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Additive Erdos-Graham problem

M. Ulas and Sz. Tengely: Power values of sums of certain products of
consecutive integers and related results, J. of Number Theory, in press.

Let n be a non-negative integer and put

n

palx) = [J(x + i)-

i=0
Consider the Diophantine equation
k
ym = pn(X) + ZPa,-(X),
i=1
where m € N>» and a1 < ap < ... < ax < n. This equation can be

considered as a generalization of the Erdds-Selfridge Diophantine
equation y™ = p,(x).



Additive Erdos-Graham problem

We define the set

An={(a1, - - a) ENS: s <ajpqfori=1,2,...k—1, ag <nandk € {1,..., n—1}}.

For given m € N>o and T = (a1,...,ax) € A, we consider the
Diophantine equation

y™ =gr(x), where gr(x):= pa(x +Zpa

The cardinality of A, is 27 — 1, hence for a given m we deal with 2" — 1
Diophantine equations.



Additive Erdos-Graham problem

The literature of this type of Diophantine equations is very extensive.

e Erdds and Rigge independently proved that a product of two or more
consecutive integers is never a perfect square.

e Erdés and Selfridge proved that the above equation has no solutions
in integers (x, y, m, n) satisfying the conditions n > 1, m > 2 and
y #0.

e Euler proved that a product of four terms in arithmetic progression
is never a square.

e Obldth obtained a similar statement in case of five terms.

e Bennett, Bruin, Gy6ry and Hajdu extended this result to the case of
arithmetic progressions having at most 11 terms.

e Gylry, Hajdu and Pintér extended these results for at most 34 terms.

e Hirata-Kohno, Laishram, Shorey and Tijdeman completely solved
the Diophantine equations related to the cases of arithmetic
progressions of length 3 < k < 110.



Additive Erdos-Graham problem

e Bennett and Siksek in a recent paper shoved that if k is large
enough, the equation in question has only finitely many solutions.

e Note that the additive equation, in the case
T=(0,1,...,n—1) € A,, was studied in a recent paper of Hajdu,
Laishram and Tengely. They proved that for n > 1 and m > 2 (with
n # 2 in case of m = 2) the equation has only finitely many integer
solutions. Moreover, they were also able to solve the equation
explicitly for n < 10.



Additive Erdos-Graham problem

Based on general results by Tijdeman and Brindza we give finiteness

statements.

Theorem
Let n € Noo, T =(a1,...,ak) € Ap. If ag >20ra; =1,ap=3,a3 >5

then for the integer solutions of the Diophantine equation y™ = gr(x)

we have:
o if y # 0, then m < ¢1(n),

o if m> 3, then max{m, |x|, |y|} < c2(n),
o if m=2, then max{|x|, |y|} < c3(n).



Additive Erdos-Graham problem

Conjecture
Let n€ Nand T € A, be given. The polynomial gr(x) has multiple

roots if and only if:
1. T=(n—4)for n> 4 with (x> + (2n — 3)x + n?> — 3n + 1)?|g7(x),
2. T =(n—3,n—2) for n >3 with (x + n—1)*|gr(x),
3. T=(n—2,n—1) for n > 2 with (x + n)?|gr(x).

In each of the above cases the corresponding co-factors have no multiple
roots.



Additive Erdos-Graham problem

We were able to determine the set of rational points on the curves
y? = gr(x) with T € A,, n <5, except in the following cases:

[T [ (M@ I
) 2 {(=2,0), (—1,0), (0, 0), (2/3, £460/3)}

(3) 2 {(=9, £252), (—3,0), (=2, 0), (=1, 0), (0,0), (—1, 0), (0, 0), (—18/5, £468/5)}
(0, 4) 4 {(0,0), (1, £29), (9/4, £5871/4)}

(1,3 2 {(=4, £6),(=1,0), (0, 0)}

(1,4) 2 {(=1,0),(0,0)}

(0,1,2) 2 {(=2,0), (0,0), (1, £27)}

(0,2,3) 2 {(0,0)}

(1, 2, 3) 2 {(=3,0),(=1,0),(0,0)}

(1,3, 4) 2 {(=4, £6), (—1,0), (0,0), (—25/9, £620/9)}

0,1,2,3) | 3 {(=4,0), (—2,0), (—1,0), (0,0), (—13/3, £91/3), (—5/3, £55/3)}

0,1,3,4) | 2 {(=3,0),(=1,0),(0,0)}

The most difficult one seems to be the case with T = (0,4). The genus 2
curve is given by y? = x(x5 + 16x* 4+ 95x3 + 260x? + 324x + 145). The

rank of the Jacobian is 4 and one needs to work over a degree 5 number
field.



Additive Erdos-Graham problem

We resolved the Diophantine equations y? = gr(x) for

T € As, A7, Ag, A1 and Ajs. In all cases gr(x) is a monic polynomial,
hence Runge's condition is satisfied. We note that in case of T € Aj3
there are 213 — 1 equations to be solved and the bounds obtained by
Runge's method are of size 10°. An improved reduction algorithm were
used to make the computations feasible.

We also note that equations for which ged(m, n+ 1) > 2 can be solved
using Runge's method. For example if n =14 and T = (10,11, 12,13),
then we have

y™ = (x> +39x% + 504 x + 2157) (x + 12)p1o(x),

an equation that can be solved using Runge’s method for m = 3,5 and
15. We note that in all cases only the trivial solutions with y = 0 exist.
In this way we were able to determine all solutions of equations with

(m, n) € {(5,3),(8,3), (11,3), (4,5), (9,5), (6,7)}.



Additive Erdos-Graham problem

Question
Let us consider the equation y™ = gr(x) in unbounded many variables

m € N>o,n € N>y, T € A,, where m, n are chosen in such a way that
the genus of the curve defined by our equation is positive. Is the set of
positive integer solutions infinite?

x | [m, n, T]

1|[2,4,(0)],[2,5,(0,4)],[2,5,(0,1,2)],[2,6,(0)], [2,6,(3,4)], [2,7,(0,3,4,5,6)],
[2,8,(0,3,7)],[2,8,(0,1,2,5)], [ 9,(0,1,2,5,6,7],[2,14,(0,1,2,6,...,13)]
[3,5,(0,1,2)],[5,3,(1,2)],[7,4,(1,2)]

2 [2,3,(2),[2,5,(2,3)],[7,3,(0,1)]

4 | [2,6,(0,4)]

n
ifx=1:y"= Z(a,-—i—l)! in non-negative integers a, a,... and y, m € N.
i=1



Additive Erdos-Graham problem

Theorem
The Diophantine equation z* = ps(x) + pa(y) has infinitely many

solutions (x, y, z) in polynomials with integer coefficients and satisfying
deg, x = deg, y.

We have the factorization
p2(x) + pa(y) = (x +y +2)(x® — xy + y? + x + y). Write
z=3t?(x + y +2), where t is a variable taking integer values,

U? —3(108t° — 1) V2 = 12(2916t° — 135t° + 1),
where
U=3(108t° —1)(x +1), V = (54t°+ 1)x +2(27t° — 1)y + 108t° — 1

or equivalently

U 3(108t° — 1)V — (54t° + 1)U

_ _ 1
31086 —1) 7 6(27t° — 1)(1086 — 1)
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Additive Erdos-Graham problem

In the range 1 < x < y < 105, equation z2 = py(x) + pa(y) has 619
integer solutions. This relatively large number suggests the existence of a
polynomial solution. We were tried quite hard to construct parametric
solutions but we failed. This motivates us to formulate the following
problem.

Question

Does the equation z? = py(x) + p2(y) has a solution in polynomials with
integer coefficients?

Theorem
Let i € {2,3,4}. The equation z2 = p;(x) + pi(y) has infinitely many
solutions in positive integers.
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Cyclic cubic fields

Shanks - "simplest cubic fields":

Sh=X3+(n+3)X*>+nX — 1.

Family given by Lecacheux:

Ly=X3—(n*-2n" +3n—-3)X? — n®X — 1.

Other family given by Kishi:

Kn=X®—n(n* 4+ n+3)(n* +2)X?> — (n* +2n° +3n+3)X — 1.

12



Cyclic cubic fields

Steve Balady (PhD thesis, 2017) pointed out that these families are
coming from solutions related to equation X(3) :

X3): X*+y +2 =z

Shanks - [x:y :z;A\] =[0: =1:1;n]
Lecacheux - [x :y : z;\] = [-1: —n: 1; —n?]
Kishi- [x:y:z;A\]=[-n:—n*—n—1:1;—n*>—2n>—3n - 3]

Key observation: A\ = m’%“ is a polynomial in Z[X], where f, g € Z[X]

such that deg f < degg.
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Cyclic cubic fields

New family obtained by Balady with (f,g) = (—n?,n® —1):

B, = X3+ (n"+2n°+3n° —n* —3n* —3n*4+-3n+3)X?+(—n*+3n)X — 1.

Theorem (Balady)
If (f,g) provides a family, then (g, &1+ +1) does too.

As an example he gives:

(f,g):(—nz,n3—1), (g, k) = (n S, RS S

(ki, ko) = (—n" +3n* —3n,—n'® +..)).
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Cyclic cubic fields

Ulas - Tengely: looking solutions of the following form
m—2 n
F(t) =) ait' +amt™, g(t)=> bt
i=0 i=0
Let

A= (a0,a1,-.,am-1,3am), B = (bo,b1,...,bn_1,by)

be the vectors of variables. We define the F; = F;(A,B),i =0,...n—1
and G;(A, B),i =0,...,m—1 as the numerators of the coefficients in
the remainders of divisibility of f3 +1 (mod g) and g% + 1 (mod f)
respectively.
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Cyclic cubic fields

We have
(F(t)*+1) (mod g(t)) = ni Fi(A B)t', g(t)’+1 (mod f(t)) = S Gi(A, B)t'.

The system of non-linear equations to consider:

| Fi(A B)
Smn): { G/(A.B) =

[oo]]

i=0,...,n—1,

0,
0, j=0,...,m—1.

vo]]
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Cyclic cubic fields

We have three non-trivial solutions in the case m = 1. These are given by

f(t)=t, g(t)=-t—1,
f(t)y=t, g(t)=-t>+t—-1,
fity=t, g(t)=-2-1.

17



Cyclic cubic fields

If deg f = 2, then one has to deal with the systems S(2, n) for
ne{2,...,6}.

Fo = a3b3 — 3adaybob + 3aga3b3b3 — a3b3b3 — 3aga3bgb? b3 + 3a3b3b2by — a3bgbt + b3 = 0,
F1 = apby(a3b + 3agapb3b? — 4a3bgbyb? + 333 b3 — 6agaybgh3 + 3a362b3) = 0,

5(2,2):
Go = a3b3 — 3aga3bgb? — 3aga3b3by + 3a3apbob3 + 3a3apbTby — a3b3 + a3 = 0,
Gy = by (3a3b3 — 6agagbybg — agagh? + 3a3b3) = 0.
Theorem

The only non-trivial solution of the system S(2,2) is given by

F(t) = %(t2 1), g(t) = %(ﬁ F 1) = f(=t).
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Cyclic cubic fields

Theorem
The only non-trivial solution of the system S(2,3) is given by

f(t)=—t*, g(t)=t>-1.

Theorem
The only non-trivial solution of the system S(2,4) is given by

f(t) = %(t2 —t+1), g(t)= %(t2 +t+1)(2—t+3)

Theorem
The only non-trivial solution of the system S(2,5) is given by

f(t)=—t2+t—1, g(t)=t(t"—2t>+4t> - 3t +3).
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Cyclic cubic fields

Hessian form of an elliptic curve:

Hy: x*+y3+dxy+1=0

Theorem

If (x,y) € Z? is a solution of equation H, for some |d| > 3, then
[x] < |d| + 1.

Runge's method can be applied. E.g. if d = 3t + s, then we get

(3x +3y — 3t — 5)(9x° — 9xy + 9y” + 3(3t + s)x +3(3t + s)y + (3t +5)°) =

= —(3t+5s+43)(9t° + 6ts + s> — 9t — 35 + 9).
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Cyclic cubic fields

10 | [(7,-4),(-4,7),(-1,0),(0,-1)]

17 | [(-1,0),(0, —1) (=9,-7),(=7,-9)]

22 | [(~1,0),(0,-1), (=9, —4),(—4,—9)]

24 | [(7,-2),(-2,7),(=1,0), (0, —1)]

57 | [(~1,0),(0,-1),(=3,—13),(-13,-3)]

72 | [(-9,26),(26,-9),(~1,0), (0, —1)]

90 | [(~1,0),(0,—1), (=9, —28),(—28,—9)]

95 | [(36,—13),(—13,36),(—1,0), (0, —1)]

111 | [(—1,0),(0,—1),(—21,—4), (-4, —21)]

129 | [(—1,0),(0,—1),(—63,—37),(—37,-63)]

140 | [(—1,0),(0,—1),(—18,—49),(—49, —18)]

155 | [(=1,0),(0,—1),(—45,—76),(—76,—45)]

159 | [(103,—56),(—56,103),(—1,0), (0, —1)]

193 | [(545, —481),(—481,545), (—1,0), (0, —1), (-5, —31), (—31, —5)]
205 | [(—7,38),(38,—7),(~1,0),(0,—1)]

207 | [(~1,0),(0,—1),(—84,—37),(—37,—84)]

244 | [(63,—16),(—16,63),(—1,0),(0,—1),(—81,—28), (—28, —81)]

21



Cyclic quartic fields

Balady - Washington:
Xi: (x+y)* —4xPy* +alxy(x +y)+4=0,
they have considered the special cases L = £2 :
(P +axy +y* FoxF2y+2)(x®+y? £2x£2y +2) =0.
Cyclic quartic family:

X* + (4n® — 4n* +8n — 4)X3 4 (—6n° — 6) X% 4+ 4X + 1.
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Cyclic quartic fields

As in case of cubic fields we reduce the problem to a system of equations
R(m, n) having the coefficients of the polynomials as variables.
The case R(1,4). We can easily parametrize by, by, by, by as follows

aéb4+4b4
bp = ——F——,
Gh
433p
b = 444%45’
a
6a2b.
by, = “%Ti’
a1
4ayb,
by = 204
ai
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Cyclic quartic fields

Hence we obtain the parametrization

bo
by
by
bs

bs

+(1/4a] + 1),
iagal,
+3/2a3a2,

+apas,

4

a

+=L
4

As an example fix ag = a; = 2, we get the family of quartic polynomials

X* 4+ 4(n+1)(4n° + 24n° + 54n* 4 56n° + 290 + 100 + 1) X3+
+6(2n* +8n* +10n° +4n+ 1)X? +4(n+ 1)°X + 1.
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Cyclic quartic fields

Theorem
If L=2n, then let D; = {d : d|(4n* — 4)}. In this case we have that

2(x —l—y)2 =di +dr — 4n°,

where di,d» € Dy and didr = 4n* — 4. If L =2n+ 1, then let
D, = {d : d|(16n* + 32n° + 24n? + 8n — 15)}. We have that

(2x +2y)? = dy + dr — 2(2n + 1),

where di, d» € D; and didr = 16n* + 32n® + 24n? + 8n — 15.
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Cyclic quartic fields

Theorem
If 5 < L <10, then the only non-trivial solutions are

L=10: (x,y) € {(-5,—1),(~1,-5)},
L =19309: (x,y) € {(—5,629),(629, —5)}.

The degree 4 polynomials are as follows

x* 4 148x3 + 102x% + 20x + 1,
x* 4+ 7890798742x3 — 37333446x> + 38618x + 1.
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