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Abstract. An algorithm that could be implemented at a molecular level
for solving the satisfiability of Boolean expressions is presented.
This algorithm, based on properties of specific sets of natural numbers,
does not require an extraction phase for the read out of the solution.

1 Introduction

Adleman’s solution of an instance of the direct Hamiltonian path problem with
the implementation of an algorithm at a molecular level [1] has been of inspira-
tion for many to pursue other algorithms that can be implemented in the same
way to solve instances of hard computational problems.

A problem is said to be hard if it cannot be solved by a deterministic Tur-
ing machine with a polynomial time algorithm in function of its input [9, 15].
For many of this kind of problems the number of possible solutions increases
exponentially in function to the size of the input.

The algorithm described in [1] is related to the research of all Hamiltonian
paths in a graph. The algorithm proposed by Adleman can be simplified in a
two-phase process: first a library of DNA molecules encoding the input of the
problem is created and is put in a test tube such that the DNA molecules can,
under appropriate conditions, annealing and ligate, then the DNA molecules
encoding solutions to the problem are extracted from the test tube.

During annealing and ligation other, ‘new’, DNA molecules, different from
the ones present in the input library, can be created. Because of the massive
parallelism and the nondeterminism of the annealing process the creation of
the ‘new’ DNA molecules is quite fast and can lead to DNA molecules encoding
solutions for the considered instance of the problem. As the name suggests during
the extraction phase the solutions are extracted from the pool.

It should be clear that this kind of algorithms does not guarantee that a
solution will be created even if it could. This because the annealing between
complementary single stranded DNA molecules is a genuinely nondeterministic
operation. Anyhow even if present in the pool a solution could not be detected
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during the extraction phase. More than error prone this last phase can be quite
laborious and expensive.

Algorithms having a similar two-way to proceed are common in Molecular
Computing [2, 4, 5, 7, 10, 12, 14, 17, 18].

In Section 3 we describe how a specific creation of the input library of DNA
molecules can be used to implement an algorithm without an extraction phase
for satisfiability of Boolean expression (SAT), an hard computational problem,
stated as decision problem (a problem remains hard if it is stated as decision,
enumeration or research problem [15]). The presented algorithm is based on
specific sets of natural numbers defined in Section 2.

The first algorithm for DNA computing without an extraction phase has been
introduced in [11]. Here the authors define LOD (Length Only Discrimination),
that is the concept of not having an extraction phase, and give an experimental
result on a small instance of Hamiltonian path problem (HPP). In [20] another
algorithm for HPP based on LOD is presented. In Section 5.2 we indicate the
elements of novelty of our algorithms compared to the ones already present in
the literature.

We did not implement in a biological laboratory the algorithm presented
in Section 3, anyhow the biochemical specifications related to the creation of
the input library of DNA molecules and to the implementation of the presented
algorithms are sketched in Section 4.

2 Unique-sum sets

In this section we define unique-sum sets used in the algorithm presented by us
in Section 3. Moreover we give some examples, we indicate some properties and
results related to these sets, and we define a family of unique-sum sets.

Let N be the set of natural numbers.

Definition 1 (unique-sum set, ordered unique-sum set) Let G = {n1, ...,
np} be a set of different positive integers, and s =

∑p

i=1 ni the sum of the ele-

ments of G. A set G is said to be unique-sum set if the equation
∑p

i=1 cini =
s, ci ∈ N ∪ {0}, has only the solution ci = 1, i ∈ {1, . . . , n}.

A unique-sum set G = {n1, . . . , np} is an ordered unique-sum set if ni < ni+1

for 1 ≤ i ≤ p − 1.

In what follows we will only consider ordered unique-sum sets.
An example of a unique-sum set is G = {4, 6, 7}, 4+6+7 = 17 and 17 cannot

be written in a different way as a non-negative integer linear combination of the
elements in G. An example of a set that is not a unique-sum set is G′ = {3, 4, 5},
3 + 4 + 5 = 12 = 4 + 4 + 4 = 3 + 3 + 3 + 3.

The concept of unique-sum set resembles that of subset-sum-distinct set (see
e.g. [3]), but there one requires that for any two distinct finite subsets G1, G2 ⊆ G
the sum of all elements of G1 is distinct from the sum of all elements of G2.

Lemma 1 Given a unique-sum set G = {n1, . . . , np}, any proper subset of G is

a unique-sum set.



Lemma 2 Let k be a positive integer, and kG = {k · n1, . . . , k · np}. If G is a

unique-sum set, then kG is also a unique-sum set.

Definition 2 (maximal unique-sum set) Given a unique-sum set G = {n1,
..., np}, it is maximal if there exists no positive integer np+1 /∈ G, such that

G ∪ {np+1} is a unique-sum set.

It is easy to check that G = {2, 3} is a maximal unique-sum set, but G = {4, 6}
is not, since {4, 6, 7} is a unique-sum set too.4

Now we describe a methods to verify if a set is a unique-sum set. It is based
on generating functions (see [16]). We consider the function

FG(x) =

p
∏

i=1

(1 − xni)−1.

Using the identity (1−x)−1 = 1+x+x2+x3+ . . . , x ∈ R, |x| < 1, we can rewrite
FG(x) in the following form: FG(x) = P0 + P1x + P2x

2 + . . . + Pkxk + . . . ,5 and,
by construction, the coefficient of xk is the number of solutions of the equation

p
∑

i=1

cini = k, ci ∈ N ∪ {0}.

Therefore G is unique-sum set, if and only if Ps = 1, where s =
∑p

i=1 ni. We do
not have to use infinite expansions, since we are interested in the value of Ps.
The coefficient of xs in

p
∏

i=1

(1 + xni + x2ni + . . . + x
[ s

ni
]ni)

is exactly Ps, where [·] denotes the integer part of the rational number s
ni

. Let us
see two examples. Let G = {8, 12, 14, 15}, thus s = 49 and we have to compute
the coefficient of x49 in f1(x)f2(x)f3(x)f4(x),6 where

f1(x) = 1 + x8 + x16 + x24 + x32 + x40 + x48,

f2(x) = 1 + x12 + x24 + x36 + x48,

f3(x) = 1 + x14 + x28 + x42,

f4(x) = 1 + x15 + x30 + x45.

It turns out to be 1, thus G is a unique-sum set. Let G = {8, 12, 14, 15, 19}, thus
s = 68 and we have to compute the coefficient of x68 in f1(x)f2(x)f3(x)f4(x)f5(x),

4 Szabolcs: as the manuscript exceed the maximum length I suggest to take out the
following text (until the next footnote) and to put it in the math paper

5 Szabolcs: what is P?
6 Szabolcs: from where the f ’s come?



where

f1(x) = 1 + x8 + x16 + x24 + x32 + x40 + x48 + x56 + x64,

f2(x) = 1 + x12 + x24 + x36 + x48 + x60,

f3(x) = 1 + x14 + x28 + x42 + x56,

f4(x) = 1 + x15 + x30 + x45 + x60,

f5(x) = 1 + x19 + x38 + x57.

It turns out to be 12, thus G is not a unique-sum set.

Now we will deal with the question of construction of unique-sum sets. Given
a set of different positive integers G = {n1, . . . , np}, such that gcd(n1, . . . , np) =
1, it is known (see e.g. [6]) that for suitable large integer M, the equation

p
∑

i=1

cini = M, ci ∈ N ∪ {0}, (1)

where gcd(n1, . . . , np) = 1, has at least one solution. Let us denote by ΦG the
greatest positive integer for which [6]7 is not solvable. Wilf [19] gave an algorithm
to compute ΦG efficiently. We can use this constant to find possible extensions of
a given unique-sum set (in the case when gcd(n1, . . . , np) = 1), or to prove that it
is maximal. First suppose that gcd(n1, . . . , np) = 1, then we can compute ΦG us-
ing the algorithm described in [19]. By the definition of ΦG we know that if there
exists an integer np+1 such that G∪{np+1} is a unique-sum set, then np+1 ≤ ΦG.
Thus we have to check only finitely many sets using the method mentioned pre-
viously. We have checked that the set G = {8, 12, 14, 15} is a unique-sum set.
In this case ΦG = 33, but there is no positive integer k ≤ 33 such that G ∪ {k}
is a unique-sum set, therefore G is maximal. If gcd(n1, . . . , np) = d > 1 and
the new element np+1 is such that gcd(n1, . . . , np, np+1) = d′ > 1, then we still
can succeed, since 1

d′
G has to be a unique-sum set. In the remaining case, when

gcd(n1, . . . , np) = d > 1 and gcd(n1, . . . , np, np+1) = 1, we show an example. Let
G = {4, 6} and n3 is odd, then s = n3 +10 is also odd, thus if we have a solution
of 4x1+6x2+n3x3 = s, then x3 > 0. We obtain that 4x1+6x2+n3(x3−1) = 10,
that is x1 = x2 = x3 = 1 if n3 > 5. In this way we obtained infinitely many
unique-sum sets in the form {4, 6, 2k + 1}, k > 2.8

Now we give a family of sets. Let Gk = ∪k
m=1{2

k − 2k−m}, the sum of the
elements of Gk is sk = (k − 1)2k + 1. The first sets in this family are:

G1 = {1},

G2 = {2, 3},

G3 = {4, 6, 7},

7 Szabolcs: should this be (1)?
8 Szabolcs: this is the last line of the text I suggest to take out.



G4 = {8, 12, 14, 15},

G5 = {16, 24, 28, 30, 31},

G6 = {32, 48, 56, 60, 62, 63},

G7 = {64, 96, 112, 120, 124, 126, 127},

G8 = {128, 192, 224, 240, 248, 252, 254, 255}.

Theorem 1 For all k ∈ N the set Gk is a unique-sum set.

At the present time we do not know if each element in this family is the unique-
sum set having the smallest sum in function of the number of elements.9

The proves of Lemma 1, Lemma 2 and Theorem 1, together with other prop-
erties and results related to unique-sum sets can be found in [8].

3 An algorithm for the satisfiability of Boolean

expressions

The satisfiability of Boolean expressions (SAT) problem can be formulated as:
given a Boolean expression φ with variables X = {x1, . . . , xn}, is there an as-
signment A : X → {T, F} such that A satisfies φ?

If the Boolean expression φ is given by a conjunction of clauses C1 ∧ C2 ∧
. . . ∧ Cp (where ‘∧’ is the logical AND operator) each being a disjunction of at
most k literals (a literal is a variable xi or its negation ¬xi, for 1 ≤ i ≤ n), then
the problem is called k-SAT.

In [12] the author demonstrates that 3-SAT is well suited to take advantage
of the massive parallelism present in molecular computation. At the present time
SAT is probably the problem with the most number of algorithms implemented
[13, 21, 17, 5] or implementable [12, 10, 14] at a molecular level.

Let φ be an instance for k-SAT having n variables and p clauses, let L =
{l1, l2, . . . , lq} (q ≤ 2n), an ordered set of literals satisfying at least one clause
of φ such that if li,¬li ∈ L for 1 ≤ i ≤ q, then li = lj ,¬li = lj+1 for a
1 ≤ j ≤ q − 1. Moreover let C = {C1, . . . , Cp} the set of clauses present in φ,
and let G = {n1, . . . , np+2} be a unique-sum set having sum sG.

The input library of molecules is composed by:

edges: Each pair (li, lj), i ≤ j, li 6= ¬lj , 1 ≤ i, j ≤ q, of literals in L is encoded
by an ordered (from 5’ to 3’) single stranded DNA molecule composed by
the 8-mer sli (encoding li) followed by the 8-mer slj (encoding lj). It is
important to notice now that these pairs defines a partial order in L. The
order is partial and not total as there is not pair for a literal and its negation
if both literals are present in L.
Moreover there are going to be two additional 8-mer single stranded DNA
molecules: sb and se.

9 Szabolcs: shall we give a definition for unique-sum sets having the smallest sum in
function of the number of elements? This could be useful.



For each literal l ∈ L there will be ordered (from 5’ to 3’) single stranded
DNA molecules composed by the 8-mer sb followed by the 8-mer sl and single
stranded DNA molecules composed by the 8-mer sl followed by the 8-mer
se.
All the sl, l ∈ L, sb and se are different sequences of nucleotides.

vertices: We associate to each clause Cj ∈ C a unique number nk ∈ G. We will
consider Cj associated to nj+1 for 1 ≤ j ≤ p. For each literal l in L there will
be a set of ordered (from 5’ to 3’) partially double DNA molecules composed
by: a single stranded 8-mer s̄l complementary to sl; a double stranded xj-
mer xj = nj+1 − 16 for each clause Cj , 1 ≤ j ≤ p satisfied by l; a single
stranded 8-mer s̄l complementary to sl.

begin: Ordered (from 5’ to 3’) partially double DNA molecules composed by: a
single stranded 8-mer s̄b complementary to sb followed by a double stranded
x-mer x = n1 − 8.

end: Ordered (from 5’ to 3’) partially double DNA molecules composed by: a
double stranded y-mer y = np+2 − 8 followed by a single stranded 8-mer s̄e

complementary to se.

The following example is meant to clarify the above. Let the Boolean expres-
sion φ = C1 ∧ C2 ∧ C3 = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)
be an instance of 3-SAT. An ordered set of literals of φ satisfying at least one
clause is L = {x1,¬x1, x2,¬x2, x3,¬x3} = {l1, l2, l3, l4, l5, l6}, while the set of
clauses of φ is C = {C1, C2, C3}.

The set of single stranded DNA molecules encoding edges is depicted in
Figure 1.

Let us consider now the unique-sum set G = {16, 24, 28, 30, 31}, having sum
sG = 129. We associate 24 to C1, 28 to C2 and 30 to C3. The literals l1 and l3
both satisfy only C1; the literals l2 and l4 both satisfy C2 and C3; the literal
l5 satisfies C1 and C3; the literal l6 satisfies C2. Considering this we give now
the lengths of the double stranded DNA molecules present in the encodings of
vertices. As C1 is associated to 24, then the double stranded DNA molecule is
8-bp (coming from 24-16); as C2 is associated to 28, then the double stranded
DNA molecule is 12-bp (coming from 28-16); as C3 is associated to 30, then
the double stranded DNA molecule is 14-bp (coming from 30-16). The double
stranded DNA molecule present in the encoding of begin is 8-bp (coming from
16-8), while the one present in the encoding of end is 23-bp (coming from 31-8).
These molecules are depicted in Figure 2.

The described encoding for this example can be visualised as the graph de-
picted in Figure 3, where Ci(lj) indicates that the clause Ci is satisfied by the
literal lj (for 1 ≤ i ≤ 3, 1 ≤ j ≤ 6). In this graph black dots define hubs: they
have been introduced to decrease the number of arrows present in the graph and
make it more readable, hubs have no relation with the encoding described by us.

The annealing and ligation of the library of molecules is likely to form DNA
molecules sG-bp long only if there is an assignment A satisfying φ. Considering
the graph depicted in Figure 3 such molecules can be visualised as paths starting



sl1
sl1

5’- -3’(l1, l1):
sl3

sl3

5’- -3’(l3, l3):
sl5

sl5

5’- -3’(l5, l5):
sl1

sl3

5’- -3’(l1, l3):

sl2
sl2

5’- -3’(l2, l2):
sl4

sl4

5’- -3’(l4, l4):
sl6

sl6

5’- -3’(l6, l6):

5’- -3’

sb sl2

5’- -3’

sb sl3

5’- -3’

sb sl1

5’- -3’

sb sl4

5’- -3’

sl3
se

5’- -3’

sl4
se

sl1
sl4

(l1, l4): 5’- -3’

sl1
sl5

(l1, l5): 5’- -3’ 5’- -3’

sb sl5
sl1

sl6

(l1, l6): 5’- -3’

sl2
sl3

(l2, l3): 5’-
-3’

sl2
sl4

(l2, l4): 5’-
-3’

5’- -3’

sb sl6

5’- -3’

sl1
se

5’- -3’

sl2
se

5’- -3’

sl2
sl6

(l2, l6):5’- -3’

sl2
sl5

(l2, l5):

5’- -3’(l3, l6):

sl3
sl6

5’- -3’(l3, l5):

sl3
sl5

5’- -3’

sl4
sl5

(l4, l5): 5’- -3’(l4, l6):

sl4
sl6

5’- -3’

sl5
se

5’- -3’

sl6
se

Fig. 1. Encoding of edges for the example of 3-SAT

at begin and ending at end and passing by nodes encoding clauses satisfied by
literals where the encoding of each clause is present only once. Examples of such
paths are: begin−C1(l1)−C2(l4)−C3(l5)−end, begin−C2(l4)−C3(l4)−C1(l5)−
end.

If a resulting molecule is sG-bp long, then it will start with a sequence encod-
ing the begin and it will end with a sequence encoding the end, the intermediated
part will be composed by encodings of clauses satisfied by literals. This interme-
diated part cannot contain the encoding of a clause satisfied by a literal l and the
one of a clause satisfied by a literal ¬l, for l ∈ L. Moreover in the intermediated
part the encoding of a clause can be present only once.

Any assignment A satisfying φ can be encoded (by the annealing and ligation
of the molecules in the input library) in a double stranded DNA molecule sG-bp
long.

The presence of such a molecule can be detected by one run of gel elec-
trophoresis independently from the size of the instance of the problem.

For a Boolean formula φ, instance of k-SAT, with p clauses and n variables
(so at most 2n literals), in the worst case (all literals are present in a clause and
each literal satisfies each clauses) the input library of molecules is composed by:

2n DNA molecules encoding edges of the form (li, li);

2n
∑n−1

i=1 (2n−2i) DNA molecules encoding edges of the form (li, lj), i > j, li 6=
¬lj , 1 ≤ i, j ≤ 2n;

4n DNA molecules encoding edges of the form (b, l) and (l, e) for l ∈ L;
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Fig. 2. Encoding of vertices for the example of 3-SAT
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Fig. 3. Graph related to the example of 3-SAT

2np (each of the 2n literals can satisfy each of the p clauses) DNA molecules
encoding vertices;

2n DNA molecules encoding begin;
2n DNA molecules encoding end.

In the following section we describe how the initial library of DNA molecules
can be created.

4 Biochemical specifications

10 As presented in the previous section unique-sum sets allow the creation of
algorithms where part of the instance of the problem is encoded in the length
of partially double DNA molecules. The actual sequence of the double part of

10 Chris: shall we stress that we do not use new techniques? That we just create
molecules as others already did?



these molecules is then of only minor importance. This fact can be exploited in
the efficient production of these molecules.

Each element of the family of unique-sum sets presented in Section 2 can be
written as Gk = {2k−1, 2k−1+2k−2, 2k−1+2k−2+2k−3, . . . , 2k−1+2k−2+· · ·+20}.
If moreover we consider that 2h = 2h−1 + 2h−1, then it is possible to devise an
efficient algorithm for the creation of long double stranded DNA molecules by
controlled concatenation of two shorter ones. Only the short (≤ 8-bp) DNA
molecules need to be chemically synthesised.

The concatenation of two molecules requires tight control of the reaction as
a simple ligation of molecules in solution will also produce many longer multi-
mers. One way to perform controlled reactions is making the ends of the double
stranded DNA molecules unavailable for ligation.

The following steps will create a specific concatenation of two generic double
stranded DNA molecules A and B:

1. attach one end of A to a solid support. For example, use a 5’ biotin label
and streptavidin coated beads;

2. ensure the free 5’ end is phosphorylated;
3. remove phosphates from B by alkaline phosphatase treatment;
4. mix and ligate;
5. remove all unbound molecules;
6. remove the molecules from the beads. This can be accomplished by simple

endonuclease digestion if a DNA linker is used between the biotin label and
molecule A;

7. if necessary, PCR (with or without biotynilated primers) can be used as an
amplification procedure.

This procedure ensures that only one copy of molecule B can be attached to
the immobilized A. However, some small chances of error still exist. For example,
two molecules A can be ligated, creating a tether between two beads. Another
possibility is incomplete ligation, i.e. some molecules A may not be ligated to B.
Such errors are inevitable, but the chances can be minimized by optimization of
laboratory protocols. If measurable quantities of erroneous molecules are formed,
the correct molecules can be purified by preparative gel electrophoresis.

Very small molecules (≤ 8-bp) can be added in an alternative way, using
an extra sequence which is recognized by a type IIs restriction endonuclease.
The sequence recognized by the restriction enzyme should be concatenated only
at the two ends of the double stranded DNA molecule. The rest of the DNA
molecule could be easily constructed so not to contain the restriction site (for
instance using only one pair of bases). For example, one base pair can be added by
ligation to 5’ NNNNNNGACTC, and subsequent digestion with MlyI (New England
Biolabs). This enzyme recognized the sequence 5’ GAGTC and produces a blunt
cut five bp to the 3’ end. The result is 5’ N, or any one base pair added. A similar
technique can be used to produce different single stranded extensions necessary
for programmable ligation. The enzyme used should then produce a staggered
cut outside its recognition sequence. Using this method, the only molecules that



need to be synthesized chemically are the 2 original 8 nucleotide strands and in
total 6 oligonucleotides for adding 1, 2, or 4-bp.

The following example should clarify the strategy outlined above. Let us
imagine that we want to create DNA molecules long as the elements in the
unique-sum set G6 = {32, 48, 56, 60, 62, 63}. Let us also consider that the two
ends of each molecule have to be single stranded each 8 bases long while the rest
of the molecule has to be double stranded. So, considering the elements in G6, the
part of the molecules that is double stranded has to be as long as the elements of
the set G′

6 = {16, 32, 40, 44, 46, 47} = {8+8, 16+16, 32+8, 40+4, 44+2, 46+1}.

1. synthesize a molecule 8-bp long (such a molecule is stable enough and long
enough to be ligated);

2. generate a molecule 16-bp long (element of G′

6) concatenating two molecules
8-bp long;

3. generate a molecule 32-bp long (element of G′

6) concatenating two molecules
16-bp long;

4. generate a molecule 40-bp long (element of G′

6) concatenating a molecule
32-bp long with one 8-bp long;

5. generate a molecule 44-bp long (element of G′

6) concatenating a molecule
40-bp long with one 4-bp long;

6. generate a molecule 46-bp long (element of G′

6) concatenating a molecule
44-bp long with one 2-bp long;

7. generate a molecule 47-bp long (element of G′

6) concatenating a molecule
46-bp long with one 1-bp long.

The single stranded molecules used in the algorithm presented in Section
3 need to be chemically synthesized and concatenated to the two sides of the
double stranded DNA molecules.

5 Discussions

5.1 Biological

Experimental implementation of the algorithm presented in Section 3 is subject
to some constraints. Thermodynamics dictates a certain minimum length for
the DNA molecule present in the input library. DNA molecules of only a few bp
do not anneal at room temperature: if, for example the unique-sum set G3 =
{4, 6, 7} is considered for the encoding, then all members of the set should be
multiplied by a constant to yield to DNA molecules long enough to be stable.
The set obtained by the multiplication is ensured to be a unique-sum set by
Lemma 2.

Length separation by electrophoresis imposes an upper limit on the size of
the DNA molecules associated to the elements of a unique-sum set considered
for encoding an instance of a problem. DNA electrophoresis has a maximum
resolution of about 0.1%: discriminating between DNA fragments that have a
difference in length of 1-bp per 1000 is realistic using large polyacrylamide gels.



This limitation is due to current technology and not on DNA itself. Let us
consider the set G7, having sum sG7

= 769, indicated in Section 2. The number
768 = 12·64 can be obtained as sum of elements in G7. The difference between
sG7

and 768 represents the 0.13% of sG7
. Similar computation for G8 gives a

value of 0.05% of its sum, already below the maximal resolution of the just
described DNA electrophoresis.

We can envisage three possibilities to overcome this limit in the implemen-
tation of algorithms based on unique-sum sets:

1. other families of unique-sum sets may be found having a bigger difference
between the sum of the set and the smaller or bigger number that can be
obtained summing elements in the set;

2. different algorithms based on unique-sum sets can be devised;
3. the technology of DNA analysis can be improved so to increase the resolution.

The algorithm devised for the decision problem presented in Section 3 can
be easily modified for research problems. If the presence of a solution is detected
by gel electrophoresis, the precise sequence of it (telling in the case of HPP the
sequence of vertices in the Hamiltonian path) can be found by DNA sequencing,
multiplex PCR or restriction analysis. For any of these methods, it is convenient
to be able to clone the path molecules into a vector for amplification. If, for
instance, multiple Hamiltonian paths exist, cloning will also facilitate physical
separation before analysis. The analysis techniques themselves also entail some
sequence design considerations.

5.2 Algorithmic

The creation of algorithms in DNA computing without an extraction phase is not
new. Length-only discrimination (LOD) was introduced [11] where the authors
present experimental confirmations of this technique. In [11] the algorithm giving
the length of the molecules encoding the vertices is: “... if we need to find n
different lengths, than starting with an arbitrary number for the length of the
first vertex, we can produce the sequence of length with desired properties by
making a gap between the lengths of the ith and the (i+1)st vertices be (n+i).”.
So, if for instance we want to find the lengths of the molecules for a graph with
9 vertices we have:

1: k, k ∈ N

2: (k) + 9 + 1 = k + 10
3: (k + 10) + 9 + 2 = k + 21
4: (k + 21) + 9 + 3 = k + 33
5: (k + 33) + 9 + 4 = k + 46
6: (k + 46) + 9 + 5 = k + 60
7: (k + 60) + 9 + 6 = k + 75
8: (k + 75) + 9 + 7 = k + 91
9: (k + 91) + 9 + 8 = k + 108



So we obtain the set {k, k+10, k+21, k+33, k+46, k+60, k+75, k+91, k+108}
having sum 9k+444 (so now we are considering the coefficients < 1, 1, 1, 1, 1, 1, 1 >,
notice that the sum of these coefficients is 9). But this sum can also be written as
k+3(k+10)+(k+33)+3(k+91)+(k+108) which means that it can be obtained
also by the coefficients < 1, 3, 0, 1, 0, 0, 0, 3, 1 > (notice that also the sum of these
coefficients is 9). So, if in this example we consider that the initial vertex (having
no incoming edges and only one outgoing edge) is associated to 1, that the final
vertex (having only one incoming edge and no outgoing edges) is associated to
9, and that the rest of the graph is totally connected, then 1-2-8-2-8-4-2-8-9
would be interpreted as an Hamiltonian path (while it is not). This implies that
the just presented algorithm to generate sets of numbers for algorithms based
on LOD is not always valid. The fact that the two sets of coefficients have both
sum 9 is essential as also molecules encoding edges are present. In [11] edges are
encoded such that the relative molecules are: “...longer than any vertex encod-
ing.”. This implies that any two sets of coefficients (as the ones indicated in the
above) having the same sum would bring to accepted solutions. This affirmation
is wrong if we consider the second set of coefficients we gave.

At the present time we lack a formal proof indicating when the algorithm
described in [11] does not allow to find proper sets of numbers.

In [20] the authors describe algorithms based on LOD. Also in this paper sets
with a unique sum are considered. The elements of such sets G = {n1, . . . , np}
are defined as follows:

{

n1 = 1

nk = knk−1 + 1 −
∑k−1

i=1 ni

The numbers in these sets grow (from n1 to np) as p!. It is possible to see this if we

express nk as a function of nk−1. We have that nk−1 = (k−1)pk−2+1−
∑k−2

i=1 ni,

so nk = knk−1 +1−
∑k−1

i=1 ni = k(k− 1)nk−2 + k− k
∑k−2

i=1 n1 +1−
∑k−1

i=1 ni. So
np = p(p− 1)(p− 2) . . . 1− x where x is a polynomial in ni (1 ≤ i ≤ p− 1). This
implies that the sum of a set with p elements grows as p!, while the sum of a set
with p elements in the family of sets given in Section 2 grows as an exponential
(power of 2).

As indicated in [8] we conjecture that the family of unique-sum sets given in
Section 2 is the one giving unique-sum sets with the smallest sum in relation to
the number of elements in the set. So we conjecture that given a unique-sum set
G′ with n elements its sum sG′ cannot be smaller than sG the sum of the smallest
set with n elements in the family presented in Section 2. If this conjecture turns
out to be valid, then the algorithm for SAT we presented is not of practical use
because of the exponential increase in length of the DNA molecules needed to
encode large instances of the considered problem.

The presented research is a starting point in creating algorithms that can be
implemented at a molecular lever based on properties of specific sets of num-
bers. Some natural continuations of this research are: Is it possible to relax the



definition of unique-sum set (to, for instance, sets whose sum can be obtained
with only two non-negative linear combinations of the elements in the set) and
create algorithms implementable at a molecular level that can take advantage
of this relaxed definition? Are there other kind of sets that can be considered
when we take in account the specific problem we want to solve and the way the
algorithm is devised?
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