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Abstract. We study the equal values of repdigit numbers and
the k dimensional polygonal numbers. We state some effective
finiteness theorems, and for small parameter values we completely
solve the corresponding equations.

Let

(1) fk,m(x) =
x(x+ 1) · · · (x+ k − 2)((m− 2)x+ k + 2−m)

k!

be the mth order k dimensional polygonal number, where k ≥ 2 and
m ≥ 3 are fixed integers. As special cases for fk,3 we get the bi-

nomial coefficient
(
x+k−1

k

)
, for f2,m(x) and f3,m(x) we have the corre-

sponding polygonal and pyramidal numbers, respectively. These fig-
urate numbers have already been investigated from several aspects
and therefore have a rich literature, see Dickson [9]. For example,
the question whether a perfect square is a binomial coefficient, i.e., if
fk,3(x) = f2,4(y) and also the more general question on the power val-
ues of binomial coefficients was resolved by Győry [12]. The equation(
x
n

)
=

(
y
2

)
has been investigated by several authors, for general effective

finiteness statements we refer to Kiss [17] and Brindza [6]. In the spe-
cial cases m = 3, 4, 5 and 6, the corresponding diophantine equations
were resolved by Avanesov [1], Pintér [19] and de Weger [23] (inde-
pendently), Bugeaud, Mignotte, Stoll, Siksek, Tengely [8] and Hajdu,
Pintér [13], respectively. The equal values of polygonal and pyrami-
dal numbers were studied by Brindza, Pintér, Turjányi [7] and Pintér,
Varga [20].

Another important class of combinatorial numbers is the numbers of
the form d · 10n−1

10−1
, 1 ≤ d ≤ 9. They are called repdigits and for d = 1,

repunits. Various results and conjectures have been stated concerning
prime repunits and certain diophantine problems related to repdigits,
see [11] and Chapter 12 in [22], respectively. For example, Ballew
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and Weger [4] proved earlier that there are only six numbers, namely
1, 3, 6, 55, 66, 666 that are both triangular and repdigit numbers. Re-
cently, Jaroma [14] gave an elementary proof of the fact that 1 is the
only triangular repunit number. Keith [16] investigated the problem
to determine which polygonal numbers are repdigits and solved it for
numbers less than 107. He also introduced an efficient algorithm for
finding repdigit polygonal numbers and gave a complete characteriza-
tion of all such numbers up to 50 digits.

One can also define the so-called generalized repunits with the for-
mula (bn − 1)/(b− 1) for an integer b ≥ 2. Dubner [10] gave a table of
generalized repunit primes and probable primes for b up to 99 and for
large values of n.

In this paper we study the equal values of repdigits and the k dimen-
sional polygonal numbers. We state some effective finiteness theorems,
and for small parameter values we completely solve the corresponding
equations.

1. New results

A common generalization of repdigits and generalized repunits are
numbers of the form

d · b
n − 1

b− 1
,

i.e., taking repdigits with repeating digit d in the number system of
base b, where 1 ≤ d < b and b ≥ 2 integers.

We consider equation

(2) d · b
n − 1

b− 1
= fk,m(x)

and its special cases

(3) d · 10n − 1

10− 1
= fk,m(x)

and

(4)
bn − 1

b− 1
= fk,m(x).

In our first result we represent an effective finiteness statement con-
cerning the most general equation (2).

Theorem 1.1. Suppose that k ≥ 3 or k = 2 and m = 4 or m > 13.
Then equation (2) has only finitely many integer solutions in x and n,
further,

max (|x|, n) < c,
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where c is an effectively computable constant depending on k,m, b and
d. For k = 2 and m ∈ {3, 5, 6, 7, 8, 9, 10, 11, 12} equation (2) has infin-
itely many solutions for infinitely many values of the parameters b, d.

In the following two theorems we consider the special cases of equa-
tion (2) with repdigits or generalized repunits.

Theorem 1.2. Equation (3) with k ≥ 2 has only finitely many integer
solutions n, x except for the values (d,m) = (3, 8). In these cases the
equation has infinitely many solutions that can be given explicitly.

Theorem 1.3. Equation (4) with k ≥ 2 has only finitely many integer
solutions n, x except for the values (b,m) = (4, 8), (9, 3), (9, 6), (25, 5).
In these cases the equation has infinitely many solutions that can be
given explicitly.

In our numerical investigations, we take those polynomials fk,m(x),
where k ∈ {2, 3, 4}. For each of these cases we let d ∈ {1, 2, . . . , 9} and
m ∈ {3, 4, . . . , 20} and solve completely the corresponding equation.
To state our numerical results, we need the following concept. A solu-
tion to equation (3) is called trivial if it yields 0 = 0 or 1 = 1. This
concept is needed because of the huge number of trivial solutions; on
the other hand, such solutions of (3) can be listed easily for any fixed
k.

Theorem 1.4. All nontrivial solutions of equation (3) in case of k =
2, 3, respectively, are exactly those contained in Tables 1 and 2 respec-
tively. If k = 4 equation (3) has only trivial solutions.

(d,m) Solutions (n, x) fk,m(x) (d,m) Solutions (n, x) fk,m(x)
(1, 9) (3, 6) 111 (6, 3) (1, 3) 6
(1, 11) (2, 2) 11 (6, 3) (2, 11) 66
(1, 14) (2,−1) 11 (6, 3) (3,−37) 666
(2, 5) (3,−12) 222 (6, 6) (1, 2) 6
(3, 3) (1, 2) 3 (6, 6) (3,−18) 666
(3, 11) (3, 9) 333 (6, 9) (1,−1) 6
(4, 4) (1, 2) 4 (6, 17) (3,−9) 666
(4, 7) (1,−1) 4 (7, 5) (1,−2) 7
(5, 3) (2,−11) 55 (8, 16) (2, 4) 88
(5, 6) (2,−5) 55 (8, 8) (1, 2) 8
(5, 7) (2, 5) 55 (9, 4) (1, 3) 9

Table 1. The case of f2,m(x)
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(d,m) Solutions (n, x) fk,m(x)
(1, 6) (2, 3) 11
(1, 10) (2, 2) 11
(4, 3) (1, 2) 4
(5, 4) (1, 2) 5
(5, 4) (2, 5) 55
(6, 5) (1, 2) 6
(7, 6) (1, 2) 7
(8, 7) (1, 2) 8
(9, 8) (1, 2) 9

Table 2. The case of f3,m(x)

Remark. We considered some other related equations, corresponding
to larger values of the parameter k of the polynomial fk,m(x), that lead
to genus 2 equations. However, because of certain technical difficulties,
we could not solve them by the Chabauty method.

2. Proofs

Lemma 2.1. Let f(X) be a polynomial with rational integer coeffi-
cients and with at least two distinct roots. Suppose b 6= 0, m ≥ 0, x
and y with |y| > 1 are rational integers satisfying

f(x) = bym.

Then m is bounded by a computable number depending only on b and
f .

Proof. This is the main result of [21]. �

Proof of Theorem 1.1. Equation (2) is equivalent to

(5) k!dbn = (b−1)x(x+1) · · · (x+(k−2))((m−2)x+k+2−m)+dk!.

Let us assume first that k ≥ 4. Our aim is to show that the polynomial
on the right-hand side of (5) is never an almost perfect power. On
supposing the contrary we have

(6) (b−1)x(x+1) · · · (x+(k−2))((m−2)x+k+2−m)+dk! = c(x−α)k,

with c, α ∈ Q. Substituting x = 0,−1,−2 in equation (6), we obtain
the equalities

(7) dk! = c(−α)k,

(8) dk! = c(−1− α)k,
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(9) dk! = c(−2− α)k.

From (7) and (8) we get that

c(−α)k = c(−1− α)k,

which yields that (
1 + α

α

)k

= 1.

Therefore (1 + α)/α is a rational root of unity, i.e., ±1 which means
that α = −1/2. On the other hand, considering (7) and (9), we obtain
that

c(−α)k = c(−2− α)k.

Following a similar calculation we get that α = −1, which is a contra-
diction. Therefore, our theorem follows from Lemma 2.1 for the case
k ≥ 4.

Now, let k = 3. Then equation (5) has the form

6dbn = (b− 1)x(x+ 1)((m− 2)x+ 5−m) + 6d.

After carrying out the multiplications on the right-hand side we obtain
that

(10) 6dbn = (b− 1)(m− 2)x3 + 3(b− 1)x2 + (b− 1)(5−m)x+ 6d.

Let us again assume that the right-hand side is an almost perfect power,
i.e., equals c(x−α)3, with c, α ∈ Q. Then the original coefficients have
the form

(b− 1)(m− 2) = c, 3(b− 1) = −3cα,
(b− 1)(5−m) = 3cα2, 6d = −cα3.

From the first and second equation we get that α =
1

2−m
. At the

same time from the second and third equation we get that α =
m− 5

3
.

This yields that m ∈ C \ R. Hence we derived a contradiction again.
As in the previous case, Lemma 2.1 completes the proof for k = 3.

In the remaining case let k = 2. Then equation (5) has the form

(11) 2dbn = (b− 1)x ((m− 2)x+ 4−m) + 2d.

If the right-hand side of (11) is an almost perfect square then

(b− 1)(m− 2)x2 + (b− 1)(4−m)x+ 2d = cx2 − 2cxα + cα2

with rational c and α, further, on comparing the corresponding coeffi-
cients we have

(b− 1)(m− 2) = c, (b− 1)(4−m) = −2cα, 2d = cα2.
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Hence we get that α =
4−m
4− 2m

and so
b− 1

d
=

8(m− 2)

(4−m)2
≥ 1. This

yields that 3 ≤ m ≤ 13 integer and m 6= 4 and

b− 1

d
∈
{

88

81
,
5

4
,
72

49
,
16

9
,
56

25
, 3,

40

9
, 8, 24

}
.

This is satisfied by infinitely many pairs b, d. Therefore for infinitely
many parameter values b, d the right-hand side of equation (11) can be
an almost perfect square which yields infinitely many integer solutions
n, x of equation (2). Otherwise, Lemma 2.1 gives our statement for
k = 2 and m = 4 or m > 13. �

Proof of Theorem 1.2. For k ≥ 3 the statement follows from Theorem
1.1. Now, let k = 2. By a similar argument as in the proof of Theorem
1.1, case k = 2, we obtain that

9

d
=

8(m− 2)

(4−m)2
> 0.

Since d and m are integers, their only possible value is (d,m) = (3, 8).
Apart from this case the right-hand side of (11) cannot be a perfect
square. Hence by Lemma 2.1 the theorem follows for k = 2. In addi-
tion, in the exceptional case we show that equation (5) has infinitely
many integer solutions n, x. Our equation is

6 · 10n = 54x2 − 36x+ 6 = 54

(
x− 1

3

)2

.

This yields that for arbitrary k ∈ N we have a solution n = 2k and

x = −10k−1
3

. �

Proof of Theorem 1.3. For k ≥ 3 the statement follows from Theo-
rem 1.1. In case of k = 2 a similar calculation has to be carried out
as in the proof of Theorem 1.2. This yields the exceptional cases:
(b,m) = (4, 8), (9, 3), (9, 6), (25, 5). Showing that for these parameters
the original equation has infinitely many solutions can be done similarly
as in the previous proof. �

Proof of Theorem 1.4. Let k = 2. Then f2,m(x) = (m−2)x2+(4−m)x
2

.
Since the right-hand side of equation (3) is of degree 2 by reducing the
left-hand side to a polynomial of degree 3 we obtain an elliptic equa-
tion which can further be solved by the program package Magma [5].
We illustrate these computations by an example. Set (d,m) = (3, 11).
Then equation (3) is

(12) 3 · 10n − 1

9
=

9x2 − 7x

2
.
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The left-hand side of this equation can be reduced to polynomials of
degree 3 by considering n mod 3. If n ≡ i (mod 3), (i = 0, 1, 2) then
10n = 103k+i for some k ∈ Z, (i = 0, 1, 2). Then substituting y = 10k,
we get the following three distinct equations:

2y3 − 2 = 27x2 − 21x,(13a)

20y3 − 2 = 27x2 − 21x,(13b)

200y3 − 2 = 27x2 − 21x.(13c)

Multiplying both hand sides of equations (13a),(13b),(13c) by 108,
10800, 1080000, respectively, and introducing the new variables X1 =
54x, Y1 = 6y; X2 = 540x, Y2 = 60y; X3 = 5400x, Y3 = 600y; respec-
tively, we obtain

Y 3
1 − 216 = X2

1 − 42X1,(14a)

Y 3
2 − 21600 = X2

2 − 420X2,(14b)

Y 3
3 − 2160000 = X2

3 − 4200X3.(14c)

With the procedure IntegralPoints of Magma one can compute the
integer points of these curves, and then determine the solutions n, x of
equation (12). The solution is exactly the one listed in Table 1.

Now let k = 3. Then f3,m(x) = (m−2)x3+3x2+(5−m)x
6

. Since the right-
hand side of equation (3) is of degree 3 by reducing the left-hand side to
a polynomial of degree 2 we obtain an elliptic equation again which can
be solved by Magma. We illustrate these computations by an example.
Set (d,m) = (4, 3). Then equation (3) is

(15) 4 · 10n − 1

9
=
x3 + 3x2 + 2x

6
.

The left-hand side of this equation can be reduced to polynomials of
degree 2 by considering n modulo 2. If n ≡ i (mod 2), (i = 0, 1) then
10n = 102k+i for some k ∈ Z, (i = 0, 1). Then substituting y = 10k, we
get the following two distinct equations:

8y2 − 8 = 3x3 + 9x2 + 6x,(16a)

80y2 − 8 = 3x3 + 9x2 + 6x.(16b)

Multiplying both hand sides of equations (16a),(16b) by 72, 72000,
respectively, and introducing the new variables X1 = 6x, Y1 = 24y;
X2 = 60x, Y2 = 2400y; respectively, we obtain

Y 2
1 − 576 = X3

1 + 18X2
1 + 72X1,(17a)

Y 2
2 − 576000 = X3

2 + 180X2
2 + 7200X2.(17b)
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With the procedure IntegralPoints of Magma one can compute the
integer points of these curves, and then determine the solutions n, x of
equation (15). The solution is exactly the one listed in Table 2.

Finally, let k = 4. Now

f4,m(x) =
(m− 2)x4 + 2mx3 + (14−m)x2 + (12− 2m)x

24
.

Since the right-hand side of equation (3) is of degree 4 by reducing the
left-hand side to a polynomial of degree 2 we obtain a genus 1 equation
which can be solved by Magma. We take only one example again. Set
(d,m) = (3, 5). Then equation (3) is

(18) 3 · 10n − 1

9
=

3x4 + 10x3 + 9x2 + 2x

24
.

The left-hand side of this equation can be reduced to polynomials of
degree 2 by considering n modulo 2. If n ≡ i (mod 2), (i = 0, 1) then
10n = 102k+i for some k ∈ Z, (i = 0, 1). Then substituting y = 10k, we
get the following two distinct equations:

8y2 − 8 = 3x4 + 10x3 + 9x2 + 2x,(19a)

80y2 − 8 = 3x4 + 10x3 + 9x2 + 2x.(19b)

Multiplying both hand sides of equations (19a),(19b) by 2, 5, respec-
tively, and introducing the new variables Y1 = 4y, Y2 = 20y; respec-
tively, we obtain

Y 2
1 = 6x4 + 20x3 + 18x2 + 4x+ 16,(20a)

Y 2
2 = 15x4 + 50x3 + 45x2 + 10x+ 40.(20b)

The procedure IntegralQuarticPoints of Magma can find the inte-
gral points of such hyperelliptic curves as (20a) and (20b) if the con-
stant term on the right-hand side is a square or a point of the curve is
given. It just happens in case of (20a). Therefore using the previously
mentioned command we determine all integral points of (20a) and sub-
stituting backwards, we find just the trivial solution n = x = 0 to the
original equation (18). In case of (20b) we cannot use the previous
procedure. However the algorithm called IntGenQuartPoints.m imple-
mented in Magma by Kovács [18] can be applied to this curve. This
algorithm needs neither of the previous conditions on the hyperelliptic
curve. Having the integral points of (20b) and substituting backwards
again, we find no solution to the original equation (18). �
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grant K75566, the TÁMOP 4.2.1./B-09/1/KONV-2010-0007, TÁMOP-
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[20] Á. Pintér and N. Varga, Resolution of a nontrivial Diophantine equation with-
out reduction methods, Publ. Math. Debrecen, 79 (2011), 605-610.
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