Discrete Mathematics

December 2, 2014

	,	
1.	Provide three sets A,B and C which satisfy the following cardinality conditions $ A\cap B\cap C =1,$ $ A\cap B =2, A\cap C =2, B\cap C =3,$	
	A = 4, B = 5, C = 5.	
		(4 points)
2.	Expand the following expressions using the binomial theorem. (a) $(-2x + x^2)^2$, (b) $(x - y + 2)^3$.	
	(b) $(x-y+2)^{\circ}$.	(4 points)
3.	How many 5-element subsets does the set $A = \{-3, -2, -1, 0, 1, 2, 3\}$ have?	(4 points)
4.	Apply the Euclidean algorithm to determine $\gcd(2923,1739)$.	(4 points)
5.	How many 8-digit numbers can be made out of the digits $1, 2, 2, 3, 3, 3, 4, 4$?	(4 points)
6.	What is the number of solutions of the equation	
	$x_1 + x_2 + x_3 + x_4 = 12,$	
	where x_1, x_2, x_3, x_4 are integers such that $x_i \geq 2i - 3$ for $i = 1, 2, 3, 4$?	(4 points)
7.	a. Determine the decimal representation of the following numbers.	(6 points)
	$654_7 = \dots $	
	$654_9 = \dots $	
	b. Determine the appropriate representations of the following numbers.	(6 points)
	$654_{10} = \dots 7$, ,
	$654_{10} = \dots 8$	
	$654_{10} = \dots $	
_		> 4 D

8. Let the sequence T_n defined by $T_1=T_2=T_3=1$ and $T_n=T_{n-1}+T_{n-2}+T_{n-3}$ for $n\geq 4$. Prove that $T_n<2^n,\quad n\in\mathbb{N}.$

(8 points)

Discrete Mathematics

10th December, 2019

Name:

Total:

Exercise 1. Provide three sets A, B and C which satisfy the following cardinality condition	ons		
$ A \cap B \cap C = 0,$			
$ A \cap B = 2, A \cap C = 2, B \cap C = 2,$			
A = 5, B = 6, C = 7.	(1 : 1)		
	(4 points)		
Exercise 2. How many 2-element subsets does the set $A = \{u + v : u \in \{1, 3, 5\}, v \in \{2, 4\}\}$ (4 points)	}} have?		
Exercise 3. Use the Euclidean algorithm to find $gcd(2263, 1457)$.	(4 points)		
Exercise 4. Expand the following expression using the binomial theorem:			
$\left(-\frac{x}{2}+2\right)^4$.			
$\left(\begin{array}{cc}2\end{array}\right)$	(1 : 1)		
	(4 points)		
Exercise 5. How many solutions does the equation $x_1 + x_2 + x_3 + x_4 + x_5 = 25$ ho x_1, x_2, x_3, x_4, x_5 are integers such that $x_k \ge (-1)^k + k$?	ave, where (4 points)		
Exercise 6. Describe all values of n and k for which			
$\binom{n}{k+1} = 10 \binom{n}{k}.$			
	(4 points)		
Exercise 7. a. Determine the decimal representation of the following numbers. $120_5 = \dots $			
$120_6 = \dots $			
$120_7 = \dots 10$ b. Determine the appropriate representations of the following numbers. $2019_{10} = \dots 4$	(6 points)		
$2019_{10} = \dots $			
$2019_{10} = \dots $	(6 points)		
Exercise 8. Prove by induction that 6 divides			
$\sum_{k=0}^{2n-1} 5^k$			
for any positive integer n.	(8 points)		