Discrete Mathematics

April 25, 2017

1. Provide three sets A, B and C which satisfy the following cardinality conditions

Total:

Name:

$ A \cap B \cap C = 0,$		
$ A \cap B = 2, A \cap C = 4, B \cap C = 3,$ A = B = 7, C = 8.		
	(4 points)	
2. How many 4-element subsets does the set $A = \{-1, 1, \{1, 2\}, 2, \{6, 7, 8\}, 8\}$ have?	(4 points)	
3. Draw a Venn diagram for the following sets: (a) $(A \cup B) \cup (C \setminus B)$, (b) $(A \cup B) \cap (A \setminus C)$, (c) $(A \cup B) \setminus (B \cup C)$, (d) $(A \setminus B) \cup (B \setminus C) \cup (C \cap A)$.	(4 points)	
4. Use the Euclidean algorithm to find $\gcd(a,b)$ and compute integers x and y for which $ax+by=\gcd(a,b):$		
where $a = 2201, b = 1333$.	(4 points)	
5. How many solutions does the equation $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 5$ have, where x_1, x_2, x_3, \dots	x_4, x_5, x_6	
are integers such that $x_i \ge -i + 3$?	4 points)	
6. Expand the following expression using the binomial theorem:		
$\left(3x - \frac{y}{x}\right)^3.$		
	(4 points)	
	(6 points)	
$1144_5 = \dots $		
$1144_6 = \dots $		
b. Determine the appropriate representations of the following numbers.		
	6 points)	
$765_{10} = \dots 9$ $765_{10} = \dots 7$		
$765_{10} = \dots \dots 6$		
8. Let $a_0 = 1, a_1 = 4$ and $a_n = 6a_{n-1} - 9a_{n-2}, n \ge 2$. Prove by induction that $a_n = 3^n + n3^n$ integers $n \ge 0$.	$^{-1}$ for all	
	(8 points)	

Discrete Mathematics

December 10, 2018

Name:	Total:
1. Provide three sets A,B and C which satisfy the following cardinality conditions $ A\cap B\cap C =2,$	
$ A \cap B = 2, A \cap C = 4, B \cap C = 2,$ A = 5, B = 3, C = 5.	
	(4 points)
2. How many 3-element subsets does the set $A = \{-1, 1, 3, \{-1\}, \{1, 3\}, \{-1, 3\}\}$ have	e? (4 points)
3. How many subsets does the set $A = \{-1, 2, \{-1, 2\}, \{3\}, \{-1, 2, 3\}\}$ have?	(4 points)
4. Use the Euclidean algorithm to find $\gcd(1133,913)$ and compute integers x and y for which $1133x + 913y = \gcd(1133,913).$	
	(4 points)
5. How many solutions does the equation $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 6$ have, where x_1, x_2, x_3, x_4, x_5 are integers such that $x_i \ge 3 - i, i \in \{1, 2, 3, 4, 5, 6\}$?	
are integers such that $x_i \geq 3 - i, i \in \{1, 2, 3, 4, 5, 0\}$:	(4 points)
6. How many eight digit numbers can be formed from the digits 1,1,2,2,3,3,4,0?	(4 points)
7. a. Determine the decimal representations of the following numbers.	(6 points)
$315_6 = \dots $	` - ,
$315_7 = \dots $	
$315_8 = \dots $	
b. Determine the appropriate representations of the following numbers.	(6 points)
$789_{10} = \dots $	(o points)
$789_{10} = \dots 7$	
$789_{10} = \dots 9$	
8. Prove by induction that $\sum_{k=1}^{n} (6-k) = \frac{n(11-n)}{2}$	
for any positive integer n .	
	(8 points)