ANTA20250512

May 12, 2025

Common modulus attack

Suppose that at a company it is decided that they will use the RSA cryptosystem with a given
modulus N and each employee will have a personalized public encryption exponent e and corre-
sponding private decryption exponent d. A manager sends the same message m to two of his/her
colleagues. It will yield two different ciphertexts

me (mod N),
mc (mod N).

1

Co

Here N,eq,ey,cq and ¢, are all known and one can read the secret message without knowing one of
the private keys d;,d,. The approach is based on the extended Euclidean algorithm. We compute
s and t for which

se; +tey = 1.

The above system of congruences provide that

(m®)* (mod N),
(m®)t (mod N).

S
A

t
Ca

It follows that
cich =mfatte =m (mod N).

[2]: def RSAcommon(m,el,e2,N):
cl=(m"el) %N
c2=(m"e2) N
pretty_print(html('The first ciphertext is %s'llatex(cl)))
pretty_print (html('The second ciphertext is %s'/latex(c2)))
g,s,t=xgcd(el,e2)
pretty_print (html('We have $s=Ys$ and $t=Ys$'’ (latex(s),latex(t))))
M=(c1 7 s*c27t) %N
pretty_print (html('The message is %s'%latex(M)))
return M
RSAcommon (500,17,5,1591)

The first ciphertext is 849
The second ciphertext is 22
We have \(s=-2\) and \(t=7\)

The message is 500

[2]:

[1]:

[1]7:

500

Low public exponent attack

In the RSA cryptosystem the encryption process might be quite costly if the public exponent e is
large. It may be a problem in terms of time and battery power on some limited devices like smart
cards. In these cases one might choose a small public exponent like e = 3. Suppose that Alice is
going to send the same message to Bob, Chris and David, say m. She knows the public keys of
Bob, Chris and David, let us denote these by Ng, N and Np. Alice computes the ciphertexts as
follows

cg = m?® (mod Np),
cc = m?® (mod Np),
cp = m3 (mod Np).

Assume that Eve, an eavesdropper, obtains these ciphertexts. Let us see how to recover m. If
Npg, No and Np, are not pairwise relatively prime numbers, then Eve can factor at least two of
them and easily computes the private keys. So we may assume that those numbers are pairwise
relatively prime. In this case Eve applies the Chinese Remainder Theorem to determine ¢ for which
c=m3 (mod NgN-Np). Since m is less than N, N and N, we get that m® < NgyNoNp. Thus
instead of a congruence we have equality over the integers, that is ¢ = m3. Taking the cubic root
of ¢ over the integers yields the message m.

def LowExponent (NB,NC,ND,m) :
pretty_print (html('The message is %s'’latex(m)))
cB=(m"3)%NB
cC=(m"~3)%NC
cD=(m"3) %,ND
pretty_print (html('Bob receives: %s'/latex(cB)))
pretty_print(html('Chris receives: %s'/latex(cC)))
pretty_print (html('David receives: %s'’latex(cD)))
M3=CRT_list([cB,cC,cD], [NB,NC,ND])
M=(M3)~(1/3)
pretty_print(html('The attacker obtains: %s'’%latex(M)))
return M

LowExponent (2257,2581,4223,123)

The message is 123
Bob receives: 1099
Chris receives: 2547

David receives: 2747

The attacker obtains: 123

123

The equation ax? + by? = 22

Lemma 5. Suppose a,b,b',e € Z are such that a+ bb'e? is a square and bb'e? # 0.
Then Z? = aX? +bY? has a non-trivial Q-solution if and only if Z> = aX? +b'Y?
does.

Proof. By symmetry, it suffices to prove one direction of the biconditional. Suppose

(70,10, 20) is a non-trivial Q-solution to Z2 = aX? + bY2. So

by,?] = 2(2] — a:;:g = (za - !Eg\/&)(Z(} — :sg\/a)
(for a fixed choice of square root \/a € C).
Now write a + bb'e? = u?. So

e =u? —a= (u + \/E) (u — \/E)
Combining we get
Vibew) = (Oe)(bs?)
= (u++va)(u—+a)(z + xova)(zo — zova)
= (u + \/a) (zn + :::n\/a) (u - \/a) (zn — Ip \/c_z)
= ((uzo + azg) + (uxo + za)\/a) ((uzn + azg) — (uzg + za)\/a)
= (uzo + axg)? — a(uxe + 20)°.

So (uzg + 2o, beyg, uzy + axy) is a Q-solution to Z? = aX? + 'Y2. Since

u 0 1
0 be 0O
a 0 wu

has determinant be(u? — a) = be(bb'e?) # 0, the above solution to Z? = a X2+ b'Y?
is non-trivial. O

Theorem 1. Suppose that a,b € Z are integers such that (a,b) satisfies the descent
condition. Then Z? = aX? + bY? has a non-trivial Z-solution.

Proof. Observe that if @ = 1 then (1,1,0) is a non-trivial solution, and if b = 1
then (1,0, 1) is a non-trivial solution. Our goal is to use descent until we get to an
equation with a =1 or b = 1.

For convenience, suppose that |a| < |b|. If |a| = |b] = 1 we are done since either
a or b must be positive. So assume that |[b| > 2.

Since (a, b) satisfies the descent condition, a is a square modulo |b|. Let u be an
integer of smallest absolute value so that a = «? mod |b|. In other words, |u| < |b]/2,
and b divides u? — a. Write u? — a = bb’'e? where V' is square free.

If b'e? = 0, then a is a square. Since a is square free, a = 1 and we are done.
So from now on assume that " and e are non-zero.

[1:

Claim: |b'| < |b|. To see this observe that
b|[b'[|€*| = [u® — a| < |ul*+ |a| < [b]*/4+ |b], S0 b'] <1b]/4+ 1.

This gives

b'| < |b]/4+ 1 < |b|/4+ 3|b]/4 = |b].
(1 < 3|b|/4 since we are in the case where |b| > 2.) By Lemma 5 we have reduced
the equation to one with smaller coefficients (their product is smaller in absolute
value).

The new equation has coefficients a and b'. These coefficients satisfy the descent
condition by the previous lemma. If either is 1 we are done. Otherwise repeat
the descent, reducing the problem to an equation with yet smaller coefficients. In
this way we continue until one of the coefficients is 1 and we are guaranteed a
solution. ([l

