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1. Introduction

Let G be a graph with the vertex set {v1, . . . , vn}. The adjacency matrix of G
is an n × n matrix A(G) whose (i, j)-entry is 1 if vi is adjacent to vj and is
0, otherwise. The zeros of the characteristic polynomial of A(G) are called the
eigenvalues of G. Throughout this paper all graphs under consideration are simple
(a finite undirected graph without loops or multiple edges).
The graph G is said to be integral if all the eigenvalues of G are integers. The
notion of integral graphs was first introduced by Harary and Schwenk in 1974 [12].
There are many simple examples of integral graphs. For example in [19];

• Trees (T(1;2), T(1;6), T(3,1)).

• The complete multipartite graph (Km1,m2,...,mk
).

• The path graph and in this case only P2 is the integral path in the set of
paths Pn with n vertices.

• The circuits C3, C4 and C6 (the three circuits are the only integral circuits
in the set of circuits Cn with n vertices).

• The stars K1,n with n = p2 (p = 1, 2, 3, . . .).

Integral graph being a modern field in mathematics it has recently been discov-
ered that integral graphs may be of interest for designing the network topology
of perfect state transfer networks [9, 14].
The spectrum of G is the set of eigenvalues of A [7]. The spectrum of the ad-
jacency matrix of a graph G is known as adjacency spectrum of G or simply,
spectrum of G. Since the spectrum of a disconnected graph is the union of the
spectra of its components, in any investigation of integral graphs it is sufficient
to consider connected graphs only.
Generally the problem of characterizing integral graphs seems to be very difficult.
Since there is no general characterization (besides the definition) of these graphs.
The problem of finding (or characterizing) integral graphs has to be treated in
some special interesting families of integral graphs for example; trees, regular
graphs, complete multipartite graphs, complete split-like graphs, connected cubic
integral Cayley graphs, integral regular graphs e.t.c [17].

1
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However despite difficulties of its characterization, integral graphs is closely re-
lated to other graphs such as Laplacian integral and Gaussian digraphs.

Laplacian integral: Given a graph G on n vertices, its Laplacian matrix
is the n × n matrix L given by Lap(G) = D(G) − A(G) ; where A is the (0, 1)

adjacency matrix, and D(G) is the diagonal matrix of vertex degrees. Graphs
with integral Laplacian eigenvalues are called Laplacian integral. Integral graphs
and Laplacian integral graphs, have differences but in some cases are related.
For example: Let G be r-regular graph, then Lap(G) + A(G) = rI. So µ is an
eigenvalue of Lap(G) if and only if r − µ is an eigenvalue of A(G). This means
that a regular graph is Laplacian integral if and only if it is integral [10, 21].
Some graph operations, which can be applied to integral graphs, when applied to
Laplacian case give rise to integral graphs.
For example: The complete product of graphs, being the complement of the
disjoint union (direct sum) of their complements.

G1∇G2 := (G1 ∪G2)

Therefore the complete product of Laplacian graphs form an integral graph.

Gaussian digraphs: Consider digraphs, contrary to (non-oriented) graphs,
whose spectra are real, the eigenvalues of digraphs are complex numbers.
Note that the adjacency matrix A(G) of a digraph need no more be symmetric.
A complex number λ = α+ iβ is called a Gaussian integer if α and β are integers.
A digraph is called Gaussian if its spectrum consists only of Gaussian integers
and if all of them are real integers, such a digraph will be called integral. As
for integral digraphs, we note that there is an interesting example of two cospec-
tral integral digraphs with four vertices, which are the smallest integral digraphs
[6]. For any positive integer n we can find n cospectral strongly connected non-
symmetric digraphs which are integral [6].



2. Basics of integral graphs

2.1 Construction of Integral graphs

Constructions and properties of integral graphs are among the major focus to
many researchers, this is due to the fact that it is difficult to construct and to
give general characterization of all integral graphs [19]. However, graph operations
such as Cartesian product, Strong sum and Product on integral graphs can be
used for constructing finitely many families of integral graphs [4].
Let G and H be two graphs with vertex sets V (G) and V (H). The above three
operations define graphs having V (G)× V (H) as its vertex set [4].
If λi, (i = 1, 2 . . . , n) and µj , (j = 1, 2, . . . ,m) are the eigenvalues of G and H,
respectively.

For example : Consider the following two integral graphs G and H.
Where; G = Path graph (P2) and H = Complete graph (K3).

Path graph (P2).

0 1

G =

(
0 1

1 0

)
Has eigenvalues λi = [1,−1].

3
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Complete graph (K3).

0

1 2

H =

 0 1 1

1 0 1

1 1 0


Has eigenvalues µj = [2,−1,−1].

1. The sum ( or Cartesian product) of G and H is given as (G×H).

(0, 1)

(1, 2)

(0, 0)

(1, 1)

(1, 0)

(0, 2)

M =



0 1 1 0 1 0

1 0 0 1 0 1

1 0 0 1 1 0

0 1 1 0 0 1

1 0 1 0 0 1

0 1 0 1 1 0


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Has eigenvalues λi + µj = [3, 1, 0, 0,−2,−2].

2. The Product ( or Conjunction) G×H of G and H.

(0, 1)

(1, 2)

(0, 0)
(1, 1)

(1, 0)

(0, 2)

M =



0 0 0 0 1 1

0 0 0 1 0 1

0 0 0 1 1 0

0 1 1 0 0 0

1 0 1 0 0 0

1 1 0 0 0 0


Has eigenvalues λiµj = [2,−2, 1, 1,−1,−1].

3. The strong sum ( or strong product ) G⊕H of G and H.

(0, 1)

(0, 0)

(2, 1)

(2, 0)

(1, 0)

(1, 1)
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M =



0 1 1 1 1 1

1 0 1 1 1 1

1 1 0 1 1 1

1 1 1 0 1 1

1 1 1 1 0 1

1 1 1 1 1 0


Has eigenvalues λiµj + λi + µj = [5,−1,−1,−1,−1,−1].

Interestingly, these graph products when the operations are applied to them they
produces again integral graphs. Therefore with these operations we can produce
finitely many integral graphs.
For example:
Let M = The sum or Cartesian product of G and H is given as (G×H).
Let N = The Product or Conjunction i.e G×H of G and H.
Then, the sum ( or Cartesian product) of M and N is given as (M ×N).
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J =



0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0


Has eigenvalues: λiµj + λi + µj = {5, 3, 4, 4 − 2, −2, −4 − 4, 0, 0,

0, 0, −3, 3, −3, −3, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, −1, −1, −1, −1, −1, −1,
− 1, −1, −1, −1}; (∀i = 1, 2, . . . , n and ∀j = 1, 2, . . . ,m).

Thus, these three operations preserve the integrality. Other integrality pre-
serving graph operations can be found in [12], such as the complementary graph
(or the line graph) of an integral regular graph G.

2.2 Eigenvalues of graphs

Definition 2.2.1. An eigenvalue (λ) of a graph G is an eigenvalue of its adjacency
matrix A(G) ∈ R|V (G)|. That is λ ∈ R for which there is an eigenvector v ∈
R|V (G)| , v 6= 0 such that :

A(G)v = λv.

The vector v is called an eigenvector corresponding to λ.
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In most cases the eigenvalues of a graph are distinct, but when many eigen-
values coincide, then it appears that we are in a very special case.

• If all eigenvalues are the same, then we must have an empty graph.

• If we have only two eigenvalues, then essentially we must have a complete
graph.

Properties of eigenvalues

(a) All eigenvectors corresponding to λ form a subspace Vλ; the dimension of
Vλ is called the multiplicity of λ and the sum of all eigenvalues, including
multiplicities, is the trace of the matrix:

n∑
i=1

λi = Tr(A).

(b) The product of all eigenvalues, each taken with the same multiplicity as it
occurs among the roots, is the determinant of the matrix:

n∏
i=1

λi = det(A).

(c) The number of non-zero eigenvalues, including multiplicities, is the rank of
A.

Theorem 2.2.1. (Spectral Theorem).

(i) The eigenvalues of a graph G are always real.

(ii) The adjacency matrix A(G) is diagonalizable.

(iii) There is an orthonormal basis of eigenvectors.

Lemma 2.2.1. The sum of all eigenvalues of a graph is always 0.

Lemma 2.2.2. The largest eigenvalue λ1 of a graph G lies between the average
and maximum degrees: davg ≤ λ1 ≤ dmax. In particular, if G is k-regular, then
λ1 = k [2].

Proof. First we need to prove that λ1 ≤ dmax.
Let x = (xv), v ∈ V (G) be an eigenvector corresponding to λ1.
Let xu be the entry of x with maximum absolute value. Then we have (with
N(u) = v ∈ V (G) : uv ∈ E(G) the neighbourhood of u)

λ1xu =
∑

v∈N(u)

xv,
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so (with du = |N(u)| the degree of u)

|λ1| ≤
∑

v∈N(u)

|xv| ≤
∑

v∈N(u)

|xu| ≤ du · |xu| ≤ dmax · |xu|.

Since x 6= 0, so we have |xu| 6= 0, λ = |λ1| ≤ dmax ( we have λ1 > 0, since
0 = Tr(A) =

∑
λi).

To prove that davg ≤ λ1. Consider jTAj.
On the one hand jTAj =

∑
v∈V (G)

dv = 2|E(G)|.

On the other hand, take an orthonormal basis {v1, . . . , vn} of eigenvectors of A,
and let j =

∑
civi. The representation of j in this basis. So we have Avi =

λivi, jT vi = ci and
∑
c2i =‖ j ‖2= n. Then;

jTAj =
∑

cij
T (Avi) =

∑
cij

T (λ1vi) =
∑

λici(j
T vi) =

∑
λic

2
i < λ1

∑
c2i = λ1n.

So we get λ1 ≥ 2|E(G)|/n = davg.

Lemma 2.2.3. (Connectedness). If G is k-regular, then the multiplicity of the
eigenvalue λ1 equals the number of connected components of G.

Lemma 2.2.4. (Diameter). If G is connected, then the diameter of G is strictly
less than its number of distinct eigenvalues.

Lemma 2.2.5. (Bipartiteness). A graph is bipartite if and only if its spectrum is
symmetric (i.e if λ is an eigenvalue, then so is −λ, and with the same multiplic-
ity) [2].

Proof. First suppose G is bipartite, with parts S and T of sizes s and t. This
means that for some s× t matrix B, we have;

A =

(
0ss B

BT 0tt

)
.

If λ is an eigenvalue then;[
λv

λw

]
= λ

[
v

w

]
= A

[
v

w

]
=

[
Bw

BT v

]
.

So Bw = λv and BT v = λw. Then −λ is also an eigenvalue:

A

[
v

−w

]
=

[
−Bw
BT v

]
=

[
−λv
λw

]
= −λ

[
v

w

]
If λ has multiplicitym, then so does −λ, since the subspace spanned by the [v w]T

will have the same dimension as that spanned by the corresponding [v − w]T .
This means that the spectrum is symmetric.
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2.3 Characterization of integral graphs

Integral graphs as other graphs can be characterized or classied into various forms.
In this section we will discuss characterization of integral graphs when they are
regular and complete multipartite graphs.

2.3.1 Regular graphs

Definition 2.3.1. Let k ≥ 2 be an integer. We say that the graph G is k−regular
if for every vi ∈ V :

∑
vj∈V

Aij = k [7].

If G is simple (has neither parallel edges nor loop), this amounts to saying
that each vertex has exactly k neighbours. Assume that G is a finite graph on n
vertices. Then A is an n× n symmetric matrix; hence, it has n real eigenvalues,
counting multiplicities, that we may list in decreasing order: λ0 ≥ λ1 ≥, . . . ,≥
λn−1 and for every eigenvalue λi we have |λi| ≤ k [2, 7].

Regular graphs have square adjacency matrix . A matrix is said to be regular
if all its row sums and column sums are equal. The common value of the row and
column sum is called the regularity of the matrix.
For a graph G, let L(G) denote the line graph of G, in which V (L(G)) = E(G),
and where two vertices are adjacent if and only if they are edges with common
endpoint in G. If a regular graph G is integral, then its line graph are not only
integral but also Laplacian integral [1].

Lemma 2.3.1. If G is a regular graph of degree k, then its line graph L(G) is
regular of degree 2k − 2.

Lemma 2.3.2. If G is a regular graph of degree k with n vertices and m = 1
2nk

edges, then;
P (L(G), x) = (x+ 2)

1
2
n(k−2)P (G, x+ 2− k).

Lemma 2.3.3. If G is a connected k−regular graph on n vertices with four dis-
tinct eigenvalues, then;

1. G has four integral eigenvalues, or

2. G has two integral eigenvalues, and two eigenvalues of the form 1
2(a±

√
b),

with a, b ∈ Z, b > 0, with the same multiplicity, or

3. G has one integral eigenvalue, its degree k, and the other three have the same
multiplicity m = 1

3(n− 1), and k = m or k = 2m.

There are many integral graphs which are regular; For example; Complete
graphs. A complete graph is a graph with n vertices and an edge between every
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two vertices. In older literature, complete graphs are sometimes called universal
graphs. The complete graph is (n− 1) regular [18]; as it was presented in previ-
ous section some operations on a regular graph provide some infinite families of
integral graphs.
Example: Consider a complete graph with 10 vertices (K10). This is 9-regular
graph its adjacency matrix and spectrum are as follows:-

M =



0 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 1

1 1 1 1 1 0 1 1 1 1

1 1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 0 1 1

1 1 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 1 1 0



.

Its spectrum is [9,−1,−1,−1,−1,−1,−1,−1,−1,−1] which contains only integer
eigenvalues.

2.3.2 Complete multipartite graphs

A multipartite graph G is called complete multipartite (or complete k-partite) if
each vertex of Vi is adjacent to each vertex of Vj (i 6= j = 1, 2, . . . , k). Thus in
a complete multipartite graph any two vertices are adjacent if and only if they
belong to two distinct subsets [5, 11]. A complete k-partite graph is generally de-
noted by Km1,m2,...,mk

[11]. The total number of vertices and edges in a complete
multipartite graph are given by |V | =

∑
mi and |E| =

∑
mimj .

Let the number of distinct integers of m1,m2,m1,m3, . . . ,mk be r. Without
loss of generality, assume that the first r ones are the distinct integers such that
m1 < m2 < m3 < . . . < mr . Suppose that bi is the multiplicity of mi for each
i = 1, 2, . . . , r.
The complete k-partite graph Km1,m2,...,mk

= Km1...m1,...,mr...mr is also denoted

by Kb1m1,b2m2,...brmr . Where k =

r∑
i=1

bi and |V | = n =

r∑
i=1

bimi.

For example: The complete 2-partite graph Km1m2 (i.e. r = 2 and b1 = b2 = 1)

is integral if and only if m1m2 is a perfect square [19].
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Theorem 2.3.1. The complete k-partite graph (Km1,m2,...,mk
) = Kb1·m1,b2·m2,b3·m3,...br·mr ,

is integral if and only if;

r∏
i=1

(x+mi)−
r∑
j=1

bjmj

r∏
i=1,i 6=j

(x+mj) = 0 (2.3.1)

has only integral roots [19].

Considering the equation 2.3.1 to get more information. Firstly, we divide

both sides of Equation by
k∏
i=1

(x+mi) we obtain;

F (x) :=
r∑
i=1

bimi

x+mi
− 1 = 0. (2.3.2)

It is trivial that −mi is not a root of Equation (2.3.1), for 1 ≤ i ≤ r. Hence,
the solutions of Equation (2.3.1) are the same as those of Equation (2.3.2). Now
we consider the roots of F (x) over the set of real numbers. Note that F (x) is
discontinuous at each point −mi. For 1 ≤ i ≤ r, we have that F (mi − 0) = −∞,

F (mi + 0) = +∞, F (−∞) = F (+∞) = −1, F ′(x) = −
r∑
i=1

bimi

(x+mi)2
. (2.3.3)

Clearly F (x) is strictly monotone decreasing on each of the intervals, where F (x)
is continuous. Using the Weierstrass Intermediate Value Theorem of Analysis, we
deduce that F (x) has distinct real roots,

−∞ < ur < ur−1 < mr < ur < −mr−1 < ur−1 < . . . < −m2 < u2 < −m1 < 0 < u1 < +∞.
(2.3.4)

On other hand Equation (2.3.2) can be written as;

m1b1
x+m1

+
m2b2
x+m2

+
m3b3
x+m3

. . . ,+
mrbr
x+mr

= 1 [19]. (2.3.5)

For example: Consider a complete multipartite graph K5,8,12.
It has a spectrum [16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −6, −10]
in which we see that all eigenvalues are integers.
In case of graphs in this type with (a < b < c) the eigenvalues are the same as
the following matrix:

M =

 0 b c

a 0 c

a b 0

 .
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In our example a = 5, b = 8 and c = 12. therefore its matrix is:-

M =

 0 8 12

5 0 12

5 8 0

 .

It has eigenvalues [16,−10,−6]. That is the same as above, except the multiple
eigenvalue 0.
By Cardano’s formula we obtain that the matrix has integral eigenvalues if (ab+
ac + bc)3 − 27(abc)2 is a square. If we look for special solutions satisfying some
extra conditions, then we may find some families.

The identification of all integral graphs appears to be hopelessly involved.
However, as with many other problems in graph theory, if we restrict our atten-
tion to trees, the prospects are much better as one .

Chapter 3 of this thesis will present integral trees as an example of integral
graphs. In this chapter will describe a construction of integral trees starting with
integral trees of diameter 3, generalization of integral trees with even diameter
and finally generalization of integral tree with odd diameter. In the discussion
some conditions on the parameters of integral trees will be developed in order to
generate infinite families of integral trees.





3. Integral trees

3.1 Introduction

A tree is a connected undirected graph without cycles. An integral tree is a tree
for which the eigenvalues of its adjacency matrix are all integers. Among the early
results about integral trees is that by Watanabe [15] that says that an integral tree
different from K2 does not have a complete matching. Another early interesting
result was starlike integral trees, that is all integral trees with at most one vertex
of degree larger than 2, were given in [20].
In recent years many different classes of integral trees have been constructed and
each class contain finitely many integral trees. The following are examples of
integral trees: T(1;2), T(1;6), T(3,1) [12].

3.2 Integral Trees and Pell’s equation

In this section, we revisit integral trees of diameter 3 discussed by Pokorny in[16].
The tree of diameter 3 is balanced, if all the vertices of the same distance from the
center are of the same degree and is denoted by T (1;n1). It is well known that
a balanced tree T = T (1;n1) is integral tree if and only if n1 = s1(s1 + 1) where
s1 ∈ N [16]. The main concern of this section is to give a relationship between
integral trees of diameter 3 and Pell’s equations and construct integral trees of
diameter 3 using them.

We will use the theory of divisors and codivisors, which is useful in the spectral
graph theory. The most important property of divisor D of a graph G is that the
characteristic polynomial P (D;x) divides the characteristic polynomial of G , i.e.
there exists a polynomial P (C;x) such that:-

P (G;x) = P (D;x) · P (C;x).

Generally a divisor D of a graph G is a directed graph with multiple edges and
loops and its codivisor C is a directed graph whose arcs are valued by plus or
minus one.

15
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Every tree of diameter 3 can be characterized by two parameters a, b ∈ N and
denoted by T (1; a|b).

Proposition 1. The characteristic polynomial of the corresponding divisorD(1; a|b)
of the tree T (1; a|b) can be expressed by the formula;

P (D(1; a|b)) = x4 − (a+ b+ 1)x2 + ab. (3.2.1)

Proposition 2. The characteristic polynomial of a corresponding codivisor C(1; a|b)
of the tree T (1; a|b) can be expressed by the formula;

P (C(1; a|b)) = xa+b−2. (3.2.2)

Proposition 3. The characteristic polynomial of the tree T (1; a|b) can be expressed
by the formula;

P (D(1; a|b)) = (x4 − (a+ b+ 1)x2 + ab)xa+b−2. (3.2.3)

Hence the spectrum of codivisor C(1; a|b) consists only of eigenvalues. Now,
it is sufficient to find positive integers a, b so that the equation (3.2.1) has only
integer eigenvalues.

If we want the tree T (1; a|b) to be integral, then equation (3.2.1) has to have
only integer eigenvalues. A spectrum of a tree is always symmetric, therefore
Sp(D(1; a|b)) = {±r,±s}, where r, s ∈ N . We have to find a, b ∈ N for which
the equation (3.2.1) has integer eigenvalues.
Consider

P (D(1; a|b)) = x4 − (r2 + s2)x2 + r2 · s2. (3.2.4)

Comparing equation (3.2.1) and equation (3.2.4)

a · b = r2 · s2 (3.2.5)

a+ b+ 1 = r2 + s2. (3.2.6)

If we eliminate r using equation (3.2.5) and (3.2.6), then;
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(a− s2)(b− s2) = s2. (3.2.7)

Let a − s2 = s1 and b − s2 = s2, then using equations (3.2.6 ) and (3.2.7) it is
clear that:-

s1 · s2 = s2 (3.2.8)

s1 + s2 + 1 = r2 − s2 (3.2.9)

(1 + s1)(1 + s2) = r2. (3.2.10)

We need to find solutions s1, s2 ∈ N of equations (3.2.8) and (3.2.10).
It is easy to show that if s1 = s2, then a = b = s1(s1 + 1), where s1 ∈ N and
T (1; a|b) is balanced tree of diameter 3 [13].

Let s1 be arbitrary positive integer, then from equation (3.2.8), we have;

s2 =
s2

s1
.

Denote by h the greatest common divisor of s and s1. Let s = h · s′. Then
s2 = h2 · (s′)2. Now let s1 = h · s′1. Since h = (s, s1) we have (s′, s′1) = 1.
Since

s2 =
h2s′2

hs1′
=
hs′2

s1′

and (s′, s1
′) = 1, then we have s1′|h and h = s′ · s1′′.

Using equation (3.2.9) it is easy to show that;

s1 + s2 + 1 = r2 − s2 = r2 − h2s′2

s1 + 1 = r2 − s1
′h2 + h

s1′
s′
2

and

s1 + 1 = r2 − (h2 + s1
′′)s′

2
. (3.2.11)

Since s1 is the positive integer, s1′ and h are divisors of s1 and s1 = h · s1′

then,

h = s1
′ · s1′′ (3.2.12)
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hence

s1 = (s1
′)2 · s1′′. (3.2.13)

That is why (3.2.11) is the Pell’s equation with form r2 −D · s′2 = L,
where D = h2 + s1

′′ and L = s1
′ + 1.

In order to find the solutions of equations (3.2.8) and (3.2.10) we have to solve
the the Pell’s equation (3.2.11).

Theorem 3.2.1. The tree T (1; a|b) is integral one and its spectrum is{
± r,±s, 0, . . . , 0︸ ︷︷ ︸

a+b−2

}
if and only if the following formulas hold:-

a = s1 + s2 b = s2 + s2

s2 =
s2

s1
s = h · s′.

(r, s′1) is the solution of the equation (3.2.11) where s1 is arbitrary positive
integer and both equations (3.2.12) and (3.2.13) holds for h, s′′1.
The proof of the necessary condition is above Theorem 3.2.1. Conversely, using
formulas from the Theorem (3.2.1) in equation ( 3.2.1) it is easy to show by
calculus that the tree T (1; a|b) is integral.

Corollary 1. Let s1 = 1. Using (3.2.12) and (3.2.13) it can be verified that the
equation (3.2.11) has the form;

2 = r2 − 2s′
2
. (3.2.14)

Then;

2 = r2 − 2s′
2

=⇒ r2 = 2 + 2s′
2
.

Let s′ = 1 then (r, s′) = (2, 1) hence; 2 +
√
2 is the solution.

For
1 = r2 − 2s′

2
=⇒ r2 = 1 + 2s′

2

Let s′ = 2 then (r, s′) = (3, 2) hence; 3 + 2
√
2 is the fundamental solution.

Therefore all its solutions can be expressed by the formula;

rn + s′n
√
2 = (2 +

√
2)(3 + 2

√
2)n

where; n = 0, 1, 2, 3, 4, . . . .

From Theorem 3.2.1 above: The values of a and b are given as follows; a = s′2+1

and b = 2s′2.
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For example:
If n = 0 then r0 + s′0

√
2 = (2 +

√
2)(3 + 2

√
2)0, hence; (r0, s′0) = (2, 1) and

a = b = 2.

We have a balanced integral tree T (1; 2|2).

If n = 1 then r1 + s′1
√
2 = (2 +

√
2)(3 + 2

√
2), hence; (r1, s′1) = (10, 7)

and a = 50, b = 98.

We obtain a non balanced tree T (1; 50|98), which has the smallest number of
vertices from all trees of this class. The characteristics polynomial of its divisor
is;

PD = x4 − (149)x2 + 4900 = (x2 − 100)(x2 − 49)

and its spectrum is SD = {±10,±7}.

If n = 2 then r2 + s′2
√
2 = (2 +

√
2)(3 + 2

√
2)2, hence (r1, s

′
1) = (58, 41)

is the solution of its ordered pair and a = 1682, b = 3362.
We obtain a non balanced tree T (1; 1682|3362). The characteristics polynomial
of its divisor is

PD = x4− (5045)x2+5654884 = (x2− 3364)(x2− 1681) = (x2− 582)(x2− 412)

and its spectrum is SD = {±58,±41}.

Corollary 2. Let s1 = 2. Using the same method as in Corollary 1.

3 = r2 − 6s′
2
.

Then;

3 = r2 − 6s′
2

=⇒ r2 = 3 + 6s′
2
.
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Let s′ = 1 then; (r, s′) = (3, 1) hence; 3 +
√
6 is the solution.

For
1 = r2 − 6s′

2
=⇒ r2 = 1 + 6s′

2
.

Let s′ = 2 then (r, s′) = (5, 2) hence; 5 + 2
√
6 is the fundamental solution.

Therefore all its solutions can be expressed by the formula;

rn + s′n
√
6 = (3 +

√
6)(5 + 2

√
6)n

where n = 0, 1, 2, 3, 4 , . . . .

From Theorem 3.2.1 above: The values of a and b are given as follows;

a = (2s′n)
2 + 2 b =

3(2s′n)
2

2
.

For example:
If n = 0 then r0 + s′0

√
6 = (3 +

√
6)(5 + 2

√
6)0 hence: (r0, s′0) = (3, 1) and

a = b = 6.

We have a balanced integral tree T (1; 6|6).

If n = 1 then r1 + s′1
√
6 = (3 +

√
6)(5 + 2

√
6), hence (r1, s

′
1) = (27, 11)

and a = 486, b = 726.
We obtain a non balanced tree T (1; 486|726), which has the smallest number of
vertices from all trees of this class. The characteristics polynomial of its divisor
is;

PD = (x4 − (1213)x2 + 352836 = (x2 − 272)(x2 − 222)

and its spectrum is SD = {±27,±22}.

If n = 2 then r2 + s′2
√
6 = (2+

√
6)(3+ 2

√
6)2, hence (r1, s

′
1) = (267, 109)

is the solution of its ordered pair and a = 47526, b = 71286.

Corollary 3. Let s1 = 3. Using the same method as in the Corollary 1

4 = r2 − 12s′
2
.

Then

4 = r2 − 12s′
2

=⇒ r2 = 4 + 12s′
2
.

Let s′ = 1 then (r, s′) = (4, 1) hence; 4 +
√
12 is the solution.

For
1 = r2 − 12s′

2
=⇒ r2 = 1 + 12s′

2
.
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Let s′ = 2 then (r, s′) = (7, 2) hence; 7 + 2
√
12 is the fundamental solution.

Therefore all its solutions can be expressed by the formula;

rn + s′n
√
12 = (4 +

√
12)(7 + 2

√
12)n.

where n = 0, 1, 2, 3, 4 , . . . .
From Theorem 3.2.1 above: The values of a and b are given as follows

a = (3s′n)
2 + 3 b =

4(3s′n)
2

3
.

For example:
If n = 0 then r0 + s′0

√
12 = (4 +

√
12)(7 + 2

√
12)0 hence: (r0, s

′
0) = (4, 1)

and a = b = 12.

We have a balanced integral tree T (1; 12|12).

If n = 1 then r1+ s′1
√
12 = (4+

√
12)(7+ 2

√
12), hence (r1, s′1) = (52, 15)

and a = 2028, b = 2700.

We obtain a non balanced tree T (1; 2028|2700), which has the smallest number of
vertices from all trees of this class. The characteristics polynomial of its divisor
is

PD = x4 − (4729)x2 + 5475600 = (x2 − 522)(x2 − 452)

and its spectrum is SD = {±52,±45}.

If n = 2 then r1+s′1
√
12 = (4+

√
12)(7+2

√
12)2, hence (r1, s′1) = (194, 56)

and is the solution of its ordered pair and a = 28227, b = 37632.

Corollary 4. Let s1 = 4. Using the same method as in the Corollary 1

5 = r2 − 20s′
2
.
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Then

5 = r2 − 20s′
2

=⇒ r2 = 5 + 20s′
2
.

Let s′ = 1 then (r, s′) = (5, 1) hence; 5 +
√
20 is the solution.

For
1 = r2 − 20s′

2
=⇒ r2 = 1 + 20s′

2
.

Let s′ = 2 then (r, s′) = (9, 2) hence; 9 + 2
√
20 is the fundamental solution.

Therefore all its solutions can be expressed by the formula

rn + s′n
√
20 = (5 +

√
20)9 + 2

√
20)n

where n = 0, 1, 2, 3, 4 , . . . .
From Theorem 3.2.1 above: The values of a and b are given as follows

a = (4s′n)
2 + 4 b =

5(4s′n)
2

4
.

For example:
If n = 0 then r0 + s′0

√
12 = (5 +

√
20)(9 + 2

√
20)0

;hence: (r0, s′0) = (5, 1) and a = b = 20.

We have a balanced integral tree T (1; 20|20).

If n = 1 then r1+ s′1
√
20 = (5+

√
20)(9+ 2

√
20), hence (r1, s′1) = (85, 19)

and a = 5780, b = 7220.
We obtain a non balanced tree T (1; 5780|7220), which has the smallest number of
vertices from all trees of this class. The characteristics polynomial of its divisor
is

PD = x4 − (13001)x2 + 41731600 = (x2 − 852)(x2 − 762)

and its spectrum is SD = {±85,±76}.

If n = 2 then r1 + s′1
√
20 = (5 +

√
20)(9 + 2

√
20)2, hence (r1, s

′
1) =

(1525, 341) and is the solution of its ordered pair and a = 1860500, b = 2325620.

Generally : It is proved that the problem of characterizing integral trees of
diameter 3 is equivalent with the problem of solving Pell’s Diophantine equations
x2 −Dy2 = L for appropriate integers.
Where;
L := s1 + 1,
D := (s1 + 1)s1,
s1: arbitrary any positive integer,
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x2 = r2, y2 = (s′)2.
The general solution of the Pell’s Diophantine equations is given by:-

rn + s′n
√
D = (r0 + s′0

√
D) (r + s′

√
D)n︸ ︷︷ ︸

fundamental solution

.

The values of a and b are given by s2 + s1 and (s1+1)s2

s1
respectively.

Where; s = s1 · s′.

Using Theorem 3.2.1 above and the succeeding corollaries; which generalize
the Pell’s equation and Integral trees T (1; a|b) of diameter 3 from Pokorny in [16].
We develop the following theorem.

Theorem 3.2.2. Let k be a given positive integer and a = (kyn)
2 + k, b =

(k + 1)(kyn)
2/k, ∀n = 0, 1, 2, 3, . . ., then, T (1; a|b) is an integral tree and its

spectrum (SD) is {±xn, ±yn}.

Proof. Consider the Pell’s Diophantine equation x2 − k(k + 1)y2 = k + 1 and an
integral tree T (1; (kyn)2 + k | (k + 1)(kyn)

2/k).

Where k(k + 1) is not a perfect square.
Then; (k + 1, 1) is a solution, (2k + 1, 2) is the fundamental solution of this
Diophantine equation and all positive integral solutions of (xn, yn) are given by;

xn+yn
√
k(k + 1) = (k+1+

√
k(k + 1))(2k+1+2

√
(k + 1)k)n ∀k = 1, 2, 3, . . . .

We have;

xn + yn
√
k(k + 1) = (k + 1 +

√
k(k + 1))(2k + 1 + 2

√
k(k + 1))n

xn − yn
√

(k + 1)k = (k + 1−
√
k(k + 1))(2k + 1− 2

√
k(k + 1))n.

Let
A = (k + 1 +

√
k(k + 1))(2k + 1 + 2

√
k(k + 1))n
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B = (k + 1−
√
k(k + 1))(2k + 1− 2

√
k(k + 1))n.

Then
xn =

A+B

2
, yn =

A−B
2
√
k(k + 1)

.

Using this generalized integral solution we can generate finitely many integral
trees of diameter 3. Theorem (3.2.2) also is useful in obtaining the spectrum of
any integral tree of diameter 3.

For example:
If k = 11, then; x2 − 132y2 = 12. This Pell’s equation give the following general
solution

xn + yn
√
132 = (12 +

√
132)(23 + 2

√
132)n.

By using the above Theorem (3.2.2) we can obtain finitely many integrals trees
and their spectrum.

n a b
1 267300 291588
2 565060452 616429572
3 1194537517000 1303131836000
4 2525251745000000 2754820086000000
5 53383809940000000000 5823688358000000000

Table 3.1: This table shows some integral trees of diameter 3.

For n = 1: We obtain a non balanced tree T (1; 267300|291588) , which has
the smallest number of vertices from all trees of this class. The characteristics
polynomial of its divisor is

PD = x4 − (558889)x2 + 7.79414724× 1010 = (x2 − 5402)(x2 − 5172)

and its spectrum is SD = {±540,±517}.

Remark. For concrete k the Pell’s Diophantine equation x2 − k(k + 1)y2 = k + 1

may have more than one solution and when we have more than one solution it
implies that we have more than one family of integral trees.

For example: If k or k + 1 is a square, then we may have another families of
integral tress in some classes as it is shown in the table below (Table 3.2)
For k = 3, 4, 5 . . . , 40.
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k Family 1 Family 2 k Family 1 Family 2
3 (4, 1) (14, 4 ) 22 (23, 1)
4 (5, 1) 23 (24, 2)
5 (6, 1) 24 (25, 1) (245, 10)
6 (7, 1) 25 (26, 1)
7 (8, 1) 26 (27, 1)
8 (9, 1) (51, 6 ) 27 (28, 1)
9 (10, 1) 28 (29, 1)
10 (11, 1) 29 (30, 1)
11 (12, 1) 30 (31, 1)
12 (13, 1) 31 (32, 1)
13 (14, 1) 32 (33, 1)
14 (15, 1) 33 (34, 1)
15 (16, 1) (124, 8 ) 34 (35, 1)
16 (17, 1) 35 (36, 1) (426, 12)
17 (18, 1) 36 (37, 1)
18 (19, 1) 37 (38, 1)
19 (20, 1) 38 (39, 1)
20 (21, 1) 39 (40, 1)
21 (22, 1)

Table 3.2: This table shows some integral trees of diameter 3

.

3.3 Integral Trees with even diameter

Many different classes of integral trees have been constructed in the past decades
and most of these classes contain infinitely many integral trees [3]. Many re-
searcher have characterized integral according to their diameter. In this section,
we concentrate on trees constructed in [3] and compute their eigenvalues using a
simple argument.
A rooted tree (T ) is a tree with a specified vertex called the root [8]. We denote by
F the forest resulting from removing the root of a tree. Let n be a positive integer
and Ti, Ti+1 be two rooted trees with disjoint vertex sets. Then, Ti ∼ nTi+1 is
the rooted tree obtained from Ti and n copies of Ti+1 by joining the root of Ti to
the roots of the n copies of Ti+1.
For example: If we consider these two rooted trees below joining their root we
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obtain integral tree which has even diameter.

.

For positive integers r1 < r2 < . . . < rn, we define the rooted tree Q(r1, . . . , rn)

[8]. For n ≥ 2, with initial trees Q() and Q(r1) being the one-vertex tree and the
star tree on r1 + 1 vertices, respectively we have;

Q(r1, . . . , rn) = Q(r1, . . . , rn−2) ∼ (rn − rn−1)Q(r1, . . . , rn−1).

Lemma 3.3.1. Let Ti, Ti+1 be two rooted trees and let T = Ti ∼ nTi+1. Then;

ϕ(T ) = ϕ(Ti+1)
n−1ϕ((Ti)ϕ(Ti+1)− n(ϕ(Fi)ϕ(Fi+1)) [8].

This lemma is useful in determining the eigenvalues of trees constructed in [3]
and their multiplicities.

Lemma 3.3.2. Let n ≥ 2 and r1, . . . , rn be positive integers. Then;

(Q(r1, . . . , rn)) = ϕrn−rn−1(Q(r1, . . . , rn−1))(Q(r1, . . . , rn−2))
x2 − rn
x2 − rn−1

[8].

Proof. Let

Pk = ϕ(Q(r1, . . . , rk)) Ck = ϕ(Q′(r1, . . . , rk)) dk = rk−rk−1, ,∀k ≥ 1, r0 = 0

Since

Q′(r1, . . . , rk) = Q′(r1, . . . , rk−2) ∪ dk(Q′(r1, . . . , rk−1)), ∀k ≥ 2.

Then we have Ck = P dkk−1Ck−2. Using Lemma 3.3.1;

Pk = P
dk−1

k−1 (Pk−1Pk−2 − (rk − rk−1)Ck−1Ck−2)

Pk = P
dk−1

k−1 (P dk−2k−2 (Pk−2Pk−3−(rk−1−rk−2)Ck−2Ck−3)−(rk−rk−1)P
dk−1

k−2 Ck−2Ck−3))
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Pk = P
dk−1

k−1 (P
dk−2

k−2 (Pk−2Pk−3 − (rk − rk−2)Ck−2Ck−3)

...

Pk = P
dk−1

k−1 (Pk−1Pk−2 . . . P
d3
2 )(P2P1 − (rk − r2)C2C1)

Pk = P
dk−1

k−1 (Pk−1Pk−2 . . . P
d1
2 )(P1x− (rk − r1)C1)

Pk = P
dk−1

k−1 (Pk−1Pk−2 . . . P
d1
2 )x− d1(x2 − rk).

It is clear that P1 = xd1−(x2−r1) and so Pk = P dkk−1(P
dk
k−2 . . . P

d1
2 x−d1(x2−rk)

holds for k ≥ 1. To complete the proof, apply this equality for k = n − 1, n and
then compute Pn/Pn−1.

It is vivid that the diameter of Q(r1, . . . , rn) is 2n provided that rn− rn−1 >
1. The multiplicity of rn−1 as an eigenvalue of Q(r1, . . . , rn) is rn − rn−1 − 1.
Using Lemma (3.3.2) lead to the theorem below which establishes the existence
of infinitely many integral trees of any even diameter.

Theorem 3.3.1. If rn− rn−1 > 1, then the set of distinct eigenvalues of the tree
(Q(r1, . . . , rn)) is 0,±√r1 . . .±

√
rn [8].

We introduce an alternative representation of ϕ(Q(r1, . . . , rn)) and ϕ(Q′(r1, . . . , rn)).
Let

f(Q) =

d2e
n∏
i=1

ϕdn−2i+2(Q(r1, . . . , rn−2i+2))

x2 − 2i+ 2
.

where di = ri − ri−1 with the convention r0 = 0. From Lemma (3.3.2), f(Q) is a
polynomial and clearly we have;

ϕ(Q) = xf(Q)

d2e
n∏
i=1

(x2 − rn − 2i+ 2) (3.3.1)

and

ϕ(Q)′ = f(Q)

d2e
n∏
i=1

(x2 − rn − 2i+ 1). (3.3.2)

Therefore, if rn − rn−1 > 1 and rn−1 − rn−2 > 1, then the positive eigenvalues of
f(Q) read as

√
r1, . . . ,

√
rn−1.
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Theorem 3.3.2. For every set S of positive integers there exists a tree whose
positive eigenvalues are exactly the elements of S. If the set S is different from
the set {1} then the constructed tree will have diameter 2|S| [3].

Proof. Trivially, there is only one tree with set S of positive eigenvalues for S = 1,
and this is the tree on two vertices with spectrum {-1, 1} (and its diameter is 1).

Let S = n1, n2, . . . , n|S| where n1 < n2 < . . . < n|S|. Then apply the previous
theorem with r|S| = n21, r|S|−1 = n22 − n21, . . . , r1 = n2|S| − n2|S|−1. If the set
is different from {1} then r1 ≥ 2 and in this case the diameter of the tree is
2|S|.

Example 1
Let S = {1, 2, 4, 5} then r4 = 1, r3 = 3, r2 = 12, r1 = 9. The resulting
tree has 781 vertices and the spectrum is

{−5, −48, −2100, −1227, 0109, 1227, 2100, 48, 5}.

Here the exponents are the multiplicities of the eigenvalues. The diameter of this
tree is 8.

Example 2
Let S = {1, 2, 3, 4, 5, 6} then r6 = 1, r5 = 3, r4 = 5, r3 = 7, r2 =

9, r1 = 11. The resulting tree has 27007 vertices and the spectrum is;

{±6, ±510, ±489, ±3611, ±22944, ±18021, 03655}

The diameter of this tree is 12.

3.4 Integral graphs with odd diameter

In this section, we introduce a class of trees which will be used to obtain integral
trees of odd diameters as discussed by Ghorbani, Mohammadian and Tayfeh-
Rezaie in [8].

Theorem 3.4.1. Let n be odd (respectively, even). Then, T is an integral tree
of diameter 2n + 1 if and only if r0, r1, . . . , rn are perfect squares and all the
eigenvalues of ϕ0(T )(respectively) ,ϕe(T ) are integers [8].

Proof. For positive integers n, r, r0, r1, . . . , rn such that n ≥ 2 and Max{r0, r1} <
r2 < . . . < rn. Let U = Q(r1, . . . , rn), V = Q(r0, r2, . . . , rn−1),W = Q(r2, . . . , rn),

and define
T (r, r0, r1, . . . , rn) = U ∼ (V ∼ rW ).
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We need to check the maximum distance between a vertex of Q(k1, . . . , kn) and
its root is n. So, T = T (r, r0, r1, . . . , rn) is a tree of diameter 2n+1. We proceed
to determine (T). Applying Lemma 3.3.1, we find that;

ϕ(T ) = ϕ(U)ϕr−1(W )(ϕ(V )(W )− rϕ(V )ϕ(W ))− ϕ(U ′)ϕ(V ′)ϕr(W )

=
ϕr−1(W )ϕ(U)ϕ(V )ϕ(W ))− rϕ(U)ϕ(V ′)ϕ(W ′)− ϕ(U ′)ϕ(V ′)ϕ(W ).

If n = 2m+ 1 odd, then using equation 3.3.1 and equation 3.3.2 we have:-

ϕ(U) = xf(U)(x2 − r1)(x2 − rn)
m∏
i=1

(x2 − r2i−1) (3.4.1)

ϕ(V ) = xf(V )
m∏
i=1

(x2 − r2i−1) (3.4.2)

ϕ(W ) = xf(W )(x2 − rn)
m∏
i=1

(x2 − r2i−1) (3.4.3)

and

ϕ(U ′) = x2f(U)

m∏
i=1

(x2 − r2i) (3.4.4)

ϕ(V ′) = f(V )(x2 − r0)
m∏
i=2

(x2 − r2i−1) (3.4.5)

ϕ(W ′) = f(W )
m∏
i=1

(x2 − r2i). (3.4.6)

Hence using equation 3.4.1 to equation 3.4.6we obtain:-

ϕ(T ) = x(x2 − rn)ϕr−1(W )f(U)f(V )f(W )

m∏
i=2

(x2 − rn)
m∏
i=2

(x2 − r2i−1)2ϕ0(T )

(3.4.7)

ϕ0(T ) = x2(x2 − r1)(x2 − rn)− r(x2 − r0)(x2 − r1)− x2(x2 − r0) (3.4.8)

suppose that n = 2m is even. Then using equation 3.3.1 and equation 3.3.2
we have:-
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ϕ(U) = xf(U)(x2 − rn)
m−1∏
i=1

(x2 − r2i) (3.4.9)

ϕ(V ) = xf(V )(x2 − r0)
m∏
i=1

(x2 − r2i−1) (3.4.10)

ϕ(W ) = xf(W )(x2 − rn)
m−1∏
i=1

(x2 − r2i) (3.4.11)

and

ϕ(U ′) = f(U)(x2 − r1)
m∏
i=2

(x2 − r2i−1) (3.4.12)

ϕ(V ′) = x2f(V )
m−1∏
i=1

(x2 − r2i) (3.4.13)

ϕ(W ′) = x2f(W )
m∏
i=2

(x2 − r2i−1). (3.4.14)

Therefore using equation 3.4.9 to equation 3.4.14we obtain:-

ϕ(T ) = x3(x2 − rn)ϕr−1(W )f(U)f(V )f(W )

m∏
i=2

(x2 − r2i−1)
m−1∏
i=1

(x2 − r2i−1)2ϕe(T )

(3.4.15)

ϕe(T ) = (x2 − r0)(x2 − rn)− rx2 − (x2 − r1).

Theorem 3.4.2. For every even integer n ≥ 2, there are infinitely many integral
trees of diameter 2n+ 1.

Proof. Let n be even. Then choose the parameters of T = T (r, r0, r1, . . . , rn)

in such a way that the eigenvalues of ϕe(T ) are all integers. For instance, let
r0 = 1, r1 = 4k2, rn = (k2 − 1)2 and r = 4k2 − 1. Then;

ϕe(T ) = (x2−1)(x2−(k2−1)2)−(4k2−1)x2−(x2−4k2) = (x2−1)(x2−(k2+1)2).

It is trivial that if we choose k large enough, then we are able to take distinct
prefect squares r2, . . . , rn−1 in the interval (4k2, (k2 − 1)2).
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Theorem(3.4.2) lead to the formation of the class of integral trees of diameter
4k + 1.

Theorem 3.4.3. For every odd integer n ≥ 3, there are infinitely many integral
trees of diameter 2n+ 1.

Proof. Let n be odd. Our aim is to choose the parameters of T = T (r, r0, r1, . . . , rn)

in such a way that all the eigenvalues of ϕ0(T ) are integers. This can be done in
many ways. For instance, if we set r0 = r1 = a2 and r = rn = 4(a− 1)2 for some
integer a with |a| ≥ 3,then; ϕ0(T ) = (x2−a2)(x4−(8(a−1)2+1)x2+4a2(a−1)2).
The eigenvalues of ϕ0(T ) are ±a and ±(a− 3

2)±
1
2

√
12a2 − 20a+ 9. So, the eigen-

values of ϕ0(T ) are integers if and only if 12a2 − 20a+ 9 is a perfect square, say
b2. We have (6a− 5)2 − 3b2 = −2. Then from Integral Trees and Pell’s equation,
we know that the Pell-like equation x2 − 3y2 = −2 has infinitely many integral
solutions with x ≡ ±1 (mod 6). For example, one may take;

a =
1

12
((1−

√
3)(−2 +

√
3)k + (1 +

√
3)(−2−

√
3)k + 10)

for arbitrary integer k ≥ 2. Now, we are able to take the distinct prefect squares
r2, . . . , rn−1 in the interval (a2, 4(a− 1)2).

This theorem give a new class of integral trees of diameter 4k + 3.
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