
McEliece Cryptosystem

Institute of Mathematics

University of Debrecen

Mathematics, BSc.

Amjad Ali

supervised by

Dr. Szabolcs Tengely

Debrecen, Hungary

April 2023

Abstract

The aim of this thesis is to explore the McEliece cryptosystem, a post-quantum

cryptosystem based on linear codes. As modern cryptosystems based on number

theoretic problems, such as integer factorization and discrete logarithms, are no

longer considered secure with the advent of quantum computers, there has been

a shift towards the study and development of cryptosystems based on other diffi-

cult mathematical problems. The McEliece cryptosystem, based on the NP-hard

general decoding problem of linear codes, is one such candidate. In this thesis, we

provide a simplified explanation of the McEliece cryptosystem, using SageMath

interactive codes to provide a hands-on experience with its basic working princi-

ples. We begin by giving a brief introduction to cryptography, focusing on the

widely used public-key cryptosystem, RSA, in Chapter 1. We then proceed to

provide preliminary information on error-correcting codes in Chapter 2. Finally,

we implement the McEliece cryptosystem using two distinct types of linear codes:

Reed-Solomon in Chapter 3 and binary Goppa Codes in Chapter 4. We have

included the SageMath codes used to develop the interactions in the appendix

section, arranged in sequential order.

Acknowledgement

First, I would like to express my gratitude to my supervisor, Dr. Szabolcs Tengely,

for admitting me under his supervision and providing constant guidance and as-

sistance. Without his expert knowledge, I could not have completed my thesis.

Moreover, I would like to thank my family, my girlfriend, and her family for their

encouragement and support, which have been invaluable in pursuing my thesis.

Finally, I am grateful to my friends who reviewed and provided feedback on my

writing.

i

Contents

1 Introduction 1

2 Error-Correcting Codes 4

2.1 Linear Codes . 4

2.2 Error Detection and Error Correction capacity of Linear Codes . . . 10

2.3 Example . 11

3 The McEliece Cryptosystem 13

3.1 Key Generation . 13

3.2 Encryption . 15

3.3 Decryption . 16

3.4 Implementation Using Classical Reed-Solomon Codes 17

4 Binary Goppa Codes 23

4.1 Encoding . 24

4.2 Decoding . 27

4.3 Implementing McEliece Cryptosystem based on Goppa Codes . . . 31

4.4 Security of McEliece Cryptosystem 35

5 Conclusion 36

Bibliography 37

ii

Appendix 40

A Introductory Codes 40

A.1 Caesar Cipher . 40

A.2 RSA . 40

A.3 Basic Linear Code . 41

A.4 Reed-Solomon Code . 42

B Binary Goppa Codes 44

B.1 Algorithms . 44

B.2 Interactive McEliece using Goppa Codes 47

iii

Chapter 1

Introduction

Cryptography is described as the study and practice of secure transmission of

information in the presence of entities trying all possible means to disrupt the

communication or gain unauthorized access to the information. In cryptogra-

phy, these entities are commonly referred to as adversaries. The earliest recorded

use of cryptography can be traced back to 1900 B.C. Egypt, where it was em-

ployed primarily for recreational purposes [1]. Over time, the use of cryptography

evolved from mere amusement to essential functions such as safeguarding military

and diplomatic communications. One such widely known use was by the Roman

general Julius Caesar around 100 B.C. The scheme of encryption he used became

famous after his name and is still called as ”Caesar Ciphers”. A simple description

of his scheme with possibility of using different values for the shift is given in the

Figure 1.1.

Figure 1.1: Caesar Cipher.

Subsequently, a number of classical cryptographic algorithms, including the Vi-

genère cipher, Hill cipher, and various other schemes, were developed and im-

plemented on a small scale. Most of these methods involved using a single key

1

for both encryption and decryption, which was known only to the sender and in-

tended recipient. This form of cryptography, where a single key is used for both

encryption and decryption, is referred to as private-key cryptography.

However, the main challenge with this type of cryptosystem lies in securely trans-

mitting the key to the communicating parties, particularly when it is not possible

for the parties to physically meet in a secure location or use a reliable courier,

which can be both slow and expensive.

An alternative to the private-key cryptosystem is the public-key cryptosystem,

which was first proposed by Diffie and Hellman in their seminal paper [2]. Al-

though they did not develop a practical working model, their idea was revolution-

ary in the field of cryptography. In 1977, Rivest, Shamir, and Adleman introduced

one of the first practically useful public-key cryptosystems in [3], which is based

on the ideas of Diffie and Hellman. This system is called RSA, which stands for

the initials of the three authors.

The RSA cryptosystem is a number theory-based cryptosystem that utilizes a dif-

ferent set of public and private keys. It is based on a fundamental result from

elementary number theory known as Fermat’s Little Theorem. We state the the-

orem below without proof:

Theorem 1.0.1 (Fermat’s little theorem). Let p be any prime number, a and n

be any coprime natural numbers, that is, gcd(a, n) = 1. Then we have:

ap−1 ≡ 1 mod p.

To generate keys for the RSA cryptosystem, it is necessary to first generate suf-

ficiently large prime numbers p and q, and then calculate their product n = pq.

Next, a natural number e is chosen such that gcd(e, ϕ(n)) = 1, where ϕ is the

Euler-Totient function. For any positive integer n, ϕ(n) is defined as the number

of positive integers less than n that are coprime to n. Because e and ϕ(n) are co-

prime, there exists an integer d in the integer ring modulo ϕ(n) such that ed ≡ 1

mod ϕ(n). The resulting keys are a public key, (n, e), and a private key, (d, p, q).

To encrypt a message m using the RSA cryptosystem, we raise it to the power of e

and then reduce the result modulo n. That is, we calculate c ≡ me mod n, where

c is the resulting ciphertext. To decrypt the ciphertext, we raise it to the power

of d and reduce it modulo n. That is, we calculate cd ≡ m mod n, where m is

the original message.We briefly outline the proof of why the decryption process

works.

2

Proof. From the relation ed ≡ 1 mod ϕ(n), we obtain ed = 1 + kϕ(n) for some

integer k. Therefore, by using this relation, the multiplicative property of ϕ, and

the Fermat’s little theorem, we obtain the following chain of congruences:

cd = med ≡ m1+kϕ(n) ≡ m ·mkϕ(n) ≡ m · (mp−1)k(q−1) ≡ m mod p.

Now repeating the same with q, we obtain cd = med ≡ m mod q. From these two

relations we have for primes p, q that p|med−m and q|med−m. This implies that

n = p · q|med −m. That is, med ≡ m mod n.

To demonstrate how RSA works in practice, we include an interactive SageMath

code, taking inspiration from [4], in the appendix that implements the algorithm.

We also provide a screenshot of an example that we tested using the code in Figure

1.2.

Figure 1.2: RSA.

The security of RSA is based on the computational infeasibility of factoring num-

bers formed from large primes by modern computers. However, according to Shor’s

algorithm [5], the development of a practical quantum computer would render

factoring these numbers to no longer be computationally infeasible . Therefore,

post-quantum secure cryptographic algorithms are being developed that do not

rely on factoring of integers. Instead, the trend is towards problems based on Lat-

tice theory, multivariate polynomials, and error-correcting codes. In this thesis,

we will focus on code-based cryptography. In the next chapter, we will describe

error-correcting codes in detail and show how they are used to build cryptosystems.

3

Chapter 2

Error-Correcting Codes

Error-correcting codes, as their name suggests, were developed to detect and cor-

rect errors caused during the transmission of data over a noisy channel. These

errors can manifest in various forms, such as bit flips, insertion, or deletion of bits.

The central idea behind the development of these codes is to append the origi-

nal data with redundant data, which is mathematically connected to the original

data. This mathematical relation is known by the receiver, and upon receiving

the data, the redundant bits are compared with the bits if no error had occurred.

If a mismatch is detected, it means that errors have been detected therefore, they

are then corrected using some decoding scheme.

An example of such a code(for error detection) in everyday life is the use of 13-

digit barcodes on supermarket products (see [6]). The first 12 digits contain

information about the product, while the last digit is a redundant digit that is

added to check the integrity of the barcode number. For instance, if the barcode

is: a1a2a3a4a5a6a7a8a9a10a11a12a13 then the check digit a13 is calculated as

a13 = 10−

(
6∑

i=1

a2i−1 +
6∑

i=1

3 · a2i

)
mod 10.

2.1 Linear Codes

Linear codes are a well-known and practically useful example of error-correcting

codes. Before presenting the formal definition, we will consider the following

scenario. Let us imagine that two computers, A and B, are communicating over

4

a network. Computer A sends a message, denoted by a vector m,

m =
(
a b c d

)
.

where each entry in m represents a bit. To enable error detection capability,

computer A appends three redundant bits or collections of bits to m, producing a

new vector v,

v =
(
a b c d a+ b b+ c a+ d

)
,

which is then transmitted to computer B. This process of adding redundancy is

known as encoding. Suppose that computer B receives a message v̄, where

v̄ =
(
ā b̄ c̄ d̄ x y z

)
which is related to v but may have been altered during transmission. To verify

whether any errors have occurred, computer B checks the following three parity

relations,

ā+ b̄+ x = 0

b̄+ c̄+ y = 0

ā+ d̄+ z = 0

which are deduced from the encoding scheme involving the addition of bits over

F2 (the XOR operation). For example,

ā+ b̄+ x = ā+ b̄+ (ā+ b̄)

= 2ā+ 2b̄

= 0.

These relations are called parity check equations because each of them checks if

the sum of bits (according to encoding scheme) is 0 mod 2, i.e, the sum is of

even parity. These relations can be used to locate errors in the encoded message.

For instance, if the equation ā + b̄ + x = 1 holds, then it is likely that the error

occurred in either ā, b̄, or x. However, we can suppose that the likelihood of only

one error occurring is higher than the likelihood of two or more errors (see [7]).

In that case, it is reasonable to assume that only one error occurred, and if the

other two parity relations also hold, it is highly likely that the error occurred in

x. In this case, the computer can correct the error simply by flipping the bit x.

This process of error detection and correction is known as decoding.

5

Notice that there is a nice linear structure behind these processes. For example,

to encode the message m to v, where v is called a codeword, we simply need

to multiply m by a 4×7 matrix G whose first three columns generate a 4×4
identity matrix and the remaining columns produces the redundant bits after

multiplication with m. This matrix is called a Generator Matrix of the code and

in our example it looks like:

G =


1 0 0 0 1 0 0

0 1 0 0 1 1 0

0 0 1 0 0 1 1

0 0 0 1 0 0 1


and we can easily observe that the result of the product m · G = v. Similarly,

in the decoding process the parity relations to be verified can be obtained by

multiplying the codeword v by a 3×7 matrix whose last three columns forms an

identity matrix and the first four columns are such that after multiplication by vT ,

it generates a 0⃗, whose entries are nothing but the right hand side of the parity

check equations. This matrix is therefore called the Parity-Check Matrix and in

our case looks like:

H =

1 1 0 0 1 0 0

0 1 1 0 0 1 0

0 0 1 1 0 0 1


and hence the result of the product H · vT = 0⃗. However, if the computer B

receives a message which has been corrupted by an error, i.e v ̸= v̄, then the result

of this product will not be a 0⃗ and hence we can deduce v̄ is not a codeword. As

in our above example, if the bit x in v̄ is flipped then result of the computation

will be:

H · v̄T =
(
1 0 0

)T
.

The product H · v̄T is called the syndrome of v̄.

From the representation of the generator and parity check matrices, we can observe

the nice underlying structure. For instance, if our original message is of size m and

we append n −m bits to our original message, where m ≤ n then our generator

matrix has the block structure:

G =
(
Im×m | Pm×(n−m)

)
and the parity check matrix, as seen form our example, has the following block

6

structure:

H =
(
P(n−m)×m | I(n−m)×(n−m)

)
.

This highlights the connection between the two matrices which is that the rows of

first n −m columns of the parity check matrix are exactly transposed entries of

last n−m columns of the generator matrix. This is not a coincidence but because

of how encoding procedure and the parity relations are defined. In the specific

example we gave above for the message being of 4 bits and the codeword being 7

bits, this can be easily observed. The 5th bit is calculated as a+ b therefore, the

5th column(in red box) of G contains 1 in the first two rows while 0 in the rest so

the 5th bit in the codeword will be calculated as:

a · 1 + b · 1 + c · 0 + d · 0 = a+ b.

Accordingly, the parity check relations are utilized to ascertain whether the fifth

bit of the received word v̄ is intact. If this bit remains uncorrupted by an error,

then the fifth bit of the received word is the sum of bits a and b. This, in turn,

implies that the entries in the first row of the parity matrix corresponding to

columns 1, 2, and 5 must be 1, while all other entries must be 0. By multiplying

the first row of the parity matrix H with the received word v̄ we obtain:

1 · a+ 1 · b+ 0 · c+ 0 · d+ 1 · (a+ b) + 0 · (b+ c) + 0 · (a+ d) = a+ b+ (a+ b) = 0.

Therefore, we can observe that the first row of the parity check matrix is such that

the first 4 entries form a vector which is the transpose of the 5th column of the

generator matrix(see red boxes). Similarly, we can obtain the other entries. This

method allows us to convert between the parity-check matrix and the generator

matrix. These structures are called systematic forms and can be obtained by using

Gaussian Elimination.

Now that we have shown a detailed example, we are ready to list down the formal

definitions of Linear Codes and relevant concepts. The following definitions have

been adapted from [8].

Definition 2.1.1 (Word). Let S be a set of alphabets and n ∈ N . Then s ∈ Sn

is called a word of length n.

Remark 2.1.2. Although the set of alphabets can be arbitrary, we will restrict it

to Finite Fields since most of the results have been developed in this setting.

Definition 2.1.3 (Code). A code C is defined over an alphabet S and is just a

subset of Sn, for some n ∈ N.

7

Definition 2.1.4 (Codeword). An element of the code C is called a codeword. If

C ⊂ Sn, then each codeword in C has length n.

Definition 2.1.5 (Linear Code). If the code C ⊂ Sn generates a vector subspace

over the alphabet S, then this subspace is called a Linear Code, the elements of

which are simply the codewords. A Linear Code is characterized by three essential

parameters: the length n of its codewords, the dimension k, which is the dimension

of C as a vector space over S, and the minimum distance d, and is usually denoted

as [n, k, d]-linear code over S.

Proposition 2.1.6. If S = Fq is a finite field, where q is a prime or a prime

power and C is a [n, k, d]-linear code over S, then k = logq(|C|), where |C| is the

cardinality of C, i.e. the number of codewords in C.

Proof. Consider a vector space V of dimension k over S and let B be its basis. Then

we have, |B| = dimV . This means that there exist vectors v1, v2, . . . , vk ∈ B ⊂ V

and constants a1, a2, . . . , ak ∈ S such that for any v ∈ V , we have:

v = a1v1 + a2v2 + · · ·+ akvk.

Since |S| = q, the number of vectors v ∈ V is equal to qk, i.e, |V | = qk. Therefore,

by homomorphism between C and V , we have |C| = qk and this implies the

statement.

Definition 2.1.7 (Hamming distance, Hamming weight). Let x = (x1, x2, . . . , xn),

y = (y1, y2, . . . , yn) ∈ Sn. Then the Hamming distance from x to y is given by

dham(x,y) := |i ; xi ̸= yi|,

and the Hamming weight of x is given by

dham(x, 0⃗) = |i ; xi ̸= 0|.

Definition 2.1.8 (minimum distance). Let C be a [n, k, d]-linear code over S.

Then the minimum distance of C is defined as

d := min{dham(x,y)|x,y ∈ C and x ̸= y}.

8

Remark 2.1.9. If C is a [n, k, d]-linear code over S, then the minimum dis-

tance of the C is equal to the Hamming weight of the minimum weight code-

word. Thus, we can can calculate the minimum distance as:

d := min{dham(x, 0⃗)|x ∈ C and x ̸= 0⃗}.

A visual representation of this is shown in Figure 2.1.

Figure 2.1: Minimum Distance and Minimum Weight.

Definition 2.1.10 (Generator Matrix). Let C be a [n, k]-linear code over the

alphabet S. A Generator Matrix of C is a k × n matrix, denoted by G, such that

the row space of G forms a basis for C. This enables us to define a linear code C

over an alphabet S alternatively as

C = {m ·G | m ∈ Sk}.

This process of generating codeword from the original message is also called en-

coding.

Definition 2.1.11 (Parity-Check Matrix). For a [n, k]-linear code C over the

alphabet S, the parity check matrix is an (n− k)× n matrix, denoted by H, such

that for any codeword c ∈ C, H · cT = 0⃗. Therefore, we can also define linear

codes as

C = {c ∈ Sn | H · cT = 0⃗}.

9

Definition 2.1.12 (Dual Code). For a [n, k]-linear code C over the alphabet S,

the dual code is defined as

C⊥ := {c̄ ∈ Sn|c̄ · c = 0, ∀c ∈ C}.

Remark 2.1.13. The dual code of C, denoted by C⊥, is a [n, n − k]-linear code

whose generator matrix is the parity-check matrix of C.

2.2 Error Detection and Error Correction capac-

ity of Linear Codes

At the beginning of this section we showed how error correcting codes can be

used to detect one bit errors and thus correct it by flipping the bit. However, in

practice, usually more than one bit error occurs so to maintain efficient information

transfer, our error-correcting codes must be capable of detecting and correcting

more than one bit error. The error detection and correction ability of the linear

code is closely related to its minimum distance.

The [n, k, d]-linear code C can detect errors up to a certain limit, which is strictly

less than the minimum distance d of the code. In other words, 0 < t < d, where

t represents the number of errors. For example, if t denotes the number of errors

that occur in our codeword c, resulting in a received word r containing t errors,

we can express this as r = c + e, where e is a vector that introduces t errors into

our codeword c. If t = d, then the Hamming distance between the codeword c

and the received word r is dham(c, r) = d, which means that r is again a codeword,

i.e., r ∈ C. Therefore, during the decoding stage, we obtain H · rT = 0, where H

is the parity check matrix. This implies that no error has occurred, and thus, the

errors go undetected. Hence, to ensure effective decoding, we must ensure that

the number of errors is less than the minimum distance of the code.

The ability of our code to correct errors depends on the decoding algorithm used.

However, the most efficient and commonly used decoding scheme is based on

minimum distance decoding, which involves finding the nearest codeword to the

received word. Using this scheme, our code can correct up to

t =

⌊
d− 1

2

⌋
,

where d is the minimum distance of the code. This can be easily visualized by

10

considering C as a metric space with dham as the metric and drawing a ball of

radius d−1
2

around each codeword. It is clear that these balls are non-intersecting

since any two codewords are at a distance greater than 2· d−1
2

apart. Therefore, any

error-induced word located within this ball can be mapped to a unique codeword,

achieving error correction.

2.3 Example

In this section we will demonstrate some of the above concepts in a SageMath

Interact session, implementing the generic Linear Codes using the built in sage

LinearCode class(see Figure 2.2).

11

Figure 2.2: Interactive Linear Code

In summary, this chapter has provided an overview of the concept of Error-

Correcting codes, with a particular emphasis on Linear codes. In the following

chapter, we will shift our focus to a well-known cryptographic system based on

Error-Correcting codes, the McEliece Cryptosystem.

12

Chapter 3

The McEliece Cryptosystem

In 1978, McEliece [9] introduced the first ever asymmetric cryptosystem based on

error-correcting codes. The core concept of this cryptosystem is to intentionally

add errors to the original message during encryption and subsequently employ the

error-correcting properties of linear codes to recover the original message during

decryption. However, the encoding and decoding algorithms for Linear Codes

cannot be used verbatim, as the advantageous structure between the Generator

matrix of the Code (in reduced echelon form) and the Parity-check matrix can be

exploited by an adversary. To avoid this vulnerability, McEliece introduced modi-

fications to the encryption and decryption processes rather than simply deploying

the usual encoding and decoding of Linear Codes, as we will see in the subsequent

sections.

3.1 Key Generation

As with any Public-key cryptosystem, the initial step in setting up the McEliece

cryptosystem involves the generation of a pair of public and private keys. Given

that the McEliece cryptosystem is based on linear codes, the first step is to de-

termine the code’s length, dimension, and minimum distance as indicated by the

parameters: n, k, d. With this information, we can readily produce a k×n Gener-

ator Matrix (G) of the underlying Linear Code over a chosen base field. However,

instead of using this generator matrix for encryption, McEliece proposed a scheme

for disguising the generator matrix by multiplying it with the Scrambler Matrix

(S) on the left and the Permutation Matrix (P) on the right. The Scrambler Ma-

trix is a randomly generated k × k non-singular matrix. One way to generate the

Scrambler Matrix is by randomly generating matrices and using fast algorithms to

13

compute the determinants until a matrix with a non-zero determinant is obtained

(see [10]). Alternatively, we can generate a vector space of dimension k over the

base field and select a random element from the vector space. We then iterate

over the remaining elements, selecting only those that are not in the span of the

already chosen vectors, and stop once we obtain k such vectors. This process gives

us an invertible k × k matrix whose rows consist of these basis vectors. Next, we

generate an n × n Permutation Matrix by permuting the columns of an Identity

Matrix of size n, which we can easily create in SageMath using the built-in sage

class Permutations and its methods. Now that we have obtained these matrices,

we compute their product to obtain

G′ = S ·G · P

and call G′ a disguised matrix because it nicely hides the structure of the generator

matrix G. We can describe this transformation as a trapdoor function in which

the easier direction is to compute G′ from S, G and P as this is a mere matrix

multiplication. The difficult direction is to decompose G′ back into S, G and

P without the knowledge of S and P . This makes G′ a perfect candidate for

encryption therefore, a public key. Note that this does not change the underlying

Linear Code so all the properties including error-correcting capacity, given by t,

stays the same. Therefore, the Public Key is given by (G′, t).

The privacy of the scrambler matrix S and permutation matrix P is crucial in hid-

ing the structure of G and therefore, they must be kept confidential. In addition,

knowledge of S and P is necessary for message decoding since the decomposition

of G′ is challenging without this information. Thus, S, P , and G form part of the

Private Key. Moreover, the Private Key must also include a decoding algorithm,

denoted as D, which corrects errors introduced during encryption. Therefore,

the complete Private Key is represented as (S,G, P,D). A pseudocode of the

key-generation process is given in Algorithm 1.

14

Algorithm 1 Key Generation

Input: Generator Matrix, Linear Code

Output: Public Key, Private Key

1: function keyGeneration(generatorMatrix G, linearCode C)

2: k ← numRows(G), n← numCols(G)

3: P ← permutationMatrix(n)

4: S ← scramblerMatrix(F, k)
5: G′ ← S ∗G ∗ P ▷ Compute modified generator matrix

6: d← minimumDistance(C)

7: t←
⌊
(d−1)

2

⌋
▷ Compute error correction parameter

8: D ← decodingAlgorithm(C)

9: publicKey ← (G′, t)

10: privateKey ← (S, P,G,D)

return publicKey, privateKey

3.2 Encryption

Once the keys have been generated, the encryption process becomes fairly simple.

First the original message is split into blocks of length k which we denote by

m. Then for each block m, we generate a random error vector of length n and

Hamming weight t, that is, e ∈ Fn. Finally the cipher text c, for each block m, is

obtained as

c = m ·G′ + e.

To facilitate comprehension, we shall limit our discussion to the encryption and

decryption of a single block, noting that the process can be repeated for each block

in the sequence. Algorithm 2 summarizes the encryption procedure.

Algorithm 2 Encryption

Input: Message Block, Public Key
Output: Ciphertext
1: function encryption(m, t,G′)
2: n← numCols(G′)
3: L← list containing t elements from F and (n− t) 0′s
4: e← generatePermutation(L)
5: c← m ·G′ + e

return c

15

3.3 Decryption

The ciphertext undergoes several transformations before converting back to the

original message. First it is multiplied by inverse of the Permutation Matrix to

undo the permutation action. Then the decoding algorithm for the underlying

Linear Code is used to correct the errors introduced during encryption. Finally

the multiplication by inverse matrices of the Scrambler Matrix and the Generator

Matrix produces back the original message. These transformations indeed yield

the original message as we will show in the following proof. Let c be the ciphertext,

S,G, P be the scrambler, generator, and permutation matrices as described above

and D be the decoding algorithm. Then

c · P−1 = (m ·G′ + e) · P−1

c · P−1 = (m · S ·G · P + e) · P−1

c · P−1 = m · S ·G+ e · P−1

D(c · P−1) = D(m · S ·G+ e · P−1)

D(c · P−1) = m · S ·G

D(c · P−1) · (S ·G)−1 = m.

In the fourth line above, the decoding algorithm is able to retrieve the code word

from the e ·P−1 vector because the inverse Permutation Matrix, P−1, only changes

the permutation of the bits of the error vector and not its weight. The inverse

matrices P−1, (S · G)−1, can be pre-computed and then directly multiplied for

each decryption process. Note that the final step of multiplying by (S · G)−1

can be achieved by using some solving algorithm for linear systems. Algorithm 3

summarizes the decryption process.

Algorithm 3 Decryption

Input: Ciphertext, Private Key
Output: Message
1: function decryption(c, S,G, P,D)
2: m0 ← c · P−1

3: m1 ← D(m0)
4: m← solveEquation((S ·G) ·m = m1)

return m

16

3.4 Implementation Using Classical Reed-Solomon

Codes

In this section we will implement the McEliece cryptosystem using Reed-Solomon

code as the underlying linear code. Reed-Solomon codes are a class of [n, k, d]

Linear Codes (see Definition 2.1.5) over a finite field of size q (Fq) such that

n|q − 1 and d = n − k + 1. For a detailed account of these codes, please refer

to [11].

To set up the cryptosystem, we begin by generating the public and private keys.

Since each linear code based cryptosystem differ only in the encoding matrix and

the decoding algorithm (D), we will only focus on their description. The other

components of keys can be generated in the same way as described in the Section

3.1. To encode a message of length k, a polynomial of degree less than k over Fq is

generated with the coefficients being the coordinates of the message vector. Then n

elements from Fq, (a1, a2, . . . , an) are chosen, on which this polynomial is evaluated

to obtain the codeword for the message. These points are called the evaluation

points of the code. For instance, if the message is m = (m0,m1, . . . ,mk−1) ∈ Fk
q ,

then the corresponding polynomial will be pm(x) =
∑k−1

i=1 mix
i and if α ∈ Fq is a

primitive element, then the evaluation points will be 1, α, α2, . . . , αn−1. Therefore,

the codeword obtained is given by

(pm(1), pm(α), pm(α
2), . . . , pm(α

n−1)).

The encoding procedure can be seen by the matrix multiplication of the message

and the generator matrix below

(
m1 m2 . . . mk

)
·



1 1 1 . . . 1

1 α α2 . . . αn−1

1 α2 (α2)2 . . . (αn−1)2

...
...

...
. . .

1 αk−1 (α2)k−1 . . . (αn−1)k−1


.

It can be readily observed that the Generator matrix has similar structure to a

Vandermonde matrix generated from a primitive element α ∈ Fq. This structure

is utilized in the decoding procedure as well and thus α forms part of the private

key.

For the decoding of Reed-Solomon codes, we use one of the earliest know algorithm

17

deployed for its decoding, namely the Berlekamp-Welch Algorithm (see [12]). As-

sume that the codeword we obtined from encoding of the message (as shown above)

is given by c = (c1, c2, . . . , cn) and denote the received word, possibly containing

errors, by y = (y1, y2, . . . , yn). This means that y = c + e, where e is the error

vector of weight

t ≤ d− 1

2
=

n− k

2
.

To find this error vector, we define a so called Error-Locator polynomial, denoted

by ϵ(x) such that if there was an error in the ith coordinate yi of the received

word, that is pm(ai) ̸= yi, then ai is a root of ϵ(x). Therefore, we can define this

polynomial as ϵ(x) =
∏

i(x− ai).

The primary objective of decoding is to recover the original encoding polynomial

pm(x). One possible approach to achieving this objective is to locate the roots

of the error locator polynomial ϵ(x), which in turn would allow us to identify the

positions of the errors. Subsequently, we could retrieve the encoding polynomial

pm(x) by applying some interpolation technique to the non-error positions. Specif-

ically, for each non-error position, we have the value pm(ai) = yi, which can be

used in the interpolation process.

However, in practice these errors are not known at the receiver end therefore,

another technique is required to obtain pm(x). This technique can be derived

form a nice property satisfied by ϵ(x) which is the following

pm(ai)ϵ(ai) = yiϵ(ai)

for all ai ∈ Fq, yi ∈ y. If we let Q(x) = pm(ai)ϵ(ai) then we obtain an equation

Q(ai) = yiϵ(ai)

(q0 + q1ai + q2a
2
i · · ·+ qqa

j
i)− yi(e0 + e1ai + · · ·+ eta

t
i) = 0,

for i = 0, 1, . . . , n− 1. Note that degQ = k− 1 + t and this implies j = k− 1 + t.

The above equations form a linear system with e0, e1, . . . , et, q0, q1, . . . , qk−1+t as

the unknowns that is 2t+ k − 1 ≤ n− 1 < n unknowns and we have n equations

for each i, thus this system can be solved.

The motivation behind designing the algorithm to obtain pm(x) from the above

linear system can be seen in the matrix multiplication,

18


1 a1 a1

2 · · · aj1 −y1 −y1a1 · · · −y1at1
1 a2 a2

2 · · · aj2 −y2 −y2a2 · · · −y2at2
...

...
...

. . .
...

...
...

. . .
...

1 an an
2 · · · ajn −yn −ynan · · · −ynatn.

 ·



q0

q1

q2
...

qj

e0

e1
...

et



=


0

0
...

0.



Note that since we generated the points a1, a2, . . . , an by a primitive element α ∈
Fq, we can see that the first q columns have a structure similar to the Vandermonde

Matrix (in blue box) and the last t columns(in red box) can be generated by

augmenting the blue block with the vectors obtained by taking coordinate wise

(i.e. pairwise) multiplication of the received word y and the columns of the blue

block. Therefore, this idea is used in the decoding procedure. The remaining

procedure is to transform this matrix into a reduced echolon form. Then using the

last column obtain the two polynomials, Q(x) with first j entries as its coefficients

and ϵ(x) with last t+ 1 entries as its coefficients.

Recall that according to the definition of Q(x) we have,

Q(x)

ϵ(x)
= pm(x)

Therefore, finding this quotient is the only step required to obtain the coefficients

of the decoded word. With the decoded word in hand, we can proceed to de-

crypt the original message that was encrypted using the McEliece scheme. It is

important to note that the decoded word must be multiplied by the inverse of the

scrambler matrix to complete the decryption process.

In the following figure, we demonstrate the implementation of the McEliece cryp-

tosystem using Reed-Solomon codes with parameters n = 12, k = 3 over F13.

19

20

21

Figure 3.1: McEliece PKCS using Reed-Solomon Code

Despite the possibility of implementing the McEliece cryptosystem using Reed-

Solomon codes as presented in this section, this approach is not widely adopted

due to various known attacks that can compromise its security. One example is

the work of Sidelnikov and Shestakov [13], where they demonstrated the feasibility

of acquiring evaluation points and the encoding polynomial from the Generator

matrix’s structural properties. The most secure linear codes which have been

found suitable for McEliece cryptosystem are the so-called Binary Goppa Codes.

In the next chapter, we will investigate these codes in more detail and present an

implementation of McEliece cryptosystem based on these codes.

22

Chapter 4

Binary Goppa Codes

In 1970, Goppa [14] introduced a new class of linear codes which are now named

after him. Here we will present the definition of Goppa codes as presented by

Bernstein in [15].

Definition 4.0.1 (Binary Goppa Codes). Let α1, α2, . . . , αn ∈ F2m be distinct and

g ∈ F2m [x] be a polynomial such that g(αi) ̸= 0 for all i = 1, 2, . . . , n. Then the

Goppa Codes are defined as

C =

{
c ∈ Fn

2 |
n∑

i=1

ci
(x− αi)

mod g = 0

}
.

Remark 4.0.2. In practice, g ∈ F2m [x] is chosen to be irreducible over F2m. This

automatically satisfies the condition g(αi) ̸= 0 for all i = 1, 2, . . . , n.

Proposition 4.0.3. Let h ∈ F2m [x] such that h(x) =
∏n

i=1(x− αi). Then the set

Γ =

{
c ∈ Fn

2 |
n∑

i=1

ci
h

(x− αi)
mod g = 0

}

gives an equivalent definition of the binary Goppa code and is referred to as the

polynomial view of the Goppa code.

Proof. Consider a codeword c ∈ Γ. Then c = (c1, c2, . . . , cn) satisfies that
∑n

i=1 ci
h

(x−αi)

mod g = 0 and this implies h·
∑n

i=1
ci

(x−αi)
mod g = 0, that is, either h ≡ 0 mod g

or
∑n

i=1
ci

(x−αi)
≡ 0 mod g. Since by the choice of g none of the roots of h are the

roots of g, we obtain gcd(h, g) = 1 and therefore h mod (g) ̸= 0. This implies

that c ∈ C. The converse is trivially satisfied.

23

4.1 Encoding

As explained in Chapter 2, the encoding procedure of a word requires its mul-

tiplication by the Generator Matrix of the Linear Code. To obtain this matrix,

we begin by selecting an integer m ≥ 3 which determines the degree of the field

extension. We then generate a random irreducible polynomial over F2m of de-

gree t(error correction capacity), called the Goppa polynomial, and subsequently

choose n code locators α1, α2, . . . , αn ∈ F2m .

It is crucial that the values of m, t and n are chosen such that they satisfy the

following inequalities:

2 ≤ t ≤ 2m − 1

m
and mt < n ≤ 2m.

These constraints are derived from the code’s properties. For example, we observe

that n > mt since the dimension of the Generator Matrix (as we will subsequently

demonstrate) is n−mt > 0, and by choice n > 0,mt > 0. The upper bound on n is

trivial because we need to choose n distinct code locators from F2m and |F2m| = 2m.

Similarly, the upper bound on t follows since the opposite inequality leads to

contradiction on choice of n. Typically boundary values of t do not produce useful

results therefore, it must be chosen somewhere in between. (see [15])

Unlike basic linear codes, in Goppa Codes, the step to obtain the Parity Check

Matrix precedes that to obtain the Generator Matrix, owing to the definition of

the Code by the parity relation. Thus, upon obtaining the code locators and the

Goppa polynomial, we commence constructing the Parity Check Matrix over F2m

and then expand it to a Parity Check Matrix over F2. We employ the defining

property of the code, as indicated in Proposition 4.0.3. Notably, this property

describes the parity relations, for if we consider the column representation of a

matrix

H =
(

h
(x−α1)

mod g h
(x−α2)

mod g · · · h
(x−αn)

mod g
)
,

where each h
(x−αi)

mod g corresponds to a column, and a codeword c = (c1, c2, . . . , cn),

then the product H · cT yields the relation. Therefore, the matrix H indeed is a

parity check matrix over the extended field.

We will now examine the structure of the entries in the matrix H. As previously

noted, for all i = 1, 2, . . . , n, we have that h, g, (x−αi) ∈ F2m [x]. Our objective is

to determine the quotient h
(x−αi)

reduced modulo g and its corresponding algebraic

24

parent. Since we selected g to be an irreducible polynomial over F2m , the ideal

generated by g, denoted by ⟨g(x)⟩, is a maximal ideal in the polynomial ring F2m [x].

Consequently, the quotient group L = F2m [x]
⟨g(x)⟩ creates an extended field which is

isomorphic to F2m(β), where β represents a root of g(x) in this extension of F2m .

Therefore, any element l ∈ L can be expressed as l = a[0] + a[1]β+ · · ·+ a[t−1]βt−1,

where a[0], a[1], . . . , a[t−1] ∈ F2m . As a result, h
(x−αi)

mod g ∈ L for i = 1, 2, . . . , n,

forms a polynomial in β of degree no more than t−1. Thus, the coefficients form a

vector of length t, which correspond to the entries of each column of H. Therefore,

the parity check matrix is a t× n matrix over the extended field F2m and has the

following form

H =


a
[0]
1 a

[0]
2 · · · a

[0]
n

a
[1]
1 a

[1]
2 · · · a

[1]
n

...
...

. . .
...

a
[t−1]
1 a

[t−1]
2 · · · a

[t−1]
n

 .

However, since computers use binary language, we need to transform the parity

check matrix over a binary field to make it easier for them to understand the

Goppa error-correction procedure. This means that we need to expand the matrix

H to a matrix over the base field, which is F2.

To create the expansion algorithm for H over the base field F2, we first recall

that F2m is a field extension of F2 by the root α of an irreducible polynomial

of degree m over F2. Thus, any element f ∈ F2m can be expressed as f =

b[0] + b[1]α + · · · + b[m−1]αm−1, where b[0], b[1], . . . , b[m−1] ∈ F2. Since each entry of

H is of the form a
[j]
i ∈ F2m , it can be represented as a polynomial in α of degree

no more than m − 1, and the coefficients of this polynomial form a (column)

binary vector of length m. Consequently, the resulting parity check matrix has

dimensions m · t× n over F2 and takes the following form:

25

Ĥ =



a1,0,0 a2,0,0 · · · an,0,0

a1,0,1 a2,0,1 · · · an,0,1
...

...
. . .

...

a1,0,m−1 a2,0,m−1 · · · an,0,m−1

a1,1,0 a2,1,0 · · · an,1,0

a1,1,1 a2,1,1 · · · an,1,1
...

...
. . .

...

a1,1,m−1 a2,1,m−1 · · · an,1,m−1

...
...

. . .
...

...
...

. . .
...

a1,t−1,0 a2,t−1,0 · · · an,t−1,0

a1,t−1,1 a2,t−1,1 · · · an,t−1,1

...
...

. . .
...

a1,t−1,m−1 a2,t−1,m−1 · · · an,t−1,m−1



.

The first index of the entry of Ĥ corresponds to the representation of the expression
h

(x−αi)
mod g over L therefore it runs from 1 to n, the second index corresponds

to the representation over F2m therefore it runs from 0 to t−1 and the third index

corresponds to the representation over F2 therefore it runs from 0 to m− 1. Note

that the matrix Ĥ will be a binary matrix, that is, its entries will be either 0 or 1.

Finally to obtain the Generator matrix, we can solve the kernel equation Ĥ ·x = 0.

The basis of the kernel space will then form the rows of the generator matrix. Thus,

the generator matrix will also be a binary matrix and therefore, the encoding

procedure can now be easily done over F2. We summarize the encoding procedure

in Algorithm 4.

Algorithm 4 Encoding

Input: Code Length(n), Goppa Polynomial(g), Word(w)
Output: Generator Matrix(G), Parity Check Matrix(Ĥ)
1: function Encoding(n, g, w)
2: (α1, α2, . . . , αn)← codeLocators(F2m)
3: H ← parityMatrixExtended(α1, α2, . . . , αn, g)
4: Ĥ ← parityMatrixBase(H)
5: G← rightKernelBasis(Ĥ)

return G, Ĥ

26

4.2 Decoding

In 1975, Patterson presented a highly efficient algebraic decoding algorithm for

Goppa Codes [16]. This algorithm can correct errors up to half of the minimum

distance of the code. Since its inception, numerous decoding algorithms have

been developed that can correct more errors, such as the list decoding algorithm

introduced by Bernstein [15]. Despite these advancements, Patterson’s algorithm

remains the simplest to implement and possesses a good error-correction capac-

ity. Thus, we have chosen to implement Patterson’s decoding algorithm for our

demonstration.

We will start by discussing the algorithm’s motivation, which is outlined by Pat-

terson in [16]. This algorithm relies on syndrome decoding, which involves deter-

mining the error vector based on the syndrome of a received word. The objective

is to acquire a polynomial that has roots in the code locators set, which match the

bit position of the received word in which an error would have occurred. We can

formulate this polynomial using the same approach as we did in Reed-Solomon

decoding, given that a maximum of t − 1 errors can occur (to ensure accurate

decoding). The polynomial is defined as follows:

ϵ(x) =
t−1∏
i=1

(x− αi).

Recall that the syndrome polynomial S for Goppa codes aligns with the defining

property of the Goppa codes, as presented in definition 4.0.1. It is given by:

S(x) =
n∑

i=1

ci
(x− αi)

mod g.

It is worth noting that the two polynomials described above have an interesting

connection, which can be expressed using the following equation:

ϵ′(x) =
t−1∏
i=1

(x− αi)
t−1∑
i=1

1

(x− αi)

= ϵ(x)S(x) mod g.

(4.1)

The sum in 4.1 is indeed equal to the syndrome S since the codeword c =

(c1, c2, . . . , cn) is a binary vector and after reducing the sum in the definition

of syndrome S by modulo g, we obtain the the sum in the above equation.

27

The connection between the error polynomial and syndrome polynomial described

in equation 4.1 is crucial to Patterson’s algorithm. Additionally, Patterson utilizes

the fact that a polynomial can be split into two parts, one consisting of the terms

with even powers of the variable x and the other consisting of the terms with

odd powers. This splitting can also be applied to the error-locator polynomial ϵ,

yielding the representation given by

ϵ(x) = A2(x) + xB2(x),

where A is the collection of even powers after taking the common square root and

xB2 corresponds to collection of odd powers. Therefore, B is again a collection of

even powers left after factoring out x and taking the common square root.

From this representation of ϵ we obtain that ϵ′(x) = B2(x) The other terms in the

derivative of ϵ are zero because F2m has characteristic two. Thus, using equation

4.1, we obtain the following relation

B2(x) ≡ ϵ(x)S(x) mod g

≡ (A2(x) + xB2(x))S(x) mod g.

This equation implies that

A(x) ≡ B(x)v(x) mod g, (4.2)

where v2(x) ≡
(

1
S(x)

+ x
)

mod g.

The equation 4.2 is called the Key Equation and its solution gives us the error-

locator polynomial ϵ.

Since some of the concepts in the solution above are highly non-trivial, we will

give their brief explanations in the following subsections.

4.2.1 Syndrome Calculation

The first step in decoding is to compute the syndrome S ∈ F2m [x]/g(x) of the

received word r using the formula given in the Proposition 4.0.3. If the output of

this calculation is zero, then it implies no error has corrupted the codeword, and

the decoding stops. Otherwise we proceed with the next steps.

28

4.2.2 Splitting of Polynomials

Risse, in [17], demonstrates a method for splitting a polynomial into even and

odd parts. This technique showcases the beauty of finite fields F2m , where the

splitting process is greatly simplified. We can collect all the even terms, reduce

their powers by half, and then express them as a whole square, as the mixed terms

in the multinomial vanish due to the field’s characteristic of 2. The same approach

can be taken for the odd terms after factoring out x. For example, if f ∈ F2m [x]

such that f(x) = a1x+ a2x
2 + a3x + a4x

4 then we have:

f(x) = a2x
2 + a4x

4 + a1x+ a3x

= (a2x
2 + 2a2a4xx

2 + a4x
4) + x(a1 + 2a1a3x+ a3x

2)

= (
√
a2x+

√
a4x

2)2 + x(
√
a1 +

√
a3x)

2

= f 2
e + xf 2

o .

Note that since 2a2a4xx
2 ≡ 0 and 2a1a3x ≡ 0 in F2m , it had no effect on adding

to f and therefore, we easily obtained the desired split form of f . This property

help us in finding the error locator polynomial as we saw in the motivation behind

Patterson’s algorithm.

4.2.3 Inverse in F2m[x]/g(x)

An important step in solving the decoding problem is inverting the syndrome

polynomial, which involves computing S−1 mod g. This can be accomplished

easily by applying the Extended Euclidean Algorithm (EEA) to the gcd(g, S).

Once we have S−1, we can proceed with finding the polynomial v. However, we

still need to determine a method for taking the square roots in F2m [x]/g(x) before

proceeding further.

4.2.4 Square Root in F2m[x]/g(x)

The technique of splitting polynomials simplifies the process of finding square roots

in F2m[x]/g(x). We begin by finding the expression for
√
x mod g. The trick is

to split the factoring polynomial g as g(x) = g2e + xg2o , and reduce it modulo g.

29

Therefore, we obtain:

g2e ≡ xg2o mod g

=⇒ x ≡ g2e(x)[g
2
o]

−1(x) mod g

=⇒
√
x ≡ ge(x)g

−1
o (x) mod g.

Using the expression for
√
x mod g, we can find square root of any polynomial

in F2m [x]/g(x) by first splitting it in odd and even parts. Therefore, to obtain the

polynomial v in the decoding procedure, where v2(x) ≡
(

1
S(x)

+ x
)

mod g, we

use the expression for
√
x mod g and obtain:

v2(x) = v2e(x) + xv2o(x)

≡ v2e(x) + (
√
xvo(x))

2 mod g

≡ v2e(x) + (ge(x)g
−1
o (x)vo(x))

2 mod g

≡ (ve(x) + ge(x)g
−1
o (x)vo(x))

2 mod g.

This implies that v(x) ≡ ve(x) + ge(x)g
−1
o (x)vo(x) mod g.

4.2.5 Solving the Key Equation

The next major step in solving the decoding problem is to find the error-locator

polynomial by solving the following key equation:

A(x) ≡ B(x)v(x) mod g.

In other words, we need to find A(x) and B(x) such that degA(x) ≤ t
2
and

degB(x) ≤ t−1
2
, where t is the degree of g. There are various methods to solve

this equation, such as using lattice basis reduction as suggested by Bernstein

in [15], or the Berlekamp-Massey algorithm as described by Patterson in [16], or a

modified extended Euclidean algorithm (EEA) as used in [18]. The equivalence of

these methods for any alternate codes, such as Goppa codes, is discussed in [19].

To find polynomials A and B that satisfy the aforementioned degree bounds and

equation, we adopt an approach similar to that described in [18], using the mod-

ified extended Euclidean algorithm (EEA). We begin by setting r−1 = g(x) and

r0 = v(x), and then compute the subsequent remainders and polynomials C and

B until we obtain a remainder polynomial of degree less than t
2
. Once we have

a polynomial that meets this criterion, we output it as A(x) and the other iter-

30

atively calculated polynomials as C and B. Since we do not need to find C, we

only output A and B.

With the knowledge of the error-locator polynomial ϵ, the decoding of the received

message reduces down to simply finding the roots of this polynomial, determining

the indices of these roots in our code locator set and flipping the bits located at

those indices of the received message.

To get a better overview of the decoding procedure, we summarize it in Algorithm

5.

Algorithm 5 Decoding(Patterson)

Input: Received Word(r), Goppa Polynomial(g), Code Locators(C)
Output: Decoded word (d)
1: function Decoding(n, g, w)
2: S ← syndrome(r, g, C) ▷ compute the syndrome
3: if S == 0 then
4: return r.
5: S−1 ← XGCD(S, g)
6: if S−1 == x then
7: ϵ← x ▷ error polynomial is x
8: roots← errorPosition(ϵ, C) ▷ index of roots of ϵ in C
9: d← bitFlip(r, roots)
10: return d.
11: v ← sqrt(S−1 + x mod g)
12: A,B ← keyEquation(g, v) ▷ solve key equation
13: ϵ← A2 + xB2

14: roots← errorPosition(ϵ, C)
15: d← bitFlip(r, roots)

return d.

4.3 Implementing McEliece Cryptosystem based

on Goppa Codes

In this section, we will implement a basic McEliece cryptosystem using Goppa

Codes, which is the usual choice for this approach due to the reasons discussed

previously. As mentioned in Chapter 3, the encryption and decryption procedures

remain the same as in any other implementation of McEliece. The only difference

is in the encoding and decoding algorithms, which are explained in the previous

sections of this chapter. The implementation is done interactively using SageMath.

We have included screenshots of one example, but for further testing, the codes

included in the appendix can be used.

31

It should be noted that Goppa Codes are the preferred choice for McEliece cryp-

tosystems due to their higher security compared to other linear codes, as discussed

previously.

32

33

34

Figure 4.1: McEliece PKCS using Goppa Codes

4.4 Security of McEliece Cryptosystem

In this section, we will briefly discuss the security aspects of the McEliece cryp-

tosystem. The main security of the cryptosystem lies in the NP-hardness of the

general linear code decoding problem [20]. Since the inception of McEliece cryp-

tosystem, several attacks against it have been proposed in the literature. The

most famous attack is based on Stern’s information set decoding method [21].

This method was used by Bernstein, Lange and Christiane in [22] to practically

attack the cryptosystem consisting of small weight codewords. However, a great

limitation of this attack is that its complexity is exponential and therefore does not

pose a great threat to the cryptosystem if it has been implemented as per correct

standards. Some other kinds of attacks have also been proposed such as partial

key exposure attack mentioned in [23] in which the secret keys can be recovered if a

part of it is leaked. This can be mitigated by carefully designing the cryptosystem

to resist side-channel attacks. Moreover, if the underlying linear code is different

from Goppa Codes, such as Reed Solomon Codes, the cryptosystem is under threat

of efficient (polynomial time) structural attacks as described in [13]. The use of

Goppa codes, as opposed to other linear codes like Reed Solomon codes, is also

important for avoiding efficient structural attacks. Despite existence of these and

other attacks, McEliece cryptosystem (with some modifications) largely remains

secure against practically feasible attacks. This makes it a promising candidate

for post-quantum cryptographic procedures. In fact, a variant of McEliece Cryp-

tosystem was selected for the third round of NIST’s Post-Quantum Cryptography

Standardization Process [24] and has been combined with the classic McEliece [25].

This merged project has qualified for the fourth round as well [26].

35

Chapter 5

Conclusion

In this thesis, we have provided a simplified explanation of the McEliece cryptosys-

tem and its implementation using interactive SageMath. We began by introducing

the basics of cryptography and public key cryptography, followed by a discussion

on error correcting codes and their implementation in SageMath.

Next, we introduced the McEliece cryptosystem and presented its key generation,

encryption, and decryption algorithms, along with a screenshot of its implementa-

tion using Reed Solomon codes. We then explored binary Goppa codes, the usual

approach for implementing the McEliece cryptosystem. We explained their en-

coding and decoding algorithms and provided a screenshot of the implementation

of the McEliece cryptosystem using Goppa codes.

Our main goal in this thesis was to provide a simplified explanation of the McEliece

cryptosystem and its implementation using interactive SageMath. We hope that

this thesis has been successful in achieving this goal, and that it has helped the

readers to gain a deeper understanding of the McEliece cryptosystem.

36

Bibliography

[1] H. Sidhpurwala. A brief history of cryptography. https://www.redhat.com/

en/blog/brief-history-cryptography, 2021.

[2] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transac-

tions on Information Theory, 22(6):644–654, 1976.

[3] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digi-

tal signatures and public-key cryptosystems. Communications of the ACM,

21(2):120–126, 1978.

[4] Sz. Tengely. The RSA algorithm. Lecture Notes on Cryptography.

[5] P. W. Shor. Polynomial-Time Algorithms for Prime Factorization and Dis-

crete Logarithms on a Quantum Computer. SIAM Journal on Computing,

26(5):1484–1509, 1997.

[6] T. Bell. Check digits on product barcodes. Computer Science Field Guide.

[7] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting

Codes, volume 16. Elsevier, 1977.

[8] J. L. Walker. Codes and Curves, volume 7. American Mathematical Soc.,

2000.

[9] R. J. McEliece. A Public-Key Cryptosystem Based On Algebraic Coding

Theory. Deep Space Network Progress Report, 44:114–116, January 1978.

[10] Y. X. Li, D. X. Li, and C. K. Wu. How to generate a random nonsingular

matrix in McEliece’s public-key cryptosystem. In [Proceedings] Singapore

ICCS/ISITA92, pages 268–269. IEEE, 1992.

[11] I. S. Reed and G. Solomon. Polynomial Codes Over Certain Finite Fields.

Journal of the Society for Industrial and Applied Mathematics, 8(2):300–304,

1960.

37

https://www.redhat.com/en/blog/brief-history-cryptography
https://www.redhat.com/en/blog/brief-history-cryptography

[12] L. R. Welch and E. R. Berlekamp. Error Correction for Algebraic Block

Codes. Springer, 1986.

[13] V. M. Sidelnikov and S.O. Shestakov. On insecurity of cryptosystems based

on generalized Reed-Solomon codes. Discrete Mathematics and Applications,

2(4):439–444, 1992.

[14] V. D. Goppa. A new class of linear error-correcting codes. Probl. Inf. Transm.,

6:300–304, 1970.

[15] D. J. Bernstein. List decoding for binary Goppa codes. In Coding and Cryp-

tology: Third International Workshop, IWCC 2011, Qingdao, China, May

30-June 3, 2011. Proceedings 3, pages 62–80. Springer, 2011.

[16] N. J. Patterson. The algebraic decoding of Goppa codes. IEEE Transactions

on Information Theory, 21(2):203–207, 1975.

[17] T. Risse. How SAGE helps to implement Goppa codes and McEliece PKCSs.

Trans. Inform. Theory. Vol. IT, 15(1):122–127, 1969.

[18] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa. A method for

solving key equation for decoding Goppa codes. Information and Control,

27(1):87–99, 1975.

[19] K. Abdelmoumen, H. Ben-Azza, and A. Otmani. Pade approximants and

key lattices for decoding alternant codes. Gulf Journal of Mathematics, 4(4),

2016.

[20] E. R. Berlekamp, R. J. McEliece, and H. Van Tilborg. On the inherent

intractability of certain coding problems (corresp.). IEEE Transactions on

Information Theory, 24(3):384–386, 1978.

[21] J. Stern. A method for finding codewords of small weight. Coding theory and

applications, 388:106–113, 1989.

[22] D. J. Bernstein, T. Lange, and C. Peters. Attacking and defending the

McEliece cryptosystem. In Post-Quantum Cryptography: Second Interna-

tional Workshop, PQCrypto 2008 Cincinnati, OH, USA, October 17-19, 2008

Proceedings 2, pages 31–46. Springer, 2008.

[23] E. Kirshanova and A. May. Breaking Goppa-Based McEliece with Hints.

IACR Cryptology ePrint Archive, 2022:525, 2022.

38

[24] M. Albrecht, C. Cid, K.G. Paterson, C.J. Tjhai, and M. Tomlinson. Nts-kem,

2019. NIST Post-Quantum Cryptography Project: Second Round Candidate

Algorithms. Available online: https://csrc. nist. gov/Projects/Post-Quantum-

Cryptography/Round-2-Submissions (accessed on 27 September 2019), 2020.

[25] T. Chou, C. Cid, S. UiB, J. Gilcher, T. Lange, V. Maram, R. Misoczki,

R. Niederhagen, K.G. Paterson, and E. Persichetti. Classic McEliece: con-

servative code-based cryptography, 10 October 2020, 2020.

[26] G. Alagic, D. Apon, D. Cooper, Q. Dang, T. Dang, J. Kelsey, J. Lichtinger,

C. Miller, D. Moody, R. Peralta, et al. Status report on the third round of the

NIST post-quantum cryptography standardization process. US Department

of Commerce, NIST, 2022.

39

Appendix A

Introductory Codes

A.1 Caesar Cipher

1 #Caesar c iphe r

2 de f c a e s a r c i ph e r en c r yp t i on (message , k) :

3 m = message . s p l i t ()

4 c = []

5 f o r word in m:

6 encryptedWord = ””

7 f o r j in range (l en (word)) :

8 encryptedWord += chr (97 + ((ord (word [j]) = 97) + k) % 26)

9 c . append (encryptedWord)

10 return ” ” . j o i n (c)

11 de f c a e s a r c i ph e r d e c r yp t i on (c ipher t ext , k) :

12 c = c iphe r t ex t . s p l i t ()

13 m = []

14 f o r word in c :

15 decryptedWord = ””

16 f o r j in range (l en (word)) :

17 decryptedWord += chr (97 + ((ord (word [j]) = 97) = k) % 26)

18 m. append (decryptedWord)

19 return ” ” . j o i n (m)

20 @interact

21 de f c a e s a r c i ph e r (k=s l i d e r (vmin=1, vmax=10, d e f au l t =3, l a b e l=” s h i f t : ”) ,

22 m=input box (d e f au l t=” h e l l o ” , he ight=5, type=str , l a b e l=”message : ”)) :

23 c ipherText = ca e s a r c i ph e r en c r yp t i on (m, k)

24 p r e t t y p r i n t (f ”Encrypted message = \ t ” , c ipherText)

25 p r e t t y p r i n t (f ”Notice that each l e t t e r has been s h i f t e d by {k} l e t t e r s ! \n”)

26 pla inText = ca e s a r c i ph e r d e c r yp t i on (cipherText , k)

27 p r e t t y p r i n t (f ”The p l a i n t e x t i s recovered by simply doing the r ev e r s e s h i f t by {k}
l e t t e r s . ”)

28 p r e t t y p r i n t (f ”Recovered message = \ t ” , p la inText)

A.2 RSA

1 @interact

2 de f RSA(p=input box (l a b e l=”p : ” , d e f au l t =311) , q=input box (l a b e l=”q : ” , d e f au l t =733) ,

3 m=input box (l a b e l=”message : ” , d e f au l t =1729)) :

4 #key generat i on

5 n = p * q

6 phi = (p=1) * (q=1)

7 e = max(p , q) + 2

8 whi le not e . i s p r ime () :

9 e = ZZ(randint (max(p , q) + 2 , max(p , q) + 100))

10 d = inverse mod (e , phi)

11 pub l i c key = (n , e)

12 p r i va t e key = (d , p , q)

13 p r e t t y p r i n t (f ”Publ ic Key : { pub l i c key }”)

40

14 p r e t t y p r i n t (f ” Pr ivate Key : { pr i va t e key }”)

15 #encrypt ion

16 c = power mod (m, e , n)

17 #decrypt ion

18 r = power mod (c , d , n)

19 p r e t t y p r i n t (f ”Message : {m}”)

20 p r e t t y p r i n t (f ”Ciphertext : {c}”)

21 p r e t t y p r i n t (f ”Recovered message : { r}”)

A.3 Basic Linear Code

1 p r e t t y p r i n t (”\n\ nSe l e c t the f i n i t e f i e l d , l ength o f the code and the dimension o f the code

below : ”)

2 @interact

3 de f l i n e a r c od e 1 (f=s e l e c t o r ([2 , 3 , 4 , 5 , 7] , l a b e l=”Base F ie ld : ”) ,

4 n=s l i d e r (vmin=2, vmax=7, d e f au l t =5, l a b e l=”Length : ”) ,

5 k=s l i d e r (vmin=1, vmax=5, d e f au l t =3, l a b e l=”Dimension : ”)) :

6

7

8 #genearte a l i s t o f messages and de f ua l t matrix

9 F = GF(f)

10 messages = [[cho i c e (F . l i s t ()) f o r j in range (k)] f o r i in range (5)]

11 G0 = scramblerMatr ix (F , k , n)

12 p r e t t y p r i n t (”\n Give e n t r i e s o f the Generator matrix , ensur ing that the rows form a \n
l i n e a r l y independent s e t o f v e c to r s .\n”)

13 @interact

14 de f l i n e a r c od e 2 (w=inpu t g r i d (k , n , d e f au l t=l i s t (map(l i s t , G0 . rows ())) , l a b e l=”Generator

Matrix : ”) ,

15 m=s e l e c t o r (messages , l a b e l=”Message : ”) , e=input box (type=str , l a b e l=”Error : ”)) :

16

17 #generate Code and G, H matr i ces

18 G = matrix (F , [l i s t (map(F , w[i])) f o r i in range (k)])

19 C = codes . LinearCode (G)

20 H = C. par i ty check mat r i x ()

21

22 #pr in t Code and G, H matr i ces

23 p r e t t y p r i n t (f ”You have generated {C} with minimum di s tance d =

{C. minimum distance () } . \nThus , i t i s capable o f c o r r e c t i n g e r r o r s upto : ”)

24 var (’d ’)

25 p r e t t y p r i n t (” f l o o r o f \ t ” , (d = 1) / 2 , ”\ t = \ t ” , f l o o r ((C. minimum distance () = 1)

/ 2))

26

27 pr in t ()

28

29 p r e t t y p r i n t (”The Generator matrix o f the code i s : ”)

30 p r e t t y p r i n t (G)

31 pr in t ()

32 p r e t t y p r i n t (” Systematic form of generator matrix : ”)

33 p r e t t y p r i n t (C. sy s t emat i c g ene ra to r mat r i x ())

34 p r in t ()

35

36 p r e t t y p r i n t (f ”The corresponding par i ty check matrix o f the l i n e a r code i s : ”)

37 p r e t t y p r i n t (H)

38

39 pr in t ()

40

41 #Encoding

42 p r e t t y p r i n t (” Please s e l e c t a message from the dropdown above f o r encoding ! ”)

43 codeword = vector (F , m) * G

44 p r e t t y p r i n t (f ”The codeword corresponding to your chosen message i s : \ t{codeword}”)

45 p r e t t y p r i n t (f ”Note that the message was o f l ength {k} whi le the codeword i s o f

l ength {n} \n\n”)

46 #Error i n t r oduc t i on

47 #pr in t statement to copy codeword and ente r e r r o r

48 no e r r o r s = (C. minimum distance () = 1) // 2

49 try :

50 errorword = vector ((map(F , e . s p l i t ())))

51 p r e t t y p r i n t (f ” Or i g ina l Message : { vector (F , m)}”)

52 p r e t t y p r i n t (f ”Code Word : {codeword}”)

53 p r e t t y p r i n t (f ”Error Word : { errorword}”)

54

55 #Decoding

56 try :

57 decoded codeword = C. decode to code (errorword)

58 p r e t t y p r i n t (f ”Decoded codeword : {decoded codeword}”)

59 except :

41

60 pass

61 decoded message = C. decode to message (errorword)

62 p r e t t y p r i n t (f ”Decoded message : {decoded message}”)

63 except :

64 p r e t t y p r i n t (f ” Please copy the code word and change upto { no e r r o r s } d i g i t s . ”)

A.4 Reed-Solomon Code

1 de f scramblerMatr ix (base , rows , c o l s) :

2 ””” to generate scrambler matrix (S) , s e t rows=co l s ”””

3 V = base ** c o l s

4 vec to r s = []

5 f o r i in range (rows) :

6 v = V. random element ()

7 whi le v in V. span (vec to r s) :

8 v = V. random element ()

9 vec to r s . append (v)

10 S = matrix (ve c to r s)

11 return S

12

13 de f permutationMatrix (s i z e , base) :

14 ””” gene ra te s permutation matrix (P) o f a given s i z e over the ’ base ’ f i e l d ”””

15 P = (Permutations (s i z e) . random element () . to matr ix ()) . change r ing (base)

16 return P

17

18

19 text1 = ”””\nWe begin by choos ing the F in i t e Fie ld , the Length o f the Code and the Dimension

o f the Code .

20 Please s e l e c t these parameters below : ”””

21 p r e t t y p r i n t (text1)

22 @interact

23 de f reed solomon1 (f=input box (d e f au l t =13, type=Integer , l a b e l=” Fie ld s i z e : ”) , #only to be

used with prime f i e l d s

24 n=input box (d e f au l t =12, type=Integer , l a b e l=”Length : ”) ,

25 m=input box (d e f au l t =3, type=Integer , l a b e l=”Dimension : ”)) :

26

27 #generate code

28 F.<z> = GF(f)

29 PR.<x> = PolynomialRing (F)

30 C = codes . ReedSolomonCode (F , n , m)

31 p r e t t y p r i n t (f ”\nYou have generated a {C} . ”)

32 p r e t t y p r i n t (f ”\nThe Generator matrix (G) o f the code i s : ”)

33 G = C. generator matr ix ()

34 p r e t t y p r i n t (G)

35

36 #Key generat i on

37 text2 = ”””\ nFi r s t we generate the Publ ic and Pr ivate keys . ”””

38 p r e t t y p r i n t (text2)

39 P = permutationMatrix (n , F)

40 S = scramblerMatr ix (F , m, m)

41 d i sgu i sedMatr ix = S * G * P

42 p r e t t y p r i n t (”\nPermutation Matrix (P) : ”)

43 p r e t t y p r i n t (P)

44 p r e t t y p r i n t (”\nScrambler Matrix (S) : ”)

45 p r e t t y p r i n t (S)

46 p r e t t y p r i n t (”\nDisguised Matrix (G ’) : ”)

47 p r e t t y p r i n t (d i sgu i s edMatr ix)

48 d = C. minimum distance ()

49 t = (d=1) // 2

50 p r e t t y p r i n t (f ”\nError=Correct ion capac i ty : { t } . ”)

51 p r e t t y p r i n t (f ”\nThe p r im i t i v e element o f the f i e l d chosen i s : p =

{F. p r im i t i v e e l ement () }”)

52 text3 = ”””\nThen the keys are given by : \nPublic Keys = (G ’ , t) \nPrivate Keys = (S , G,

P, p)\n\n”””

53 p r e t t y p r i n t (text3)

54

55 #Encryption

56 p r e t t y p r i n t (”Encryption : \n”)

57 message = ” , ” . j o i n (map(st r , [F . random element () f o r i in range (m)]))

58 e r r o r L i s t = [cho i c e (F . l i s t ()) f o r i in range (t)] + [0 f o r j in range (n=t)]

59 s h u f f l e (e r r o r L i s t)

60 e r r o r = ” , ” . j o i n (map(st r , e r r o r L i s t))

61 p r e t t y p r i n t (f ”\nEnter the message o f l ength {m} . ”)

62 p r e t t y p r i n t (f ”Enter the e r r o r vector , ensur ing i t conta ins at most { t} non=zero

elements ,\n an example has a l ready been generated f o r you : ”)

63

42

64 @interact

65 de f reed solomon2 (w=input box (d e f au l t=message , type=str , l a b e l=”message : ”) ,

66 e=input box (d e f au l t=error , type=str , l a b e l=”Errors : ”)) :

67

68 message = vector (F , map(F , w. s p l i t (” , ”)))

69 e r r o r = vector (F , map(F, e . s p l i t (” , ”)))

70 cipherText = message* d i sgu i s edMatr ix + e r r o r

71 p r e t t y p r i n t (f ”\nYour encrypted message (c) i s : \n\n”)

72 p r e t t y p r i n t (c ipherText)

73

74 #Decryption

75 p r e t t y p r i n t (”\nDecryption : \n”)

76

77 y = cipherText *P. i nv e r s e ()

78 p r e t t y p r i n t (LatexExpr (r ”c \cdotp Pˆ{=1} = ”))

79 p r e t t y p r i n t (y)

80

81 p r e t t y p r i n t (f ”\nGenerate Vandermonde Matrix (V) o f s i z e {n} . ”)

82 m0 = matrix . vandermonde ([(F . p r im i t i v e e l ement ()) ˆk f o r k in range (n)] , r i ng=F)

83 p r e t t y p r i n t (m0)

84

85 m1Columns = n = t

86 m1 = m0 [: , 0 : m1Columns]

87 p r e t t y p r i n t (f ”\ nFi r s t {m1Columns} columns o f V: ”)

88 p r e t t y p r i n t (m1)

89 f o r k in range (f = m1Columns) :

90 v1 = m1. column (k)

91 m1 = m1. augment (matrix (F , v1 . pa i rw i s e p roduc t (y)) . t ranspose ())

92 #m1=m1. augment (v1 . pa i rw i s e p roduc t (y))

93

94 p r e t t y p r i n t (f ”\nAugmented Matrix in reduced echolon form : ”)

95 p r e t t y p r i n t (m1. r r e f ())

96

97 poly = = m1. r r e f () . column(=1)

98 p r e t t y p r i n t (f ”\nChoose the l a s t column and mult ip ly by =1(mod { f }) : ”)

99 p r e t t y p r i n t (poly)

100

101 Q0 = PR(l i s t (poly) [: m1Columns])

102 p r e t t y p r i n t (f ’\nForm a polynomial (P1) with f i r s t {m1Columns} e n t r i e s as

c o e f f i c i e n t s : ’)

103 p r e t t y p r i n t (Q0)

104

105 Q1 = PR(l i s t (poly) [m1Columns :] + [1])

106 p r e t t y p r i n t (f ’\nForm another polynomial (P2) with l a s t {n=m1Columns} e n t r i e s as

c o e f f i c i e n t s : ’)

107 p r e t t y p r i n t (Q1)

108

109 Q3 = = Q0. quo rem (Q1) [0]

110 p r e t t y p r i n t (’\nFind the quot i ent o f P1 / P2 \n ’)

111 p r e t t y p r i n t (Q3)

112

113 p r e t t y p r i n t (f ’ Mult ip ly by : \ t ’ , LatexExpr (r ”Sˆ{=1}”))

114 recoveredText = matrix (F , l i s t (Q3)) *S . i nv e r s e ()

115 p r e t t y p r i n t (”\nYour decrypted message i s : ”)

116 p r e t t y p r i n t (recoveredText)

43

Appendix B

Binary Goppa Codes

B.1 Algorithms

1 de f goppaPolynomial (F , t) :

2 ””” generate a s e t o f 5 i r r e d u c i b l e goppa polynomials ”””

3 P.<x> = PolynomialRing (F)

4 S = Set ([])

5 k = 0

6 whi le S . c a r d i n a l i t y ()<5 and k<10:

7 S = S . union (Set ([P . i r r e du c i b l e e l emen t (t)]))

8 k += 1

9 return S

10

11 de f parityMatrixGCExt (F , n , g) :

12 ””” generate Par i ty check matrix H over extended f i e l d

13 F : extended f i e l d in z

14 n : l ength o f code

15 g : i r r e d u c i b l e goppa polynomial ”””

16 #i n i t i a l i z a t i o n

17 P.<x> = PolynomialRing (F)

18 t = g . degree ()

19

20 #generate code l o c a t o r s o f n f i e l d e lements

21 c od e l o c a t o r s = Permutations (F . l i s t () [1 : n=1] + [F(1) , F(0)] , n) . random element ()

22

23 #generate polynomial h with roo t s in c od e l o c a t o r s

24 h = F(1)

25 f o r i in c od e l o c a t o r s :

26 h *= (x = i)

27

28 #generate column vec to r s

29 v = []

30 f o r i in c od e l o c a t o r s :

31 v . append ((h * inverse mod ((x = i) , g)) .mod(g))

32

33 #generate H

34 H = matrix (F , t , n)

35 f o r j in range (n) :

36 element = l i s t (v [j]) #convert poly to l i s t

37 f o r i in range (t) :

38 i f i < l en (element) :

39 H[i , j] = element [i]

40 e l s e :

41 H[i , j] = 0

42 return H, c od e l o c a t o r s

43

44 de f polyToVector (F , p) :

45 ”””Converts polynomial over F to a vector over base o f F

46 F : extended f i e l d

47 p : polynomial

48 ”””

49 P.<z> = PolynomialRing (F . base ())

44

50 f = P(p)

51 c o e f f = f . l i s t ()

52 m = F. degree ()

53 v = []

54 f o r i in range (m) :

55 i f i < l en (c o e f f) :

56 v . append (c o e f f [i])

57 e l s e :

58 v . append (0)

59 return vector (F . base () , v)

60

61 de f parityMatrixGCBase (F , H) :

62 ”””Expand par i ty matrix H over extended f i e l d to a matrix over base f i e l d

63 F : extended f i e l d

64 H: matrix over F”””

65 m = F. degree ()

66 n = H. nco l s ()

67 k = H. nrows ()

68 H base = matrix (F . base () , m*k , n)

69 f o r j in range (n) :

70 r = 0

71 f o r i in range (k) :

72 H base [r : r+m, j] = polyToVector (F , H[i , j])

73 r += m #update row index

74 return H base

75

76 de f generatorMatrixGCBase (m, t , n , H) :

77 ””” generate Generator Matrix (G) over GF(2)

78 k : nrows = m* t (dimension o f code)

79 n : nco l s (l ength o f code)

80 H: pa r i ty check matrix over GF(2)

81 ”””

82 H ke rn e l ba s i s = H. r i g h t k e r n e l () . b a s i s () #de f i n e r i gh t ke rne l ba s i s

83 G = matrix (GF(2) , H ke rn e l ba s i s [: n=m* t]) #choose n=mt vec to r s from ba s i s

84 return G

85

86 #Decryption

87 de f hammingDistance (v1 , v2) :

88 ”””Computes Hamming Distance between two vec to r s v1 and v2”””

89 whi le l en (v1) < l en (v2) :

90 v1 . append (0)

91 whi le l en (v2) < l en (v1) :

92 v2 . append (0)

93 count = 0

94 f o r i in range (l en (v1)) :

95 i f v1 [i] != v2 [i] :

96 count += 1

97 return count

98

99 de f syndrome (m, w, g , support) :

100 ”””Compute the syndrome o f the word as per d e f i n i t i o n o f Goppa Code”””

101 F.<z> = GF(2ˆm)

102 P.<x> = PolynomialRing (F)

103 s = [w[i] * inverse mod ((x = support [i]) , g) f o r i in range (l en (w))]

104 return sum(s)

105

106 de f sqrtX (m, g) :

107 ”””compute square root o f x modulo g in extended f i e l d ”””

108 F.<z> = GF(2ˆm)

109 P.<x> = PolynomialRing (F)

110 g 0 l i s t = g . l i s t () [: l en (g . l i s t ()) : 2]

111 g 1 l i s t = g . l i s t () [1 : l en (g . l i s t ()) : 2]

112 g0 = sum ([sq r t (g 0 l i s t [i]) *xˆ(i) f o r i in range (l en (g 0 l i s t))])

113 g1 = sum ([sq r t (g 1 l i s t [i]) *xˆ(i) f o r i in range (l en (g 1 l i s t))])

114 g1 inv = xgcd (g1 , g) [1]

115 root x = (=g0* g1 inv) .mod(g)

116 #root x = (g0* g1 inv) .mod(g)

117 return roo t x

118

119 de f sqrtP (m, S , g , r oo t x) :

120 ”””compute square root o f any polynomial p mod g in extended f i e l d ”””

121 F.<z> = GF(2ˆm)

122 P.<x> = PolynomialRing (F)

123 h = inverse mod (S , g) + x

124 h 0 l i s t = h . l i s t () [: l en (h . l i s t ()) : 2]

125 h 1 l i s t = h . l i s t () [1 : l en (h . l i s t ()) : 2]

126 h0 = sum ([sq r t (h 0 l i s t [i]) *xˆ(i) f o r i in range (l en (h 0 l i s t))])

127 h1 = sum ([sq r t (h 1 l i s t [i]) *xˆ(i) f o r i in range (l en (h 1 l i s t))])

128 v = (h0 + root x * h1) .mod(g)

129 return v

45

130

131 de f keyEquation (m, v , g) :

132 ”””Extended Eucl idean Algorithm to so l v e key equat ion v*B = a mod g”””

133 F.<z> = GF(2ˆm)

134 P.<x> = PolynomialRing (F)

135 t = g . degree ()

136

137 # I n i t i a l i z e r 0 = g , r 1 = v , u 0 = 0 , u 1 = 1

138 r 0 = g

139 r 1 = v

140 u 0 = P(0)

141 u 1 = P(1)

142

143 # Repeat un t i l deg (r 1) >= n/2

144 whi le r 1 . degree () >= t /2 :

145 q , r = r 0 . quo rem (r 1)

146

147 # Update r 0 = r 1 , r 1 = R

148 r 0 = r 1

149 r 1 = r

150

151 # Update u 0 = u 0 = Q*u 1 mod g

152 u 0 = u 0 = q * u 1 .mod(g)

153

154 # Swap u 0 and u 1

155 u 0 , u 1 = u 1 , u 0

156 return r 1 , u 1

157

158 de f e r r o rPo s i t i o n (m, e r ro r po lynomia l , c od e l o c a t o r s) :

159 ””” f i nd e r r o r p o s i t i o n s ”””

160 F.<z> = GF(2ˆm)

161 P.<x> = PolynomialRing (F)

162 e r r o r s = [c od e l o c a t o r s [i] f o r i in range (l en (c od e l o c a t o r s)) i f

e r r o r po lynomia l (c od e l o c a t o r s [i]) == 0]

163 e r r o r p o s i t i o n s = [c od e l o c a t o r s . index (e r r o r s [i]) f o r i in range (l en (e r r o r s))]

164 return e r r o r p o s i t i o n s

165

166 de f b i tF l i p (e r r o r p o s i t i o n s , w) :

167 ””” c o r r e c t e r r o r s in the r e c e i v ed word w”””

168 f o r i in range (l en (e r r o r p o s i t i o n s)) :

169 w[e r r o r p o s i t i o n s [i]] = (w[e r r o r p o s i t i o n s [i]] + 1) % 2

170 return w

171

172 #Patterson ’ s decoding algor i thm

173 de f pattersonDecoding (m, rece ived word , goppa polynomial , c od e l o c a t o r s) :

174 ””” Patterson ’ s Goppa Code decoding algor i thm ”””

175 F.<z> = GF(2ˆm)

176 P.<x> = PolynomialRing (F)

177

178 #compute the syndrome

179 S = syndrome (m, rece ived word , goppa polynomial , c od e l o c a t o r s)

180 i f S == 0 :

181 return ”Codeword”

182

183 #checking i f e r r o r polynomial i s l i n e a r

184 h = inverse mod (S , goppa polynomial)

185 i f (h / h . l i s t () [=1]) == x :

186 e r r o r p o s i t i o n s = cod e l o c a t o r s . index (F(0))

187 rece ived word [e r r o r p o s i t i o n s] = (rece ived word [e r r o r p o s i t i o n s] + 1) % 2

188 #pr e t t y p r i n t (f ”The i nv e r s e polynomial i s : {h}\n”)

189 return rece ived word

190

191 #compute sq r t (x)

192 root x = sqrtX (m, goppa polynomial)

193 #compute sq r t (1/S + x)

194 v = sqrtP (m, S , goppa polynomial , r oo t x)

195

196 #so l v e key equat ion dB = A mod g

197 a0 , b0 = keyEquation (m, v , goppa polynomial)

198 i f (a0 , b0) == (’ e ’ , ’ e ’) :

199 return ”BadGoppaPolynomial”

200

201 #de f i n e monic e r r o r l o c a t o r polynomial

202 e r ro r po lynomia l = a0ˆ2 + x* b0ˆ2

203 e r ro r po lynomia l = er ro r po lynomia l / e r ro r po lynomia l . l i s t () [=1]

204

205 #f ind e r r o r po s i t i o n and decode

206 e r r o r p o s i t i o n s = e r r o rPo s i t i o n (m, e r ro r po lynomia l , c od e l o c a t o r s)

207 rece ived word copy = rece ived word [:]

208 decodeword = b i tF l i p (e r r o r p o s i t i o n s , rece ived word copy)

46

209 return decodeword , S , h , v , a0 , b0 , e r ro r po lynomia l , e r r o r p o s i t i o n s

210

211 # McEliece

212 de f scramblerMatr ix (base , rows , c o l s) :

213 ””” to generate scrambler matrix (S) , s e t rows=co l s ”””

214 V = base ** c o l s

215 vec to r s = []

216 f o r i in range (rows) :

217 v = V. random element ()

218 whi le v in V. span (vec to r s) :

219 v = V. random element ()

220 vec to r s . append (v)

221 S = matrix (ve c to r s)

222 return S

223

224 de f permutationMatrix (s i z e , base) :

225 ””” gene ra te s permutation matrix (P) o f a given s i z e over the ’ base ’ f i e l d ”””

226 P = (Permutations (s i z e) . random element () . to matr ix ()) . change r ing (base)

227 return P

228

229 de f keyGeneration (m, t , n , g) :

230 ”””key generat i on algor i thm f o r McEleice Cryptosystem”””

231 F.<z> = GF(2ˆm)

232 P.<x> = PolynomialRing (F)

233

234 #generate pa r i ty and generator matr i ces

235 H, support = parityMatrixGCExt (F , n , g)

236 H base = parityMatrixGCBase (F , H)

237 G = generatorMatrixGCBase (m, t , n , H base)

238

239 #generate scrambler and permutation matr i ces

240 S = scramblerMatr ix (GF(2) , n=m* t , n=m* t)

241 P = permutationMatrix (n , GF(2))

242

243 #compute the d i s gu i s ed encrypt ion matrix

244 d i s gu i s ed mat r i x = S * G * P

245 return d i sgu i s ed matr ix , S , P, support , G, H, H base

246

247 de f encrypt ion (word , d i sgu i s ed matr ix , t , n) :

248 ””” Encryption algor i thm f o r McEliece Cryptosystem”””

249

250 #generate e r r o r vec tor

251 e r r o r s = [1 f o r i in range (t=1)] + [0 f o r j in range (n=t+1)]

252 p = Permutations (e r r o r s)

253 e r r o r v e c t o r = vector (GF(2) , p . random element ())

254

255 #encrypt message

256 p r e c i ph e r t e x t = word * d i s gu i s ed mat r i x

257 c i phe r t ex t = p r e c i ph e r t e x t + e r r o r v e c t o r

258 return c ipher text , e r r o r v e c t o r , p r e c i ph e r t e x t

259

260 de f decrypt ion (m, c ipher t ext , polynomial , c ode l o ca to r s , P, S , generator matr ix) :

261 ”””Decryption algor i thm f o r McEliece Cryptosytem”””

262 F.<z> = GF(2ˆm)

263 PR.<x> = PolynomialRing (F)

264

265 #rev e r s e the permutation

266 inver s e pe rmutat ion = c iphe r t ex t * P. i nv e r s e ()

267

268 #decode the e r r o r s

269 patterson outcome , syndrome , inv syndrome , v , a0 , b0 , eps i l on , e r r o r p o s i t i o n s =

pattersonDecoding (m, l i s t (inve r s e pe rmutat ion) , polynomial , c od e l o c a t o r s)

270 i f patterson outcome == ”Codeword” :

271 return ”There i s no e r r o r in the r e c e i v ed word . ”

272 decodedword = vector (GF(2) , patterson outcome)

273

274 #decrypt the r e c e i v ed word

275 p l a i n t e x t = (S * generator matr ix) . s o l v e l e f t (decodedword)

276 return p la in t ex t , inverse permutat ion , syndrome , inv syndrome , v , a0 , b0 , eps i l on ,

e r r o r p o s i t i o n s , decodedword

47

B.2 Interactive McEliece using Goppa Codes

1 #run Goppa Code Algorithms

2

3 text1 = ”””

4 To s e t up the Cryptosystem , we f i r s t need to s e l e c t the f o l l ow ing parameters :

5 m: degree o f the f i e l d extens ion o f GF(2)

6 t : number o f e r ror=c o r r e c t i o n s r equ i r ed

7 n : l ength o f the code

8 g : an i r r e d u c i b l e goppa polynomial o f degree t .

9 Please s e l e c t these parameters below : ”””

10 p r e t t y p r i n t (text1 , f i g s i z e =[60 , 1 0])

11

12 @interact

13 de f mcEliece1 (m=s l i d e r (vmin=3, vmax=8, s t e p s i z e =1, d e f au l t =4, l a b e l=’m =’) ,

14 t=s l i d e r (vmin=2, vmax=32, s t e p s i z e =1, d e f au l t =3, l a b e l=’ t =’)) :

15

16 p r e t t y p r i n t (f ” ! ! Ensure ’ t ’ does not exceed {(2ˆm =1) // m} . ”)

17

18 F.<z> = GF(2ˆm)

19 P.<x> = PolynomialRing (F)

20

21 @interact

22 de f mcEliece3 (n=s l i d e r (vmin=m* t , vmax=2ˆm, s t e p s i z e =1, d e f au l t=2ˆm, l a b e l=’n =’) ,

23 g=s e l e c t o r (l i s t (goppaPolynomial (F , t)) , l a b e l=’ g =’)) :

24 p r e t t y p r i n t (”The Goppa Polynomial you have chosen i s : \ t ” , g)

25

26 # Generate keys

27 p r e t t y p r i n t (”\n\nKEY GENERATION: ”)

28 d i sgu i s ed matr ix , scrambler matr ix , permutation matrix , c ode l o ca to r s ,

generator matr ix , pa r i ty ex t ,

29 pa r i t y ba s e = keyGeneration (m, t , n , g)

30

31 p r e t t y p r i n t (f ”\nObtain a s e t o f Code Locators c o n s i s t i n g o f {n} e lements from {F}”)

32

33 p r e t t y p r i n t (f ”\nObtain a { t} x {n} Par i ty Check matrix over F 2m using\ t ” ,

34 LatexExpr (r ”\sum { i =1}ˆ{n} c i \ f r a c {h}{(x = \ a l pha i)}\mod g = 0 ”))

35 p r e t t y p r i n t (”Due to long r ep r e s en t a t i on o f pa r i ty check matrix , we r ep r e s en t i t in

two part s

36 (between l i n e s) ”)

37

38 p r e t t y p r i n t (”==

39 ====================”)

40

41 p r e t t y p r i n t (pa r i t y e x t [: , : 8])

42 p r e t t y p r i n t (pa r i t y e x t [: , 8 :])

43

44 p r e t t y p r i n t (”==

45 ==================”)

46

47 #pr e t t y p r i n t (pa r i t y e x t)

48 p r e t t y p r i n t (f ”\nConvert i t to a {m* t} x {n} Par i ty Check matrix over GF(2) ”)

49 p r e t t y p r i n t (pa r i t y ba s e)

50

51 p r e t t y p r i n t (f ”\nObtain the Generator Matrix (G) o f s i z e : {n=m* t} x {n} from

52 the ke rne l space o f pa r i ty check matrix ”)

53

54 p r e t t y p r i n t (generator matr ix)

55

56 p r e t t y p r i n t (f ”\nObtain a {n=m* t} x {n=m* t} i n v e r t i b l e scrambler matrix (S) ”)

57 p r e t t y p r i n t (scrambler matr ix)

58

59 p r e t t y p r i n t (f ”\nObtain a {n} x {n} permutation matrix ”)

60 p r e t t y p r i n t (permutat ion matr ix)

61

62 p r e t t y p r i n t (”\nObtain the Encryption matrix (G ’) by mul t ip ly ing S * G * P”)

63 p r e t t y p r i n t (d i s gu i s ed mat r i x)

64

65 p r e t t y p r i n t (”\n\nPublic key : (t , G ’) ”)

66 p r e t t y p r i n t (” Pr ivate key : (S , P, g , Code l o c a t o r s) ”)

67

68 #encrypt ion

69 p r e t t y p r i n t (”\n\n ENCRYPTION”)

70 p r e t t y p r i n t (f ”\nEnter the binary word o f l ength {n = m* t} with spaces with spaces

between each b i t : ”)

71 va l u e p l a i n t e x t = ” ” . j o i n (map(st r , [randint (0 , 1) f o r i in range (n = m* t)]))

72

73 @interact

74 de f mcEliece4 (p l a i n t e x t=input box (d e f au l t=va lu e p l a i n t ex t , type=str , l a b e l=’Message :

48

’ ,

75 width=100 , he ight=5)) :

76

77 p r e t t y p r i n t (”\nWe encrypt the message by mul t ip ly ing i t by the encrypt ion

matrix (G ’) . ”)

78 word = vector (GF(2) , map(int , p l a i n t e x t . s p l i t ()))

79 c ipher text , e r ror , p r e c i ph e r t e x t = encrypt ion (word , d i sgu i s ed matr ix , t , n)

80 p r e t t y p r i n t (f ”\nThe r e s u l t o f the mu l t i p l i c a t i o n i s : ”)

81 p r e t t y p r i n t (p r e c i ph e r t e x t)

82 p r e t t y p r i n t (”Now we add the f o l l ow ing e r r o r to the above product : ”)

83 p r e t t y p r i n t (e r r o r)

84 p r e t t y p r i n t (f ’ F ina l l y we obta in the encrypted message : ’)

85 p r e t t y p r i n t (c i phe r t ex t)

86

87 #decrypt ion

88 p r e t t y p r i n t (”\n\nDECRYPTION”)

89

90 decrypt ion output = [0 f o r i in range (10)]

91

92 decrypt ion output = decrypt ion (m, c ipher t ext , g , c ode l o ca to r s ,

permutation matrix ,

93 scrambler matr ix , genera to r matr ix)

94

95 r e c ov e r ed p l a i n t e x t = decrypt ion output [0]

96 inver se pe rmutat ion = decrypt ion output [1]

97 syndrome = decrypt ion output [2]

98 inv syndrome = decrypt ion output [3]

99 v = decrypt ion output [4]

100 a0 = decrypt ion output [5]

101 b0 = decrypt ion output [6]

102 ep s i l o n = decrypt ion output [7]

103 e r r o r p o s i t i o n s = decrypt ion output [8]

104 decodedword = = decrypt ion output [9]

105

106 p r e t t y p r i n t (f ”\nMultiply the c i phe r t ex t by i nv e r s e o f the Permutation matrix to

obta in : ”)

107 p r e t t y p r i n t (inver se pe rmutat ion)

108

109 p r e t t y p r i n t (”\nNow we proceed with e r r o r c o r r e c t i o n us ing Patterson Algorithm”)

110

111 p r e t t y p r i n t (f ”\nSyndrome Computation : ”)

112 p r e t t y p r i n t (syndrome)

113

114 p r e t t y p r i n t (f ”\ nInver s i on o f syndrome modulo g : ”)

115 p r e t t y p r i n t (inv syndrome)

116

117 p r e t t y p r i n t (”\nOutput o f v = sq r t (Sˆ{=1} + x) mod g : ”)

118 p r e t t y p r i n t (v)

119

120 p r e t t y p r i n t (”\nNow we so l v e the Key Equation us ing EEA algorithm , the output i s :

”)

121 p r e t t y p r i n t (f ”A: {a0}”)

122 p r e t t y p r i n t (f ”B: {b0}”)

123 p r e t t y p r i n t (f ”\nTherefore , the e r r o r l o c a t o r polynomial i s : ”)

124 p r e t t y p r i n t (ep s i l o n)

125

126 p r e t t y p r i n t (”\nThe indexes o f the r e c e i v ed word in which e r r o r occured : ”)

127 p r e t t y p r i n t (e r r o r p o s i t i o n s)

128

129 p r e t t y p r i n t (f ”\nThus a f t e r f l i p p i n g the b i t s , we recove r the codeword : ”)

130 p r e t t y p r i n t (decodedword)

131

132 p r e t t y p r i n t (f ”\nNow, we so l v e the equat ion S*G*m = d to recove r the message m: ”)

133 p r e t t y p r i n t (r e c ov e r ed p l a i n t e x t)

134

135 p r e t t y p r i n t (”Ver i fy i f the recovered message i s same as the o r i g i n a l : ”)

136 p r e t t y p r i n t (word == re c ov e r ed p l a i n t e x t)##

49

	Introduction
	Error-Correcting Codes
	Linear Codes
	Error Detection and Error Correction capacity of Linear Codes
	Example

	The McEliece Cryptosystem
	Key Generation
	Encryption
	Decryption
	Implementation Using Classical Reed-Solomon Codes

	Binary Goppa Codes
	Encoding
	Decoding
	Implementing McEliece Cryptosystem based on Goppa Codes
	Security of McEliece Cryptosystem

	Conclusion
	Bibliography
	Appendix
	Introductory Codes
	Caesar Cipher
	RSA
	Basic Linear Code
	Reed-Solomon Code

	Binary Goppa Codes
	Algorithms
	Interactive McEliece using Goppa Codes

