A9,A11 and A13. In all cases gT (x) is a monic polynomial,

hence Runge’s condition is satisfied. We note that in case of T ∈ A13

there are 213 − 1 equations to be solved and the bounds obtained by

Runge’s method are of size 106. An improved reduction algorithm were

used to make the computations feasible.

We also note that equations for which gcd(m, n + 1) ≥ 2 can be solved

using Runge’s method. For example if n = 14 and T = (10, 11, 12, 13),

then we have

ym =
(
x3 + 39 x2 + 504 x + 2157

)
(x + 12)p10(x),

an equation that can be solved using Runge’s method for m = 3, 5 and

15. We note that in all cases only the trivial solutions with y = 0 exist.

In this way we were able to determine all solutions of equations with

(m, n) ∈ {(5, 3), (8, 3), (11, 3), (4, 5), (9, 5), (6, 7)}.
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Additive Erdős-Graham problem

Question
Let us consider the equation ym = gT (x) in unbounded many variables

m ∈ N≥2, n ∈ N≥2,T ∈ An, where m, n are chosen in such a way that

the genus of the curve defined by our equation is positive. Is the set of

positive integer solutions infinite?

x [m, n, T ]

1 [2, 4, (0)], [2, 5, (0, 4)], [2, 5, (0, 1, 2)], [2, 6, (0)], [2, 6, (3, 4)], [2, 7, (0, 3, 4, 5, 6)],

[2, 8, (0, 3, 7)], [2, 8, (0, 1, 2, 5)], [2, 9, (0, 1, 2, 5, 6, 7], [2, 14, (0, 1, 2, 6, . . . , 13)]

[3, 5, (0, 1, 2)], [5, 3, (1, 2)], [7, 4, (1, 2)]

2 [2, 3, (2)], [2, 5, (2, 3)], [7, 3, (0, 1)]

4 [2, 6, (0, 4)]

if x = 1 : ym =
n∑

i=1

(ai+1)! in non-negative integers a1, a2, . . . and y ,m ∈ N.
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Additive Erdős-Graham problem

Theorem
The Diophantine equation z3 = p2(x) + p2(y) has infinitely many

solutions (x , y , z) in polynomials with integer coefficients and satisfying

degt x = degt y .

We have the factorization

p2(x) + p2(y) = (x + y + 2)(x2 − xy + y2 + x + y). Write

z = 3t2(x + y + 2), where t is a variable taking integer values,

U2 − 3(108t6 − 1)V 2 = 12(2916t6 − 135t6 + 1),

where

U = 3(108t6 − 1)(x + 1), V = (54t6 + 1)x + 2(27t6 − 1)y + 108t6 − 1

or equivalently

x =
U

3(108t6 − 1)
− 1, y =

3(108t6 − 1)V − (54t6 + 1)U

6(27t6 − 1)(108t6 − 1)
− 1.
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Additive Erdős-Graham problem

In the range 1 ≤ x ≤ y ≤ 105, equation z2 = p2(x) + p2(y) has 619

integer solutions. This relatively large number suggests the existence of a

polynomial solution. We were tried quite hard to construct parametric

solutions but we failed. This motivates us to formulate the following

problem.

Question
Does the equation z2 = p2(x) + p2(y) has a solution in polynomials with

integer coefficients?

Theorem
Let i ∈ {2, 3, 4}. The equation z2 = pi (x) + pi (y) has infinitely many

solutions in positive integers.
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Cyclic cubic fields

Shanks - ”simplest cubic fields”:

Sn = X 3 + (n + 3)X 2 + nX − 1.

Family given by Lecacheux:

Ln = X 3 − (n3 − 2n2 + 3n − 3)X 2 − n2X − 1.

Other family given by Kishi:

Kn = X 3 − n(n2 + n + 3)(n2 + 2)X 2 − (n3 + 2n2 + 3n + 3)X − 1.
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Cyclic cubic fields

Steve Balady (PhD thesis, 2017) pointed out that these families are

coming from solutions related to equation X (3) :

X (3) : x3 + y3 + z3 = λxyz .

Shanks - [x : y : z ;λ] = [0 : −1 : 1; n]

Lecacheux - [x : y : z ;λ] = [−1 : −n : 1;−n2]

Kishi - [x : y : z ;λ] = [−n : −n2 − n − 1 : 1;−n3 − 2n2 − 3n − 3]

Key observation: λ = f 3+g3+1
fg is a polynomial in Z[X ], where f , g ∈ Z[X ]

such that deg f ≤ deg g .
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Cyclic cubic fields

New family obtained by Balady with (f , g) = (−n2, n3 − 1):

Bn = X 3+(n7+2n6+3n5−n4−3n3−3n2+3n+3)X 2+(−n4+3n)X−1.

Theorem (Balady)

If (f , g) provides a family, then (g , g
3+1
f ) does too.

As an example he gives:

(f , g) = (−n2, n3 − 1), (g , k1) = (n3 − 1,−n7 + 3n4 − 3n),

(k1, k2) = (−n7 + 3n4 − 3n,−n18 + . . .).
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Cyclic cubic fields

Ulas - Tengely: looking solutions of the following form

f (t) =
m−2∑
i=0

ai t
i + amt

m, g(t) =
n∑

i=0

bi t
i .

Let

Ā = (a0, a1, . . . , am−1, am), B̄ = (b0, b1, . . . , bn−1, bn)

be the vectors of variables. We define the Fi = Fi (Ā, B̄), i = 0, . . . n − 1

and Gi (Ā, B̄), i = 0, . . . ,m − 1 as the numerators of the coefficients in

the remainders of divisibility of f 3 + 1 (mod g) and g3 + 1 (mod f )

respectively.
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Cyclic cubic fields

We have

(f (t)3+1) (mod g(t)) =
n−1∑
i=0

Fi (Ā, B̄)t i , g(t)3+1 (mod f (t)) =
m−1∑
i=0

Gi (Ā, B̄)t i .

The system of non-linear equations to consider:

S(m, n) :

{
Fi (Ā, B̄) = 0, i = 0, . . . , n − 1,

Gj(Ā, B̄) = 0, j = 0, . . . ,m − 1.
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Cyclic cubic fields

We have three non-trivial solutions in the case m = 1. These are given by

f (t) = t, g(t) = −t − 1,

f (t) = t, g(t) = −t2 + t − 1,

f (t) = t, g(t) = −t3 − 1.
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Cyclic cubic fields

If deg f = 2, then one has to deal with the systems S(2, n) for
n ∈ {2, . . . , 6}.

S(2, 2) :


F0 = a30b

5
2 − 3a20a2b0b

4
2 + 3a0a

2
2b

2
0b

3
2 − a32b

3
0b

2
2 − 3a0a

2
2b0b

2
1b

2
2 + 3a32b

2
0b

2
1b2 − a32b0b

4
1 + b52 = 0,

F1 = a2b1(a
2
2b

4
1 + 3a0a2b

2
2b

2
1 − 4a22b0b2b

2
1 + 3a20b

4
2 − 6a0a2b0b

3
2 + 3a22b

2
0b

2
2) = 0,

G0 = a32b
3
0 − 3a0a

2
2b0b

2
1 − 3a0a

2
2b

2
0b2 + 3a20a2b0b

2
2 + 3a20a2b

2
1b2 − a30b

3
2 + a32 = 0,

G1 = b1(3a
2
2b

2
0 − 6a0a2b2b0 − a0a2b

2
1 + 3a20b

2
2) = 0.

Theorem
The only non-trivial solution of the system S(2,2) is given by

f (t) =
1

2
(t2 − t + 1), g(t) =

1

2
(t2 + t + 1) = f (−t).
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Cyclic cubic fields

Theorem
The only non-trivial solution of the system S(2,3) is given by

f (t) = −t2, g(t) = t3 − 1.

Theorem
The only non-trivial solution of the system S(2,4) is given by

f (t) =
1

2
(t2 − t + 1), g(t) =

1

4
(t2 + t + 1)(t2 − t + 3).

Theorem
The only non-trivial solution of the system S(2,5) is given by

f (t) = −t2 + t − 1, g(t) = t(t4 − 2t3 + 4t2 − 3t + 3).
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Cyclic cubic fields

Hessian form of an elliptic curve:

Hd : x3 + y3 + dxy + 1 = 0

Theorem
If (x , y) ∈ Z2 is a solution of equation Hd for some |d | > 3, then

|x | < |d |+ 1.

Runge’s method can be applied. E.g. if d = 3t + s, then we get

(3x + 3y − 3t − s)(9x2 − 9xy + 9y 2 + 3(3t + s)x + 3(3t + s)y + (3t + s)2) =

= −(3t + s + 3)(9t2 + 6ts + s2 − 9t − 3s + 9).
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Cyclic cubic fields

10 [(7,−4) , (−4, 7) , (−1, 0) , (0,−1)]

17 [(−1, 0) , (0,−1) , (−9,−7) , (−7,−9)]

22 [(−1, 0) , (0,−1) , (−9,−4) , (−4,−9)]

24 [(7,−2) , (−2, 7) , (−1, 0) , (0,−1)]

57 [(−1, 0) , (0,−1) , (−3,−13) , (−13,−3)]

72 [(−9, 26) , (26,−9) , (−1, 0) , (0,−1)]

90 [(−1, 0) , (0,−1) , (−9,−28) , (−28,−9)]

95 [(36,−13) , (−13, 36) , (−1, 0) , (0,−1)]

111 [(−1, 0) , (0,−1) , (−21,−4) , (−4,−21)]

129 [(−1, 0) , (0,−1) , (−63,−37) , (−37,−63)]

140 [(−1, 0) , (0,−1) , (−18,−49) , (−49,−18)]

155 [(−1, 0) , (0,−1) , (−45,−76) , (−76,−45)]

159 [(103,−56) , (−56, 103) , (−1, 0) , (0,−1)]

193 [(545,−481) , (−481, 545) , (−1, 0) , (0,−1) , (−5,−31) , (−31,−5)]

205 [(−7, 38) , (38,−7) , (−1, 0) , (0,−1)]

207 [(−1, 0) , (0,−1) , (−84,−37) , (−37,−84)]

244 [(63,−16) , (−16, 63) , (−1, 0) , (0,−1) , (−81,−28) , (−28,−81)]
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Cyclic quartic fields

Balady - Washington:

XL : (x + y)4 − 4x2y2 + 4Lxy(x + y) + 4 = 0,

they have considered the special cases L = ±2 :(
x2 + 4 xy + y2 ∓ 2 x ∓ 2 y + 2

)(
x2 + y2 ± 2 x ± 2 y + 2

)
= 0.

Cyclic quartic family:

X 4 + (4n3 − 4n2 + 8n − 4)X 3 + (−6n2 − 6)X 2 + 4X + 1.
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Cyclic quartic fields

As in case of cubic fields we reduce the problem to a system of equations

R(m, n) having the coefficients of the polynomials as variables.

The case R(1, 4). We can easily parametrize b0, b1, b2, b3 as follows

b0 =
a40b4 + 4b4

a41
,

b1 =
4a30b4
a31

,

b2 =
6a20b4
a21

,

b3 =
4a0b4
a1

.
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Cyclic quartic fields

Hence we obtain the parametrization

b0 = ±(1/4a40 + 1),

b1 = ±a30a1,
b2 = ±3/2a20a

2
1,

b3 = ±a0a31,

b4 = ±a41
4
.

As an example fix a0 = a1 = 2, we get the family of quartic polynomials

X 4 + 4(n + 1)(4n6 + 24n5 + 54n4 + 56n3 + 29n2 + 10n + 1)X 3+

+ 6(2n4 + 8n3 + 10n2 + 4n + 1)X 2 + 4(n + 1)3X + 1.
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Cyclic quartic fields

Theorem
If L = 2n, then let D1 = {d : d |(4n4 − 4)}. In this case we have that

2(x + y)2 = d1 + d2 − 4n2,

where d1, d2 ∈ D1 and d1d2 = 4n4 − 4. If L = 2n + 1, then let

D2 = {d : d |(16n4 + 32n3 + 24n2 + 8n − 15)}. We have that

(2x + 2y)2 = d1 + d2 − 2(2n + 1)2,

where d1, d2 ∈ D1 and d1d2 = 16n4 + 32n3 + 24n2 + 8n − 15.
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Cyclic quartic fields

Theorem
If 5 ≤ L ≤ 106, then the only non-trivial solutions are

L = 10 : (x , y) ∈ {(−5,−1), (−1,−5)},
L = 19309 : (x , y) ∈ {(−5, 629), (629,−5)}.

The degree 4 polynomials are as follows

x4 + 148x3 + 102x2 + 20x + 1,

x4 + 7890798742x3 − 37333446x2 + 38618x + 1.
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