Discrete Mathematics

6 November 2024

Exercise 1. Let $A = \{1, 2, 3, 6, 7, 8, 9\}$ and $B = \{2, 3, 4, 6, 8\}$. What are the elements of the set $C = (A \setminus B) \cup (B \setminus A)$?

Exercise 2. Let $A = \{1, 2, 3, 4, 6, 7, 8\}, B = \{2, 4, 5, 6, 8\}$ and $C = \{1, 2, 3, 4, 7\}$. What are the elements of the set $(A \cap B) \setminus (C \cap B)$?

Exercise 3. Draw a Venn diagram for the following sets:

 $(a) (A \cap B) \cup (C \setminus B),$ $(b) (A \setminus B) \cup (A \setminus C),$ $(c) (A \cup B) \cap (B \cup C),$ $(d) (A \cap B) \cup (B \cap C) \cup (C \setminus A).$

Exercise 4. Provide three sets A, B and C which satisfy the following cardinality conditions

$$\begin{split} |A \cap B \cap C| &= 1, \\ |A \cap B| &= 2, \quad |A \cap C| = 2, \quad |B \cap C| = 2, \\ |A| &= 3, \quad |B| = 4, \quad |C| = 5. \end{split}$$

Exercise 5. How many subsets does the set $A = \{-1, 1, \{-1, 3\}, \{1, 2\}, \{-1, 1, 2, 3\}\}$ have?

Exercise 6. How many 4-element subsets does the set $A = \{-1, 1, \{1, 2\}, 2, \{6, 7\}, 8\}$ have?

Exercise 7. Expand the following expressions using the binomial theorem.

(1) $(2-x+x^2)^2$, (2) $(-2+3x)^3$,

Exercise 8. Find all values of n and k for which

$$\binom{n}{k+1} = 20\binom{n}{k}.$$

Exercise 9. a. Determine the decimal representation of the following numbers.

 $\begin{array}{rcl} 345_7 = & \dots & & & \\ 345_8 = & \dots & & & & \\ 345_9 = & \dots & & & & \\ 10 \\ b. \ Determine \ the \ appropriate \ representations \ of \ the \ following \ numbers. \\ 543_{10} = & \dots & & \\ 543_{10} = & \dots & & \\ 543_{10} = & \dots & & \\ 9 \end{array}$

Exercise 10. How many solutions does the equation $x_1 + x_2 + x_3 + x_4 = 3$ have, where x_1, x_2, x_3, x_4 are integers such that $x_i \ge -i$?

Exercise 11. How many seven digit numbers can be formed from the digits 1, 1, 1, 5, 3, 3, 3?

Exercise 12. How many eight digit numbers can be formed from the digits 0, 1, 1, 1, 4, 3, 3, 3?

Exercise 13. Suppose a_n is a sequence such that $a_{n+2} = a_{n+1} - a_n$ for all $n \ge 1$. Given that $a_{17} = 7$ and $a_{21} = 2$, find a_1 .

Exercise 14. Prove that

 $5^{n} + 2 \times 11^{n}$

is a multiple of 3 for every positive integer n.

Exercise 15. Prove by induction that

 $2^n < n!$

for any positive integer $n \geq 4$.