Discrete Mathematics 26/03/2019

Exercise 1. Let $A = \{1, 2, 3, 5, 6, 7, 9\}$ and $B = \{2, 3, 4, 5, 8\}$. What are the elements of the set $C = (A \setminus B) \cup (B \setminus A)$?

Exercise 2. How many 4-element subsets does the set $A = \{-1, 1, \{1\}, 2, \{6, 7\}, 8, 11\}$ have?

Exercise 3. Draw a Venn diagram for the following sets:

 $A \cup B \cup C = \{4, 8, 9, 10, 12, 15, 18, 25, 32, 35, 70\}$

A contains even numbers,

B contains numbers divisible by 3,

C contains numbers divisible by 5.

Exercise 4. Provide three sets A, B and C which satisfy the following cardinality conditions

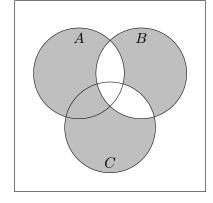
$$|A \cap B \cap C| = 2,$$

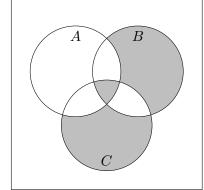
$$|A \cap B| = 2$$
, $|A \cap C| = 3$, $|B \cap C| = 4$, $|A| = 4$, $|B| = 6$, $|C| = 7$.

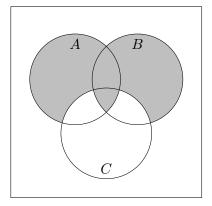
Exercise 5. Draw a Venn diagram for the following sets:

- (a) $(A \setminus (B \cup C)) \cup (B \cap C)$,
- (b) $(A \setminus B) \cap (A \cup (C \setminus B))$,
- (c) $(A \cup B) \setminus (B \cap C)$,
- (d) $((A \cap B) \cup (B \setminus C)) \setminus (C \cap A)$.

Exercise 6. Use set notation to describe the shaded areas:







Exercise 7. Use the Euclidean algorithm to find $\gcd(a,b)$ and compute integers x and y for which

$$ax + by = \gcd(a, b) :$$

(a)
$$a = 1122, b = 154$$

(b)
$$a = 2233, b = 374.$$

Exercise 8. Expand the following expressions using the binomial theorem.

(1)
$$(-x-3y+4z)^2$$
,

(2)
$$(x-\frac{3}{x})^4$$
.

Exercise 9. Determine all non-negative integral solutions of the equation

$$7x + 19y = 234$$
.

Exercise 10. (a) How many eight digit numbers can be formed from the digits 1,1,1,2,4,3,3,4? (b) How many seven digit numbers can be formed from the digits 0,2,1,1,2,3,4?

Exercise 11. Determine the appropriate representation of the following numbers.

$$1122_4 = \dots 7$$
 $246_8 = \dots 7$

Exercise 12. Prove that $n^3 + 2n$ is divisible by 3 for all positive integers n.

Exercise 13. Find the value of k for which $k\binom{71}{k}$ is largest.

Exercise 14. Describe all values of n and k for which

$$\binom{n}{k+1} = 16 \binom{n}{k}.$$

Exercise 15. (a) How many solutions does the equation $x_1 + x_2 + x_3 + x_4 = 5$ have, where x_1, x_2, x_3, x_4 are integers such that $x_i \ge -i - 1$?

(b) How many solutions does the equation $x_1 + x_2 + x_3 + x_4 + x_5 = 5$ have, where x_1, x_2, x_3, x_4, x_5 are integers such that $x_i \ge -i + 1$?

Exercise 16. Prove that

$$11^{n} - 4^{n}$$

is a multiple of 7 for every positive integer n.

Exercise 17. Prove by induction on n that 13 divides $2^{4n+2} + 3^{n+2}$ for all natural numbers n.

Exercise 18. Using induction, show that $4^n + 15n - 1$ is divisible by 9 for all $n \ge 1$.

Exercise 19. Prove by induction that

$$\sum_{k=1}^{n} (-1)^{k} k^{2} = \frac{(-1)^{n} n(n+1)}{2}$$

for $n \in \mathbb{N}$.

Exercise 20. Prove that 21 divides $4^{n+1} + 5^{2n-1}$ for all positive integer n.

Exercise 21. Show that for each $n \geq 2$

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} > \sqrt{n}.$$