
ANTA20250512

May 12, 2025

Common modulus attack

Suppose that at a company it is decided that they will use the RSA cryptosystem with a given
modulus 𝑁 and each employee will have a personalized public encryption exponent 𝑒 and corre-
sponding private decryption exponent 𝑑. A manager sends the same message 𝑚 to two of his/her
colleagues. It will yield two different ciphertexts

𝑐1 ≡ 𝑚𝑒1 (mod 𝑁),
𝑐2 ≡ 𝑚𝑒2 (mod 𝑁).

Here 𝑁, 𝑒1, 𝑒2, 𝑐1 and 𝑐2 are all known and one can read the secret message without knowing one of
the private keys 𝑑1, 𝑑2. The approach is based on the extended Euclidean algorithm. We compute
𝑠 and 𝑡 for which

𝑠𝑒1 + 𝑡𝑒2 = 1.
The above system of congruences provide that

𝑐𝑠
1 ≡ (𝑚𝑒1)𝑠 (mod 𝑁),

𝑐𝑡
2 ≡ (𝑚𝑒2)𝑡 (mod 𝑁).

It follows that
𝑐𝑠

1𝑐𝑡
2 ≡ 𝑚𝑠𝑒1+𝑡𝑒2 ≡ 𝑚 (mod 𝑁).

[2]: def RSAcommon(m,e1,e2,N):
c1=(m^e1)%N
c2=(m^e2)%N
pretty_print(html('The first ciphertext is %s'%latex(c1)))
pretty_print(html('The second ciphertext is %s'%latex(c2)))
g,s,t=xgcd(e1,e2)
pretty_print(html('We have $s=%s$ and $t=%s$'%(latex(s),latex(t))))
M=(c1^s*c2^t)%N
pretty_print(html('The message is %s'%latex(M)))
return M

RSAcommon(500,17,5,1591)

The first ciphertext is 849

The second ciphertext is 22

We have \(s=-2\) and \(t=7\)

The message is 500

1

[2]: 500

Low public exponent attack

In the RSA cryptosystem the encryption process might be quite costly if the public exponent 𝑒 is
large. It may be a problem in terms of time and battery power on some limited devices like smart
cards. In these cases one might choose a small public exponent like 𝑒 = 3. Suppose that Alice is
going to send the same message to Bob, Chris and David, say 𝑚. She knows the public keys of
Bob, Chris and David, let us denote these by 𝑁𝐵, 𝑁𝐶 and 𝑁𝐷. Alice computes the ciphertexts as
follows

𝑐𝐵 ≡ 𝑚3 (mod 𝑁𝐵),
𝑐𝐶 ≡ 𝑚3 (mod 𝑁𝐶),
𝑐𝐷 ≡ 𝑚3 (mod 𝑁𝐷).

Assume that Eve, an eavesdropper, obtains these ciphertexts. Let us see how to recover 𝑚. If
𝑁𝐵, 𝑁𝐶 and 𝑁𝐷 are not pairwise relatively prime numbers, then Eve can factor at least two of
them and easily computes the private keys. So we may assume that those numbers are pairwise
relatively prime. In this case Eve applies the Chinese Remainder Theorem to determine 𝑐 for which
𝑐 ≡ 𝑚3 (mod 𝑁𝐵𝑁𝐶𝑁𝐷). Since 𝑚 is less than 𝑁𝐵, 𝑁𝐶 and 𝑁𝐷, we get that 𝑚3 < 𝑁𝐵𝑁𝐶𝑁𝐷. Thus
instead of a congruence we have equality over the integers, that is 𝑐 = 𝑚3. Taking the cubic root
of 𝑐 over the integers yields the message 𝑚.

[1]: def LowExponent(NB,NC,ND,m):
pretty_print(html('The message is %s'%latex(m)))
cB=(m^3)%NB
cC=(m^3)%NC
cD=(m^3)%ND
pretty_print(html('Bob receives: %s'%latex(cB)))
pretty_print(html('Chris receives: %s'%latex(cC)))
pretty_print(html('David receives: %s'%latex(cD)))
M3=CRT_list([cB,cC,cD], [NB,NC,ND])
M=(M3)^(1/3)
pretty_print(html('The attacker obtains: %s'%latex(M)))
return M

LowExponent(2257,2581,4223,123)

The message is 123

Bob receives: 1099

Chris receives: 2547

David receives: 2747

The attacker obtains: 123

[1]: 123

The equation 𝑎𝑥2 + 𝑏𝑦2 = 𝑧2

2

3

[]:

4

