– Discrete Mathematics –

10th December, 2019

Name:	Total:
Exercise 1. Draw a Venn diagram for the following sets: $A \cup B \cup C = \{4, 6, 7, 9, 12, 14, 21, 35\}$ A contains even numbers, B contains numbers divisible by 3, C contains numbers divisible by 7.	(4 points)
Exercise 2. How many 3-element subsets does the set	
$A = \{u + v : u \in \{-1, 0, 1, 2\}, v \in \{0, 1\}\}$	
have?	(4 points)
Exercise 3. Use the Euclidean algorithm to find $gcd(2291, 1363)$.	(4 points)
Exercise 4. Expand the following expression using the binomial theorem:	
$\left(-rac{x}{3}+3 ight)^3.$	
	(4 points)
Exercise 5. (a) How many eight digit numbers can be formed from the digits 1,1,1,2,4,3,3,4?	
(b) How many seven digit numbers can be formed from the digits 2,3,1,2,3,0,4?	(4 points)
Exercise 6. Describe all values of n and k for which	
$\binom{n}{k+1} = 4\binom{n}{k}.$	
	(4 points)
Exercise 7. a. Determine the decimal representation of the following numbers. $210_3 = \dots \dots 10$	
$210_4 = \dots $	
$210_5 = \dots $	(6 points)
$2121_{10} = \dots 8$	
$2121_{10} = \dots 9$	(6 points)
Exercise 8. Prove by induction that	
$\sum_{k=1}^{n} (3-2k) = n(2-n)$	
for any positive integer n. $\kappa=1$	(8 points)

Solutions

Solution 1.

Solution 2. The set is given by $A = \{-1, 0, 1, 2, 3\}$, hence the number of 3-element subsets is $\binom{5}{3}$.

Solution 3.

2291 = 1363 * 1 + 928 1363 = 928 * 1 + 435 928 = 435 * 2 + 58 435 = 58 * 7 + 29 58 = 29 * 2 + 0Therefore gcd(2291, 1363) = 29.

Solution 4.

$$\left(-\frac{x}{3}+3\right)^3 = \sum_{k=0}^3 \binom{3}{k} \left(-\frac{x}{3}\right)^{4-k} 3^k = -\frac{1}{27} x^3 + x^2 - 9 x + 27.$$

Solution 5.

(a)

$$\frac{8!}{3!1!2!2!}$$

(b)

$$\frac{7!}{1!1!2!2!1!} - \frac{6!}{1!2!2!1!}.$$

Solution 6. The equation can be written as

$$\frac{n!}{(n-k-1)!(k+1)!} = 4\frac{n!}{(n-k)!k!}.$$

Let us divide by n! and multiply by (n-k)!(k+1)!. We also make use of the recurrence definition of n!, that is $n! = n \cdot (n-1)!$. We get that

$$\frac{(n-k)!}{(n-k-1)!} = 4\frac{(k+1)!}{k!}$$

that yields

$$n-k = 4k + 4 \longrightarrow n = 5k + 4.$$

Solution 7.

(a)

$$210_3 = 0 \cdot 3^0 + 1 \cdot 3^1 + 2 \cdot 3^2 = 0 + 3 + 18 = 21$$

$$210_4 = 0 \cdot 4^0 + 2 \cdot 4^1 + 2 \cdot 4^2 = 0 + 4 + 32 = 36$$

$$210_5 = 0 \cdot 5^0 + 2 \cdot 5^1 + 2 \cdot 5^2 = 0 + 5 + 50 = 55.$$

(b)
$$2021 = 288 * 7 + 5$$

 $288 = 41 * 7 + 1$
 $41 = 5 * 7 + 6$
 $5 = 0 * 7 + 5$
 $2021_{10} = 5615_7.$
 $2021 = 252 * 8 + 5$
 $252 = 31 * 8 + 4$
 $31 = 3 * 8 + 7$
 $3 = 0 * 8 + 3$
 $2021_{10} = 3745_8.$
 $2021 = 224 * 9 + 5$
 $224 = 24 * 9 + 8$
 $24 = 2 * 9 + 6$
 $2 = 0 * 9 + 2$
 $2021_{10} = 2685_9.$

Solution 8. 1^{st} Step: If n = 1, then $\sum_{k=1}^{1} (3-2k) = 1$ and $1 \cdot (2-1) = 1$, so the statement is true. 2^{nd} Step: Assume for some m that the statement is true, that is

$$\sum_{k=1}^{m} (3-2k) = m(2-m).$$

 3^{rd} Step: We need to prove the statement for m + 1:

$$\sum_{k=1}^{m+1} (3-2k) = (m+1)(2-m-1) = (m+1)(1-m).$$

Let us rewrite the above sum:

$$\sum_{k=1}^{m+1} (3-2k) = \left(\sum_{k=1}^{m} (3-2k)\right) + (3-2(m+1)) = m(2-m) + (1-2m) = 1 - m^2 = (1+m)(1-m).$$

Hence the statement is true for m + 1.